Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 69))

Abstract

Cholinergic drugs can exert biological activity by modifying the normal mechanism of ACh-mediated autonomic neurotransmission in several ways (Fig. 1; Koelle 1975 a): interference with transmitter synthesis (hemicholinium); prevention of transmitter release (botulinum toxin); displacement of transmitter from ax-onal terminal (carbachol); mimicry of transmitter at postsynaptic receptor (methacholine, carbachol, nicotine); blockade of transmiter at postsynaptic receptor (atropine, D-tubocurarine, hexamethonium); inhibition of enzymatic breakdown of transmitter (anticholinesterases).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler FH, Scheie H (1940) The site of the disturbance in tonic pupils. Trans Am Ophthalmol Soc 38:183–192

    PubMed  CAS  Google Scholar 

  • Ågren G, Ramachandran BV (1964) The effect of pyridinium aldoximes and atropine on the incorporation of DF32P in rat liver cell fractions. Acta Physiol Scand 60:95–102

    Article  PubMed  Google Scholar 

  • Akesson C, Swanson C, Patil PN (1983) Muscarinic receptors of rabbit irides. Naunyn– Schmiedebergs Arch Pharmacol 322:104–110

    Article  PubMed  CAS  Google Scholar 

  • Alexander JH, van Lennep EW (1972) Water and electrolyte secretion by the exorbital lacrimal gland of the rat studied by micropuncture and catheterization techniques. Pflügers Arch 337:299–309

    Article  PubMed  CAS  Google Scholar 

  • Allan L, Burian HM (1965) The valve action of the trabecular meshwork. Studies with silicone models. Am J Ophthalmol 59:382–389

    Google Scholar 

  • Alm A, Bill A, Young FA (1973) The effects of pilocarpine and neostigmine on the blood flow through the anterior uvea in monkeys. A study with radioactively labelled microspheres. Exp Eye Res 15:31–36

    Article  PubMed  CAS  Google Scholar 

  • Arenson MS, Wilson H (1971) The parasympathetic secretory nerves of the lacrimal gland of the cat. J Physiol 217:201–212

    PubMed  CAS  Google Scholar 

  • Armaly MF (1959 a) Studies on intraocular effects of the orbital parasympathetic pathway. I. Technique and effects on morphology. Arch Ophthalmol 61:14–29

    Article  CAS  Google Scholar 

  • Armaly MF (1959 b) Studies on intraocular effects of the orbital parasympathetics. II. Effects on intraocular pressure. Arch Ophthalmol 62:117–124

    Article  CAS  Google Scholar 

  • Armaly MF (1959 c) Studies on intraocular effects of the orbital parasympathetic pathway. III. Effect on steady state dynamics. Arch Ophthalmol 62:817–827

    Article  PubMed  CAS  Google Scholar 

  • Armaly MF (1968) Degeneration of ciliary muscle and iris sphincter following resection of the ciliary ganglion. Trans Am Ophthalmol Soc 66:475–502

    PubMed  CAS  Google Scholar 

  • Armaly MF, Burian HM (1958) Changes in the tonogram during accommodation. Arch Ophthalmol 60:60–68

    Article  CAS  Google Scholar 

  • Asayama J (1902) Zur Anatomie des Ligamentum Pectinatum. Albrecht von Graefes Arch Ophthalmol 53:113–128

    Google Scholar 

  • Auricchio G, Diotallevi M (1959 a) La resistenza al deflusso in occhi di coniglio dopo pro-lungato trattamento con diisopropilfluorofosfato. Ann Ottalmol e Clin Ocul 85:493–496

    CAS  Google Scholar 

  • Auricchio G, Diotallevi M (1959 b) Uteriori ricerchi sull’ influenza esercitata dal DFP sulla al deflusso in occhi di coniglio. Ann Ottalmol e Clin Ocul 85:567–570

    CAS  Google Scholar 

  • Axelsson U (1968) Glaucoma, miotic therapy, and cataract. I. The frequency of anterior subcapsular vacuoles in glaucoma eyes treated with echothiophate (phospholine iodide), pilocarpine, or pilocarpine–eserine, and in non–glaucomatous untreated eyes with common senile cataract. Acta Ophthalmol 46:83–98

    CAS  Google Scholar 

  • Axelsson U (1969) Glaucoma miotic therapy and cataract. VI. Experimental studies on the guinea pig eye. Acta Ophthalmol 47:1–11

    Google Scholar 

  • Axelsson U, Holmberg Å (1966) The frequency of cataract after miotic therapy. Acta Ophthalmol 44:421–429

    CAS  Google Scholar 

  • Bárány EH (1955) Resistance to aqueous outflow. In: Newell FW (ed) Glaucoma, transactions of the first conference. Josiah Macy Jr Foundation, New York, pp 112–113

    Google Scholar 

  • Bárány EH (1962) The mode of action of pilocarpine on outflow resistance in the eye of a primate (Cercopithecus ethiops). Invest Ophthalmol 1:712–727

    PubMed  Google Scholar 

  • Bárány EH (1963) A mathematical formulation of intraocular pressure as dependent on secretion, ultrafiltration, bulk outflow, and osmotic reabsorption of fluid. Invest Ophthalmol 2:584–590

    PubMed  Google Scholar 

  • Bárány EH (1965) Relative importance of autonomic nervous tone and structure as determinants of outflow resistance in normal monkey eyes (Cercopithecus ethiops and Macaca irus). In: Rohen JW (ed) The structure of the eye, 2nd symposium. Schattauer, Stuttgart, pp 223–236

    Google Scholar 

  • Bárány EH (1966 a) The mode of action of miotics on outflow resistance. A study of pilocarpine in the vervet monkey, Cercopithecus ethiops. Trans Ophthalmol Soc UK 86:539–578

    PubMed  Google Scholar 

  • Bárány EH (1966 b) Pseudofacility and uveo–scleral outflow routes. Some non–technical difficulties in the determination of outflow facility and rate of formation of aqueous humor. Glaucoma symposium, Tutzing Castle, Karger, Basel, pp 27–51

    Google Scholar 

  • Bárány EH (1967) The immediate effect on outflow resistance of intravenous pilocarpine in the vervet monkey, Cercopithecus ethiops. Invest Ophthalmol 6:373–380

    Google Scholar 

  • Bárány EH (1972) Inhibition by hippurate and probenecid of in vitro uptake of iodipamide and o-iodohippurate — composite uptake system for iodipamide in choroid plexus, kidney cortex, and anterior uvea of several species. Acta Physiol Scand 86:12–27

    Article  PubMed  Google Scholar 

  • Bárány EH (1973 a) The liver-like anion transport system in rabbit kidney, uvea, and choroid plexus. I. Selectivity of some inhibitors, direction of transport, possible physiological substrates. Acta Physiol Scand 88:412–429

    Article  PubMed  Google Scholar 

  • Bárány EH (1973 b) The liver-like anion transport system in rabbit kidney, uvea, and choroid plexus. II. Efficiency of acidic drugs and other anions as inhibitors. Acta Physiol Scand 88:491–504

    Article  PubMed  Google Scholar 

  • Bárány EH (1974) Bile acids as inhibitors of the liver-like anion transport system in the rabbit kidney, uvea, and choroid plexus. Acta Physiol Scand 92:195–203

    Article  PubMed  Google Scholar 

  • Bárány EH (1975) In vitro uptake of bile acids by choroid plexus, kidney cortex, and anterior uvea. I. The iodipamide sensitive transport systems in the rabbit. Acta Physiol Scand 93:250–268

    Article  PubMed  Google Scholar 

  • Bárány EH (1976) Organic cation uptake in vitro by the rabbit iris-ciliary body, renal cortex, and choroid plexus. Invest Ophthalmol 15:341–348

    PubMed  Google Scholar 

  • Bárány EH (1977) Pilocarpine-induced subsensitivity to carbachol and pilocarpine of ciliary muscle in vervet and cynomolgus monkeys. Acta Ophthalmol 55:141–163

    Google Scholar 

  • Bárány EH, Christensen RE (1967) Cycloplegia and outflow resistance. Arch Ophthalmol 77:757–760

    Article  PubMed  Google Scholar 

  • Bárány EH, Rohen JW (1965) Localized contraction and relaxation within the ciliary muscle of the vervet monkey (Cercopithecus ethiops). In: Rohen JW (ed) The structure of the eye, 2nd symposium. Schattauer, Stuttgart, pp 287–311

    Google Scholar 

  • Bárány EH, Berrie CP, Birdsall NJM, Burgen ASV, Hulme EC (1982) The binding properties of the muscarinic receptors of the cynomolgus monkey ciliary body and the response to the induction of agonist subsensitivity. Br J Pharmacol 77:731–739

    PubMed  Google Scholar 

  • Baughman RW, Bader CR (1977) Biochemical characterization and cellular localization of the cholinergic system in the chicken retina. Brain Res 138:469–485

    Article  PubMed  CAS  Google Scholar 

  • Becker B (1960) The transport of organic anions by the rabbit eye. I. In vitro iodopyracet (Diodrast) accumulation by ciliary body–iris preparations. Am J Ophthalmol 50:862–867

    PubMed  CAS  Google Scholar 

  • Becker B (1961) Iodide transport by the rabbit eye. Am J Physiol 200:804–806

    PubMed  CAS  Google Scholar 

  • Becker B (1962) The measurement of rate of aqueous flow with iodide. Invest Ophthalmol 1:52–58

    PubMed  CAS  Google Scholar 

  • Becker B (1967) Ascorbate transport in guinea pig eyes. Invest Ophthalmol 6:10–15

    Google Scholar 

  • Berggren L (1965) Effect of parasympathomimetic and sympathomimetic drugs on secretion in vitro by the ciliary processes of the rabbit eye. Invest Ophthalmol 4:91–97

    PubMed  CAS  Google Scholar 

  • Berggren L (1970) Further studies on the effect of autonomic drugs on in vitro secretory activity of the rabbit eye ciliary processes. Acta Ophthalmol 48:293–302

    CAS  Google Scholar 

  • Bertaccini G, Impicciatore M, Mossini F (1972) Action of some N-methyl derivatives of histamine on salivary and lacrimal secretion of the cat. Biochem Pharmacol 21:3076–3078

    Article  PubMed  CAS  Google Scholar 

  • Bill A (1966 a) Formation and drainage of aqueous humor in cats. Exp Eye Res 5:185–190

    Article  Google Scholar 

  • Bill A (1966 b) The routes for bulk drainage of aqueous humor in rabbits with and without cyclodialysis. Doc Ophthalmol 20:157–169

    Article  PubMed  CAS  Google Scholar 

  • Bill A (1967) Effects of atropine and pilocarpine on aqueous humor dynamics in cynomol-gus monkeys (Macaca irus). Exp Eye Res 6:120–125

    Article  PubMed  CAS  Google Scholar 

  • Bill A (1969) Effects of atropine on aqueous humor dynamics in the vervet monkey (Cer-copithecus ethiops). Exp Eye Res 8:284–291

    Article  PubMed  CAS  Google Scholar 

  • Bill A (1971 a) Aqueous humor dynamics in monkeys (Macaca irus and Cercopithecus ethiops). Exp Eye Res 11:195–206

    Article  PubMed  CAS  Google Scholar 

  • Bill A (1971 b) Effects of long-standing stepwise increments in eye pressure on the rate of aqueous humor formation in a primate (Cercopithecus ethiops). Exp Eye Res 12:184–193

    Article  PubMed  CAS  Google Scholar 

  • Bill A (1975) Blood circulation and fluid dynamics in the eye. Pharmacol Rev 55:383–417

    CAS  Google Scholar 

  • Bill A (1981) Ocular circulation. In: Moses RA (ed) Adler’s physiology of the eye. Clinical application, 7th ed. Mosby, St. Louis, chap. 6, pp 184–203

    Google Scholar 

  • Bill A, Bárány EH (1966) Gross facility, facility of conventional routes, and pseudofacility of aqueous humor outflow in the cynomolgus monkey. The reduction in aqueous humor formation rate caused by moderate increments in intraocular pressure. Arch Ophthalmol 75:665–673

    Article  PubMed  CAS  Google Scholar 

  • Bill A, Phillips CI (1971) Uveoscleral drainage of aqueous humor in human eyes. Exp Eye Res 12:275–281

    Article  PubMed  CAS  Google Scholar 

  • Bill A, Svedbergh B (1972) Scanning electron microscopic studies of the trabecular mesh– work and the canal of Schlemm — an attempt to localize the main resistance to outflow of aqueous humor in man. Acta Ophthalmol 50:295–320

    CAS  Google Scholar 

  • Bill A, Wålinder P-E (1966) The effects of pilocarpine on the dynamics of aqueous humor in a primate (Macaca irus). Invest Ophthalmol 5:170–175

    CAS  Google Scholar 

  • Bito LZ (1968) The absence of sympathetic role in anti-ChE-induced changes in cholinergic transmission. J Pharmacol Exp Ther 161:302–309

    PubMed  CAS  Google Scholar 

  • Bito LZ (1972 a) Accumulation and apparent active transport of prostaglandins by some rabbit tissues in vitro. J Physiol 221:371–387

    PubMed  CAS  Google Scholar 

  • Bito LZ (1972b) Comparative study of concentrative prostaglandin accumulation by various tissues of mammals and marine vertebrates and invertebrates. Comp Biochem Physiol 43:65–82

    Article  CAS  Google Scholar 

  • Bito LZ, Banks N (1969) Effects of chronic Cholinesterase inhibitor treatment. I. The pharmacological and physiological behavior of the anti-ChE-treated (Macaca mulatto) iris. Arch Ophthalmol 82:681–686

    Article  PubMed  CAS  Google Scholar 

  • Bito LZ, Baroody RA (1979) Gradual changes in the sensitivity of rhesus monkey eyes to miotics and the dependence of these changes on the regimen of topical Cholinesterase inhibitor treatment. Invest Ophthalmol Vis Sci 18:794–801

    PubMed  CAS  Google Scholar 

  • Bito LZ, Dawson MJ (1970) The site and mechanism of the control of cholinergic sensitivity. J Pharmacol Exp Ther 175:673–684

    CAS  Google Scholar 

  • Bito LZ, Salvador EV (1972) Intraocular fluid dynamics. III. The site and mechanism of prostaglandin transfer across the blood intraocular fluid barriers. Exp Eye Res 14:233–241

    Article  PubMed  CAS  Google Scholar 

  • Bito LZ, Salvador EV (1976) Effects of anti–inflammatory agents and some other drugs on prostaglandin biotransport. J Pharmacol Exp Ther 198:481–488

    PubMed  CAS  Google Scholar 

  • Bito LZ, Davson H, Snider N (1965) The effects of autonomic drugs on mitosis and DNA synthesis in the lens ephthelium and on the composition of the aqueous humor. Exp Eye Res 4:54–61

    Article  PubMed  CAS  Google Scholar 

  • Bito LZ, Hyslop A, Hyndman J (1967) Antiparasympathomimetic effects of Cholinesterase inhibitor treatment. J Pharmacol Exp Ther 157:159–169

    PubMed  CAS  Google Scholar 

  • Bito LZ, Dawson MJ, Petrinovic L (1971) Cholinergic sensitivity: normal variability as a function of stimulus background. Science 172:583–585

    Article  PubMed  CAS  Google Scholar 

  • Bito LZ, Davson H, Salvador EV (1976) Inhibition of in vitro concentrative prostaglandin accumulation by prostaglandins, prostaglandin analogues, and by some inhibitors of organic anion transport. J Physiol 256:257–271

    PubMed  CAS  Google Scholar 

  • Botelho SY, Hisada M, Fuenmayor N (1966) Functional innervation of the lacrimal gland in the cat. Arch Ophthalmol 16:581–588

    Article  Google Scholar 

  • Botelho SY, Goldstein AM, Hisada M (1969) The effects of autonomic nerve impulses and autonomic drugs on secretion by the lacrimal gland. In: Botelho SY, Brooks FP, Shelley WB (eds) Exocrine glands: proceedings of a satellite symposium of the 25th international congress of physiological sciences. University of Pennsylvania Press, Philadelphia, pp 227–245

    Google Scholar 

  • Bourgon P, Pilley SFJ, Thompson HS (1978) Cholinergic supersensitivity of the iris sphincter in Adie’s tonic pupil. Am J Ophthalmol 85:373–377

    PubMed  CAS  Google Scholar 

  • Brimblecombe RW (1974) Drug actions at peripheral muscarinic sites. In: Brimblecombe RW (ed) Drug actions on cholinergic systems. University Park Press, Baltimore, pp 19–42

    Google Scholar 

  • Brogdanski DF, Silser F, Brodie BB (1961) Comparative action of reserpine, tetrabenazine and chlorpromazine on central parasympathetic activity: effects on pupillary size and lacrimation in rabbit and on salivation in dog. J Pharmacol Exp Ther 132:176–182

    Google Scholar 

  • Bromberg BB (1981) Autonomic control of lacrimal protein secretion. Invest Ophthalmol Vis Sci 20:110–116

    PubMed  CAS  Google Scholar 

  • Bunke A, Bito LZ (1981) Gradual increase in the sensitivity of extraocular muscles to acetylcholine during topical treatment of rabbit eyes with isoflurophate. Am J Ophthalmol 92:259–267

    PubMed  CAS  Google Scholar 

  • Burde RM (1981) The extraocular muscles. Anatomy, physiology, and pharmacology. In: Moses RA (ed) Adler’s physiology of the eye. Clinical application, 7th edn. Mosby St. Louis, chap. 5, pt 1, pp 84–121

    Google Scholar 

  • Burn JH, Rand MJ (1962) A new interpretation of the adrenergic fiber. Adv Pharmacol 1:1–30

    Article  CAS  Google Scholar 

  • Carrier O Jr (1972) Cholinergic drugs. In: Carrier O Jr (ed) Pharmacology of the peripheral autonomic nervous system. Year Book Medical Publishers, Chicago, pp 34–73

    Google Scholar 

  • Casey WJ (1966) Cervical sympathetic stimulation in monkeys and the effects on outflow facility and intraocular volume. A study in the East African vervet (Cercopithecus aethiops). Invest Ophthalmol 5:33–41

    Google Scholar 

  • Cashin CH, Holten TM, Szinai SS (1972) Synthesis and anticholinergic properties of 1-adamant-1-yl-l–phenyl-3-N-pyrrolidino-1-propranolol hydrochloride. J Medicinal Chem 15:853–854

    Article  CAS  Google Scholar 

  • Cavanagh HD (1975) Herpetic ocular disease: therapy of persistent epithelial defects. Int Ophthalmol Clin 15:67–88

    Article  PubMed  CAS  Google Scholar 

  • Cavanagh HD, Colley AM (1981) β-Adrenergic and muscarinic binding in corneal epithelium. Invest Ophthalmol Vis Sci 20 [ARVO suppl]:37

    Google Scholar 

  • Chen T-T, Lee P-F (1976) Clinical experience on Ocusert — pilocarpine system — a long-term evaluation. Invest Ophthalmol 15 [ARVO suppl]:48

    Google Scholar 

  • Chiang TS, Leaders FF (1971) Antagonism of aceclidine-induced tremor, analgesia, hypothermia, salivation, and lacrymation of some pharmacological agents. Arch Int Phar-macodyn Ther 189:295–302

    CAS  Google Scholar 

  • Chiou GC, Liu HK, Trzeciakowski J (1980) Studies of action mechanism of antiglaucoma drugs with a newly developed cat model. Life Sci 27:2445–2451

    Article  PubMed  CAS  Google Scholar 

  • Claesson H, Bárány E (1978) Time course of light induced changes in pilocarpine sensitivity of rat iris. Acta Physiol Scand 102:394–398

    Article  PubMed  CAS  Google Scholar 

  • Cohen DN, Zakov ZN (1975) The diagnosis of Adie’s pupil using 0.0625% pilocarpine solution. Am J Ophthalmol 79:883–885

    PubMed  CAS  Google Scholar 

  • Dartt DA, Botelho SY (1979) Protein in rabbit lacrimal gland fluid. Invest Ophthalmol Vis Sci 18:1207–1209

    PubMed  CAS  Google Scholar 

  • de Haas EBH (1960) Lacrimal gland response to parasympathomimetics after parasympathetic denervation. Arch Ophthalmol 64:34–43

    Article  PubMed  Google Scholar 

  • De Robertis E, Fizer de Plazas S, La Torre JL, Lunt GS (1970) Proteo lipid cholinergic receptor isolated from the central nervous system and electric tissue. In: Heilbronn E, Winters A (eds) Drugs and cholinergic mechanisms in the CNS. Försvarets Forskningsanstalt, Stockholm, pp 505–520

    Google Scholar 

  • de Roetth A Jr (1966) Lens opacities in patients on phospholine iodide therapy. Am J Ophthalmol 62:619–628

    PubMed  Google Scholar 

  • de Roetth A Jr, Dettbarn W-D, Rosenberg, Wilensky JG, Wong A (1965) Effect of phospholine iodide on blood Cholinesterase levels of normal and glaucoma subjects. Am J Ophthalmol 59:586–592

    Google Scholar 

  • Diabetic Retinopathy Study Research Group (1978) Photocoagulation treatment of proliferative diabetic retinopathy: the second report of diabetic retinopathy study findings. Ophthalmology (Rochester) 85:82–106

    Google Scholar 

  • Drachman DB (1978a) Myasthenia gravis (first of two parts). N Engl J Med 298:136–142

    Article  PubMed  CAS  Google Scholar 

  • Drachman DB (1978 b) Myasthenia gravis (second of two parts). N Engl J Med 298:186–193

    Article  PubMed  CAS  Google Scholar 

  • Duke–Elder S, Cook C (1963) The development of the surface ectoderm. In: Duke-Elder S (ed) System of ophthalmology, vol 3, pt 1. Normal and abnormal development: embryology. Mosby, St. Louis, chap 5, pp 127–138

    Google Scholar 

  • Ehinger B (1966) Adrenergic nerves to the eye and to related structures in man and in the cynomolgus monkey (Macaca irus). Invest Ophthalmol 5:42–52

    Google Scholar 

  • Ehlers N (1977) Pharmacology of the conjunctival sac. In: Dikstein S (ed) Drugs and ocular tissues. Karger, New York, pp 23–56

    Google Scholar 

  • Ehlert FJ, Kokka N, Fairhurst AS (1980) Altered [3 H]quinuclidinyl benzilate binding in the striatum of rats following chronic Cholinesterase inhibition with diisopropylfluorophos-phate. Mol Pharmacol 17:24–30

    PubMed  CAS  Google Scholar 

  • Ellis PP, Littlejohn K (1974) Effects of topical anticholinesterases on procaine hydrolysis. Am J Ophthalmol 77:71–75

    PubMed  CAS  Google Scholar 

  • Emmelin NG, Strömblad BCR (1956) Sensitization of the lacrimal gland by treatment with a parasympatholytic agent. Acta Physiol Scand 36:171–174

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald GG, Cooper JR (1971) Acetylcholine as a possible sensory mediator in rabbit corneal epithelium. Biochem Pharmacol 20:2741–2748

    Article  PubMed  CAS  Google Scholar 

  • Flocks M, Zweng HC (1957) Studies on the mode of action of pilocarpine on aqueous outflow. Am J Ophthalmol 44:380–388

    PubMed  CAS  Google Scholar 

  • Fogle JA, Neufeld AH (1979) The adrenergic and cholinergic corneal epithelium. Invest Ophthalmol Vis Sci 18:1212–1215

    PubMed  CAS  Google Scholar 

  • Forbes M, Becker B (1960) The transport of organic anions by the rabbit eye. II. In vivo transport of iodopyracet (Diodrast). Am J Ophthalmol 50:867–875

    PubMed  CAS  Google Scholar 

  • Fortin EP (1925) Canel de Schlemm y ligamento pectineo. Arch Ophthalmol 4:454–459

    Google Scholar 

  • Fortin EP (1929) Action du muscle ciliaire sur la circulation de l’oeil; insertion du muscle ciliaire sur la paroi du canal de Schlemm. Signification physiologique et pathologique. CR Soc Biol 102:432–434

    Google Scholar 

  • Furman M, Lazar M, Leopold IH (1969) Cholinesterase isoenzymes in rabbit ocular tissue homogenates. Doc Ophthalmol 26:185–191

    Article  PubMed  CAS  Google Scholar 

  • Gaasterland D, Kupfer C, Ross K (1975) Studies of aqueous humor dynamics in man. IV. Effects of pilocarpine upon measurements in young normal volunteers. Invest Ophthalmol 14:848–853

    PubMed  CAS  Google Scholar 

  • Galin MA (1961) Mydriasis provocative test. Arch Ophthalmol 66:353–355

    Article  PubMed  CAS  Google Scholar 

  • Gartner S (1944) Blood vessels of the conjunctiva. Arch Ophthalmol 32:464–476

    Article  Google Scholar 

  • Gesztes T (1966) Prolonged apnea after suxamethonium injection associated with eye drops containing an anticholinesterase agent. Br J Anaesthesiol 38:408–409

    Article  CAS  Google Scholar 

  • Gnädinger M, Walz D, von Hahn HP, Grün F (1967) Acetylcholine–splitting activity of abraded and cultivated corneal epithelial cells. Exp Eye Res 6:239–242

    Article  PubMed  Google Scholar 

  • Gnädinger M, Heimann E, Markstein R (1973) Choline acetyltransferase in corneal epithelium. Exp Eye Res 15:395–399

    Article  PubMed  Google Scholar 

  • Goldmann H (1951) L’origine de l’hypertension oculaire dans le glaucome primitif. Ann Ocul (Paris) 184:1086

    CAS  Google Scholar 

  • Graham LT (1974) Comparative aspects of neurotransmitters in the retina. In: Davson H, Graham LT (eds) The Eye, vol 6. Academic, New York, pp 283–342

    Google Scholar 

  • Grant WM (1963) Experimental aqueous perfusion in enucleated human eyes. Arch Ophthalmol 69:783–801

    Article  PubMed  CAS  Google Scholar 

  • Green K, Padgett D (1979) Effect of various drugs on pseudofacility and aqueous formation in the rabbit eye. Exp Eye Res 28:239–246

    Article  PubMed  CAS  Google Scholar 

  • Grierson I, Lee WR, Abraham S (1978) Effects of pilocarpine on the morphology of the human outflow apparatus. Br J Ophthalmol 62:302–313

    Article  PubMed  CAS  Google Scholar 

  • Härkönen M, Tarkkanen A (1970) Effect of phospholine iodide on energy metabolites of the rabbit lens. Exp Eye Res 10:1–7

    Article  PubMed  Google Scholar 

  • Harris LS (1968) Cycloplegic-induced intraocular pressure elevations. Arch Ophthalmol 79:242–246

    Article  PubMed  CAS  Google Scholar 

  • Harris JE, Gruber L, Hoskinson G (1959) The effect of methylene blue and certain other dyes on cation transport and hydration of the rabbit lens. Am J Ophthalmol 47:387–395

    PubMed  CAS  Google Scholar 

  • Havener WH (1978) Autonomic drugs. In: Havener WH (ed) Ocular pharmacology, 4th edn. Mosby, St. Louis, pp 218–328

    Google Scholar 

  • Hebb CO (1955) Choline acetylase in mammalian and avian sensory systems. QJ Exp Physiol Cogn Med Sci 40:176–186

    CAS  Google Scholar 

  • Heilbronn E (1975) Biochemistry of cholinergic receptors. In: Waser PG (ed) Cholinergic mechanisms. Raven, New York, pp 343–364

    Google Scholar 

  • Heine L (1900) Die Anatomie des akkommodierten Auges — mikroskopische Fixierung des Akkommodationspaltes. Albrecht von Graefes Arch Klin Exp Ophthalmol 49:1–7

    Google Scholar 

  • Hellauer HF (1950) Sensibilität und Acetylcholingehalt der Hornhaut verschiedener Tiere und des Menschen. Z Vergl Physiol 32:303–310

    Article  Google Scholar 

  • Herzog V, Sies H, Miller F (1976) Exocytosis in secretory cells of rat lacrimal gland. Peroxidase release from lobules and isolated cells upon cholinergic stimulation. J Cell Biol 70:692–706

    Article  PubMed  CAS  Google Scholar 

  • Hofmann H, Holzer H (1953) Die Wirkung von Muskelrelaxantien auf den intraocularen Druck. Klin Monatsbl Augenheilkd 123:1–16

    CAS  Google Scholar 

  • Hogan MJ, Alvarado JA, Weddell JE (1971) Histology of the human eye. An atlas and textbook. Saunders, Philadelphia, pp 205:303–309

    Google Scholar 

  • Holmberg Å, Bárány EH (1966) The effect of pilocarpine on the endothelium forming the inner wall of Schlemm’s canal: an electron microscopic study in the monkey Cercopithe-cus aethiops. Invest Ophthalmol 5:53–58

    CAS  Google Scholar 

  • Hopff WH, Riggio G, Waser PG (1975) Progress in isolation of acetylcholinesterase. In: Waser PG (ed) Cholinergic mechanisms. Raven, New York, pp 293–298

    Google Scholar 

  • Howard RO, Wilson WS, Dunn BJ (1973) Quantitative determination of choline acetylase, acetylcholine, and acetylcholinesterase in the developing rabbit cornea. Invest Ophthalmol 12:418–425

    PubMed  CAS  Google Scholar 

  • Iwatsuki N, Petersen OH (1978) Membrane potential, resistance, and intercellular communication in the lacrimal gland: effects of acetylcholine and adrenaline. J Physiol 275:507–520

    PubMed  CAS  Google Scholar 

  • James RG, Calkins JP (1957) Effect of certain drugs on iris vessels. Arch Ophthalmol 57:414–417

    Article  Google Scholar 

  • Jones LT (1966) The lacrimal secretory system and its treatment. Am J Ophthalmol 63:47–60

    Google Scholar 

  • Karczmar AG (1970) History of research with anticholinesterase agents. In: Radouco-Thomas C, Karczmar AG (eds) Anticholinesterase agents, International encyclopedia of pharmacology and therapeutics, sect 13, vol 1. Pergamon, Oxford, pp 1–44

    Google Scholar 

  • Kaufman PL (1978) Anticholinesterase-induced cholinergic subsensitivity in primate accommodative mechanism. Am J Ophthalmol 85:622–631

    PubMed  CAS  Google Scholar 

  • Kaufman PL (1979) Aqueous humor dynamics following total iridectomy in the cynomol-gus monkey. Invest Ophthalmol Vis Sci 18:870–875

    PubMed  CAS  Google Scholar 

  • Kaufman PL (to be published) Aqueous humor outflow: In: Zadunaisky JA, Davson H (eds) Current topics in eye research. Academic Press, New York

    Google Scholar 

  • Kaufman PL, Axelsson U (1975) Induction of subcapsular cataracts in aniridic vervet monkeys by echothiophate. Invest Ophthalmol 14:863–866

    PubMed  CAS  Google Scholar 

  • Kaufman PL, Bárány EH (1975) Subsensitivity to pilocarpine in primate ciliary muscle following topical anticholinesterase treatment. Invest Ophthalmol 14:302–306

    CAS  Google Scholar 

  • Kaufman PL, Bárány EH (1976 a) Loss of acute pilocarpine effect on outflow facility following surgical disinsertion and retrodisplacement of the ciliary muscle from the scleral spur in the cynomolgus monkey. Invest Ophthalmol 15:793–807

    PubMed  CAS  Google Scholar 

  • Kaufman PL, Bárány EH (1976 b) Residual pilocarpine effects on outflow facility after ciliary muscle disinsertion in the cynomolgus monkey. Invest Ophthalmol 15:558–561

    PubMed  CAS  Google Scholar 

  • Kaufman PL, Bárány EH (1976c) Subsensitivitiy to pilocarpine of the aqueous outflow system in monkey eyes after topical anticholinesterase treatment. Am J Ophthalmol 82:883–891

    PubMed  CAS  Google Scholar 

  • Kaufman PL, Lütjen-Drecoll E (1975) Total iridectomy in the primate in vivo: surgical technique and postoperative anatomy. Invest Ophthalmol 14:766–771

    PubMed  CAS  Google Scholar 

  • Kaufman PL, Axelsson U, Bárány EH (1977 a) Induction of subcapsular cataracts in cynomolgus monkeys by echothiophate. Arch Ophthalmol 95:499–504

    Article  PubMed  CAS  Google Scholar 

  • Kaufman PL, Axelsson U, Bárány EH (1977 b) Atropine inhibition of echothiophate cataractogenesis in monkeys. Arch Ophthalmol 95:1262–1268

    Article  PubMed  CAS  Google Scholar 

  • Kaufman PL, Rohen JW, Bárány EH (1979) Hyperopia and loss of accommodation following ciliary muscle disinsertion in the cynomolgus monkey: physiologic and scanning electron microscopic studies. Invest Ophthalmol Vis Sci 18:665–673

    PubMed  CAS  Google Scholar 

  • Kaufman PL, Erickson KA, Neider MW (1983 a) Echothiophate cataracts in monkeys: occurrence despite loss of accommodation induced by retrodisplacement of ciliary muscle. Arch Ophthalmol 101:125–128

    Article  PubMed  CAS  Google Scholar 

  • Kaufman PL, Polansky JR, Southren AL, Anderson DR (1983b) Aqueous humor dynamics: outflow. In: Vision research — a national plan. 1983–1987. The 1983 report of the national advisory eye council. Report of the glaucoma panel. US-DHHS. (NIH pub. no. 83–2474), vol 2, pt 4, chap 3, pp 41–53

    Google Scholar 

  • Keryer G, Rossignol B (1976) Effect of carbachol on 45Ca uptake and protein secretion in rat lacrimal gland. Am J Physiol 230:99–104

    PubMed  CAS  Google Scholar 

  • Kikkawa T (1968) Studies on the mechanism of tear secretion. 1. On the salt and water secretion from the lacrimal gland and its secretions. Acta Soc Ophthalmol Jap 72:1005–1009

    CAS  Google Scholar 

  • Kikkawa T (1970) Secretory potentials in the lacrimal gland of the rabbit. Jap J Ophthalmol 14:247–262

    Google Scholar 

  • Kinsey VE (1947) Transfer of ascorbic acid and related compounds across the blood-aqueous barrier. Am J Ophthalmol 30:1262–1266

    PubMed  CAS  Google Scholar 

  • Kinsey VE (1971) Ion movement in ciliary processes. In: Bittar EE (ed) Membranes and ion transport, vol 3. Wiley, New York

    Google Scholar 

  • Kinsey VE, Reddy DVN (1962) Transport of amino acids into the posterior chamber of the rabbit eye. Invest Ophthalmol 1:355–362

    PubMed  CAS  Google Scholar 

  • Kloog Y, Sachs DI, Korczyn AD, Heron DS, Sokolovsky M (1979a) Muscarinic acetylcholine receptors in cat iris. Biochem Pharmacol 28:1505–1511

    Article  PubMed  CAS  Google Scholar 

  • Kloog Y, Heron DS, Korczyn AD, Sachs DI, Sokolovsky M (1979 b) Muscarinic acetylcholine receptors in albino rabbit iris–ciliary body. Mol Pharmacol 15:581–587

    PubMed  CAS  Google Scholar 

  • Koelie GB (1975 a) Neurohumoral transmission and the autonomic nervous system. In: Goodman LS, Gilman A (ed) The pharmacological basis of therapeutics, 5th edn. Mac-Millan, New York, chap 2, pp 404–444

    Google Scholar 

  • Koelie GB (1975 b) Anticholinesterase agents. In: Goodman LS, Gilman A (eds) The pharmacological basis of therapeutics, 5th edn. MacMillan, New York, chap 22, pp 445–466

    Google Scholar 

  • Koelie GB (1975c) Parasympathomimetic agents. In: Goodman LS, Gilman A (eds) The pharmacological basis of therapeutics, 5th edn. MacMillan, New York, chap 22, pp 467–476

    Google Scholar 

  • Kolker AE, Hetherington J Jr (1976) Becker–Shaffer’s diagnosis and therapy of the glaucomas, 4th edn. Mosby, St. Louis, pp 78–87,325–334

    Google Scholar 

  • Korczyn AD, Kloog Y, Heron DS, Sachs DI, Sokolovsky M (1979) Muscarinic receptor binding following denervation or decentralization of the iris. Invest Ophthalmol Vis Sci 18[ARVO suppl]:189

    Google Scholar 

  • Kupfer C (1973) Clinical significance of pseudofacility. Am J Ophthalmol 75:193–204

    PubMed  CAS  Google Scholar 

  • Lam DMK (1972) Biosynthesis of acetylcholine in turtle photoreceptors. Proc Natl Acad Sci US 69:1987–1991

    Article  CAS  Google Scholar 

  • Langley JN (1898) On the union of cranial autonomic (visceral) fibers with the nerve cells of the superior cervical ganglion. J Physiol 23:240–270

    PubMed  CAS  Google Scholar 

  • Laties AM, Jacobowitz D (1966) A comparative study of the autonomic innervation of the eye in monkey, cat, and rabbit. Anat Rec 156:383–395

    Article  PubMed  CAS  Google Scholar 

  • Lemp MA, Holly FJ, Iwata S, Dohlman CH (1970) The precorneal tear film. 1. Factors in spreading and maintaining a continuous tear film over the corneal surface. Arch Ophthalmol 83:89–94

    Article  PubMed  CAS  Google Scholar 

  • Lemp MA, Dohlman CH, Kuwabara T, Holly FJ, Carroll JM (1971) Dry eye secondary to mucus deficiency. Trans Am Acad Ophthalmol Otolaryngol 75:1223–1227

    PubMed  CAS  Google Scholar 

  • Leopold IH, Furman M (1971) Cholinesterase isoenzymes in human ocular tissue homog enates. Am J Ophthalmol 72:460–463

    PubMed  CAS  Google Scholar 

  • Levene RZ (1969) Echothiophate iodide and lens changes. In: Leopold IH (ed) Symposium on ocular therapy, vol 4. Mosby, St. Louis, pp 45–52

    Google Scholar 

  • Liegl O, Köhn K (1962) Zur Pathogenese der Pupillotonie. Beobachtungen an einer Choroiditis carcinomatosa. Klin Monatsbl Augenheilkd 140:327–328

    Google Scholar 

  • Lindstrom J, Anhott R, Einarson B, Engel A, Osame M, Montai M (1980) Purification of acetylcholine receptors, reconstitution into lipid vesicles, and study of agonist-induced cation channel regulation. J Biol Chem 255:8340–8350

    PubMed  CAS  Google Scholar 

  • Liu HK, Chiou GCY (1981) Continuous, simultaneous, and instant display of aqueous humor dynamics with a micro-spectrophotometer and a sensitive drop counter. Exp Eye Res 32:583–592

    Article  PubMed  CAS  Google Scholar 

  • Lobes LA Jr, Bourgon P (1978) Pupillary abnormalities following argon laser ablation for proliferative diabetic retinopathy. Invest Ophthalmol 17 [ARVO suppl]:224

    Google Scholar 

  • Lowenfeld IE, Thompson HS (1967) The tonic pupil: a re-evaluation. Am J Ophthalmol 63:46–87

    Google Scholar 

  • Lowenstein O, Lowenfeld IE (1965) Pupillotonie pseudotabes (syndrome of Markus-Weill and Reys-Holmes-Adie). A critical review of the literature. Surv Ophthalmol 10:129–185

    PubMed  CAS  Google Scholar 

  • Lütjen-Drecoll E (1973) Structural factors influencing outflow facility and its changeability under drugs. Invest Ophthalmol 12:280–294

    PubMed  Google Scholar 

  • Lütjen-Drecoll E (1981) Ultrastructural changes in the monkey eye following long-term treatment with pilocarpine. Invest Ophthalmol Vis Sci 20 [ARVO suppl]:30

    Google Scholar 

  • Lütjen-Drecoll E, Kaufman PL (1979) Echothiophate-induced structural alterations in the anterior chamber angle of the cynomolgus monkey. Invest Ophthalmol Vis Sci 18:918–929

    PubMed  Google Scholar 

  • Lütjen-Drecoll E, Kaufman PL, Bárány EH (1977) Light and electron microscopy of the anterior chamber angle structures following surgical disinsertion of the ciliary muscle in the cynomolgus monkey. Invest Ophthalmol Vis Sci 16:218–225

    PubMed  Google Scholar 

  • Lütjen–Drecoll E, Futa R, Rohen JW (1981) Ultrahistochemical studies on tangential sections of the trabecular meshwork in normal and glaucomatous eyes. Invest Ophthalmol Vis Sci 21:563–573

    PubMed  Google Scholar 

  • Macri FJ, Cevario SJ (1973) The induction of aqueous humor formation by the use of acetylcholine and eserine. Invest Ophthalmol 12:910–916

    PubMed  CAS  Google Scholar 

  • Macri FJ, Cevario SJ (1974) The dual nature of pilocarpine to stimulate or inhibit the formation of aqueous humor. Invest Ophthalmol 13:617–619

    PubMed  CAS  Google Scholar 

  • Maren TH (1974) HCO3 formation in aqueous humor: mechanism and relation to the treatment of glaucoma. Invest Ophthalmol 13:179–483

    Google Scholar 

  • Masland RH, Ames A III (1976) Response to acetylcholine of ganglion cells in the isolated mammalian retina. J Neurophysiol 39:1220–1235

    PubMed  CAS  Google Scholar 

  • Masland RH, Livingstone CH (1976) Effect of activity on the synthesis and release of acetylcholine by an isolated mammalian retina. J Neurophysiol 39:1210–1219

    PubMed  CAS  Google Scholar 

  • Masland RH, Mills JW (1979) Autoradiographic identification of acetylcholine in the rabbit retina. J Cell Biol 83:159–178

    Article  PubMed  CAS  Google Scholar 

  • McEwen WK, Goodner EK (1969) Secretion of tears and blinking. In: Davson H (ed): The eye, vol 3. Academic, London, pp 341–378

    Google Scholar 

  • Michon J Jr, Kinoshita JH (1967) Cholinesterase in the lens. Arch Ophthalmol 77:804–808

    Article  PubMed  CAS  Google Scholar 

  • Michon J Jr, Kinoshita JH (1968 a) Experimental miotic cataract. I. Effects of miotics on lens structure, cation content, and hydration. Arch Ophthalmol 79:79–86

    Article  PubMed  Google Scholar 

  • Michon J Jr, Kinoshita JH (1968b) Experimental miotic cataract. II. Permeability, cation transport, and intermediary metabolism. Arch Ophthalmol 79:611–616

    Article  PubMed  Google Scholar 

  • Milder B (1981) The lacrimal apparatus. In: Moses RA (ed) Adler’s physiology of the eye. Clinical application, 7th Edn, Mosby, St. Louis, chap 2, pp 16–37

    Google Scholar 

  • Miller RD, Savarese JJ (1981) Pharmacology of muscle relaxants, their antagonists, and monitoring of neuromuscular function. In: Miller RD (ed) Anesthesia, vol 1. Churchill Livingstone, New York, chap 17, pp 487–538

    Google Scholar 

  • Mindel JS, Mittag TW (1976) Choline acetyltransferase in ocular tissues of rabbits, cats, cattle, and man. Invest Ophthalmol 15:808–814

    PubMed  CAS  Google Scholar 

  • Mindel JS, Mittag TW (1977) Variability of choline acetyltransferase in ocular tissues of rabbits, cats, cattle and humans. Exp Eye Res 24:25–33

    Article  PubMed  CAS  Google Scholar 

  • Mindel JS, Szilagyi PI, Zadunaisky JA, Mittag TW, Orellana J (1979) The effects of blepharorrhaphy induced depression of corneal cholinergic activity. Exp Eye Res 29:463–468

    Article  PubMed  CAS  Google Scholar 

  • Mittag TW (1979) On the presence of acetylcholine receptors in ocular structures of the rabbit. Invest Ophthalmol Vis Sci 18 [ARVO suppl]: 189

    Google Scholar 

  • Mittag TW (1980) Receptors in iris and ciliary body. Proc Int Soc Eye Res 1:114

    Google Scholar 

  • