Skip to main content

Isolation and Characterization of Neuropeptides

  • Chapter
Neurochemical Techniques in Insect Research

Part of the book series: Springer Series in Experimental Entomology ((SSEXP))

Abstract

The recognition of neuropeptides as a major class of neurotransmitters has led to a set of revolutionary discoveries about chemical neurotransmission. Widely held ideas about the total number of neurotransmitters, the number of transmitters used by a single neuron, the anatomical structures over which transmitters act, and the array of postsynaptic events they produce have changed in the last 5 to 10 years, and in large measure studies of neuropeptides are responsible for those changes. Thus, it seems clear that neuropeptides are a class of neurotransmitters well worth studying, not only because of their inherent significance to the physiology of the nervous system, but also because modern tools available for the study of neuropeptides make them excellent models for the study of neurotransmission in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AKH:

adipokinetic hormone

c.c:

corpora cardiac

cDNA:

complementary DNA

DABS:

4-dimethylaminoazobenzene-4′-sulfonyl

ELH:

egg-laying hormone

FAB:

fast atom bombardment

GPC:

gel permeation chromatography

HPLC:

high performance liquid chromatography

MS:

mass spectrometry

pGlu:

pyroglutamate

PTHaa:

phenylthiohydantoin-amino acid

Ã…:

angstrom

mM :

millimolar

µ:

micron

nm:

nanometer

References

  • Allison LA, Mayer GS, Shoup RE (to be published 1984 ) O-pthalaldehyde derivatives of amines for high speed liquid chromatography/electrochemistry. Anal Chem

    Google Scholar 

  • Airoldi LP, Doonan S (1975) A method of distinguishing between aspartic acid and asparagine and between glutamic acid and glutamine during sequence analysis by the dansyl-Edman procedure. FEBS Lett 50: 155–158

    Article  PubMed  CAS  Google Scholar 

  • Alvarado-Urbina G, Sathe GM, Liu WO, Gillen MF, Duck PD, Bender R, Ogilvie KK (1981) Automated synthesis of gene fragments. Science (Wash DC) 214: 270–274

    Article  CAS  Google Scholar 

  • Bauman E, Gersch M (1982) Purification and identification of neurohormone D, a heart accelerating peptide from corpora cardiaca of the cockroach, Periplaneta americana. Insect Biochem 12: 7–14

    Google Scholar 

  • Boer HH, Schot LPC, Veenstra JA, Reichelt D (1980) Immunocytochemical identification of neural elements in the central nervous system of the snail, some insects, a fish, and a mammal with an antiserum to the mulloscan cardio-excitatory tetrapeptide FMRF- amide. Cell Tissue Res 213:21–27

    Google Scholar 

  • Brown BE, Starratt AN (1975) Isolation of proctolin, a myotropic peptide from Periplaneta americana. J Insect Physiol 21:1879– 188

    Google Scholar 

  • Burton CJ, Hartley BS (1970) Chemical studies on methionyl-tRNA synthetase from Escherichia coll J Mol Biol 52: 165–178

    Google Scholar 

  • Burzynski SR (1975) Quantitative analysis of amino acids and peptides in the femtomolar range. Anal Biochem 65:93–99

    Google Scholar 

  • Burzynski SR (1976) Sequential analysis in subnanomolar amounts of peptides determination of the structure of a habituation-induced brain peptide (amelitin). Anal Biochem 70: 359–365

    Article  PubMed  CAS  Google Scholar 

  • Carlsen J, Herman WS, Christensen M, Josefsson L (1979) Characterization of a second peptide with adipokinetic and red pigment-concentrating activity from locust corpora cardiaca. Insect Biochem 9: 497–501

    Article  CAS  Google Scholar 

  • Chang JY, Knecht R, Braun DG (1983) Amino acid analysis in the picomole range by pre-column derivatization and high-performance liquid chromatography. Methods En- zymol 91:41 –48

    Google Scholar 

  • Chiu AY, Hunkapiller MW, Heller E, Stuart DK, Hood LE, Strumwasser F (1979) Purification and primary structure of the neuropeptide egg-laying hormone of Aplysia cali- fornica. Proc Natl Acad Sci USA 76: 6656–6660

    Article  PubMed  CAS  Google Scholar 

  • Dockray GJ, Duve H, Thorpe A (1981a) Immunochemical characterization of gastrin/ cholecystokinin-like peptides in the brain of the blowfly, Calliphora vomitoria. Gen Comp Endocrinol 43:491 –496

    Google Scholar 

  • Dockray GJ, Vaillant C, Williams RG (1981 b) New vertebrate brain-gut peptide related to a molluscan neuropeptide and an opioid peptide. Nature (Lond) 293:656–657

    Google Scholar 

  • Duve H, Thorpe A (1981) Gastrin/eholecystokinin (CCK)-like immunoreactive neurones in the brain of the blowfly, Calliphora erythrocephala (Diptera). Gen Comp Endocrinology 43:381–391

    Google Scholar 

  • Duve H, Thorpe A, Lazarus NR, Lowry PJ (1982) A neuropeptide of the blowfly, Calliphora vomitoria with an amino acid composition homologous to vertebrate pancreatic polypeptide. Biochem J 201: 429–432

    Google Scholar 

  • El-Salhy M, Abou-El-Ela R, Falkner S, Grimelius L, Wilander E (1980) Im- munohistochemical evidence of gastro-enteropancreatic neurohormonal peptides of vertebrate type in the nervous system of the larva of a dipteran insect, the hoverfly, Eristalis aeneus. Regul Pept 1:187–204

    Google Scholar 

  • Erspamer V, Anastasi A (1962) Structure and pharmacological actions of eledoisin, the active endecapeptide of the posterior salivary gland of Eledone. Experientia (Basel) 18: 58–61

    Article  CAS  Google Scholar 

  • Gray WR (1972) Sequence analysis with dansyl chloride. Methods Enzymol 25:333–344

    Google Scholar 

  • Gross E (1967) The cyanogen bromide reaction. Methods Enzymol 11: 238–255

    Article  CAS  Google Scholar 

  • Hewick RM, Hunkapiller MW, Hood LE, Dreyer WJ (1981) A gasliquid solid phase peptide and protein sequenator. J Biol Chem 256:7990–7997

    Google Scholar 

  • Hunkapiller MW, Hood LE (1983) Protein sequence analysis: automated microsequencing. Science (Wash DC) 219: 650–659

    Article  CAS  Google Scholar 

  • Kramer KJ, Speirs RD, Childs CN (1977) Immunochemical evidence for a gastrin-like peptide in insect neuroendocrine system. Gen Comp Endocrinol 32:423–426

    Google Scholar 

  • Kreil G (1981) Transfer of proteins across membranes. Annu Rev Biochem 50:317–348

    Google Scholar 

  • Leung MK, Stefano GB (1984) Isolation and identification of enkephalins in pedal ganglia or Mytilus edulis (mollusca). Proc Natl Acad Sci USA 81: 955–958

    Article  PubMed  CAS  Google Scholar 

  • Maugh TH (1983) A survey of separative techniques. Science (Wash DC) 222:259–266

    Google Scholar 

  • Maxam A, Gilbert W (1980) Sequencing end-labelled DNA with base specific chemical cleavage. Methods Enzymol 65 [part I]: 499–559

    Article  PubMed  CAS  Google Scholar 

  • JH, Robinson AB (1971) Deamidation of asparaginyl residues as a hazard in experimental protein and peptide procedures. Anal Biochem 42:565–568

    Google Scholar 

  • Michelson AM, Markham AF, Orkin SH (1983) Isolation and DNA sequence of a full- length cDNA clone for human X chromosome-encoded phosphoglycerate kinase. Proc Natl Acad Sci USA 80: 472–476

    Article  PubMed  CAS  Google Scholar 

  • Moore S, Stein WH (1963) Chromatographic determination of amino acids by the use of automatic recording equipment. Methods Enzymol 6:819–831

    Google Scholar 

  • Morris HR, Panico M (1981) Fast atom bombardment: a new mass spectrometric method for peptide sequence analysis. Biochem Biophys Res Commun 101:623–631

    Google Scholar 

  • Nambu JR, Tussig R, Mahon AC, Scheller RH (1983) Gene isolation with cDNA probes from Aplysia neurons: neuropeptide modulators of cardiovascular physiology. Cell 35: 47–56

    Article  PubMed  CAS  Google Scholar 

  • Noyes BE, Mevarech M, Stein R, Agarwal KL (1979) Detection and partial sequence analysis of gastrin mRNA using an oligodeoxynucleotide probe. Proc Natl Acad Sci USA 79: 1770–1774

    Article  Google Scholar 

  • O’Shea M, Witten J, Schaffer M (1984) Isolation and characterization of two myoactive neuropeptides: further evidence of an invertebrate peptide family. J Neurosci 4: 521–529

    PubMed  Google Scholar 

  • Raabe M (1982) Insect neuropeptides. Plenum, New York

    Google Scholar 

  • Rehfeld JH (1978) Immunochemical studies on cholecystokinin. J Biol Chem 253: 4022–4030

    PubMed  CAS  Google Scholar 

  • Rinehart KL (1982) Fast atom bombardment mass spectrometry. Science (Wash DC) 218: 254–260

    Article  CAS  Google Scholar 

  • Rose SM, Schwartz BD (1980) Automated, isocratic separation of phenylthiohydantoin- amino acids by tandem reverse phase high-pressure liquid chromatography columns. Anal Biochem 107: 206–213

    Article  PubMed  CAS  Google Scholar 

  • Rosenfeld MG, Mermod JJ, Amara SG et al. (1983) Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific processing. Nature (London) 304: 129–135

    Article  CAS  Google Scholar 

  • Sanger F, Nieklen S, Coulsen AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463– 5467

    Google Scholar 

  • Schaffer MH, Agarwal KL, Noyes BE (1982) Rat gastrin’s amino acid sequence determined from the nucleotide sequence of the mRNA. Peptides 3:693–696

    Google Scholar 

  • Schaller HC, Bodenmuller H (1981) Isolation and amino acid sequence of a morphogenetic peptide from hydra. Proc Natl Acad Sci USA 78: 7000–7004

    Article  PubMed  CAS  Google Scholar 

  • Scheller RH, Jackson JF, McAllister LB, Rothman BS, Mayeri E, Axel R (1983) A single gene encodes multiple neuropeptides mediating a stereotyped behavior. Cell 32:7–22

    Google Scholar 

  • Schooneveld H, Tesser GL, Veenstra JA, Romberg-Privee HM (1983) Adipokinetic hormone and AKH-like peptide demonstrated in the corpora cardiaca and nervous system of Locusta migratoria by immunocytochemistry. Cell Tissue Res 230: 67–76

    Article  PubMed  CAS  Google Scholar 

  • Starratt AN, Brown BE (1975) Structure of the pentapeptide proctolin, a proposed neurotransmitter in insects. Life Sci 17:1253– 1256

    Google Scholar 

  • Stone JV, Mordue W (1980) Adipokinetic hormone. In: Miller TA (ed) Neurohormonal techniques in insects. Springer, Berlin Heidelberg New York, pp 31–80

    Google Scholar 

  • Stone JV, Mordue W, Batley KE, Morris HR (1976) Structure of locust adipokinetic hormone, a neurohormone that regulates lipid utilisation during flight. Nature (Lond) 263: 207–211

    Article  CAS  Google Scholar 

  • Tatemoto K, Mutt V (1978) Chemical determination of polypeptide hormones. Proc Natl Acad Sci USA 75: 4115–4119

    Article  PubMed  CAS  Google Scholar 

  • Tatemoto K, Mutt V (1980) Isolation of two new novel candidate hormones using a chemical method for finding naturally occurring polypeptides. Nature (Lond) 285: 417–418

    Article  CAS  Google Scholar 

  • Truman JW, Taghert PH (1983) Neuropeptides in insects. In: Krieger DT, Brownstein MJ, Martin TB (ed) Brain peptides. Wiley, New York, pp 165–181

    Google Scholar 

  • Vale W, Spiess J, Rivier C, Rivier J (1981) Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and endorphin. Science (Wash DC) 213: 1394–1397

    Article  CAS  Google Scholar 

  • Walter P, Blobel G (1981) Translocation of proteins across the endoplasmic reticulum III. Signal recognition protein ( SRP) causes signal sequence-dependent and site-specific arrest of chain elongation that is released by microsomal membranes. J Cell Biol 91: 557–561

    Google Scholar 

  • Weber E, Evans CJ, Samuelsson SJ, Barchas JD (1981) Novel peptide neuronal system in the rat brain and pituitary. Science (Wash DC) 214:1248–1251

    Google Scholar 

  • Wilkinson JM (1978) The separation of dansyl amino acids by reversed-phase high performance liquid chromatography. J Chromatogr Sci 16: 547–552

    CAS  Google Scholar 

  • Witten J, Worden MK, Schaffer MH, O’Shea M (1984) New classification of insect motoneurons: expression of different peptide transmitters. Society for Neuros’cience. 14th Annual Meeting Abstracts 46. 4

    Google Scholar 

  • Yui R, Fujita T, Ito S (1980) Insulin-, gastrin-, pancreatic polypeptide-like immunoreactive neurons in the brain of the silkworm, Bombyx rnori. Biomed Res 1: 42–46

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schaffer, M.H. (1985). Isolation and Characterization of Neuropeptides. In: Breer, H., Miller, T.A. (eds) Neurochemical Techniques in Insect Research. Springer Series in Experimental Entomology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70045-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70045-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70047-7

  • Online ISBN: 978-3-642-70045-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics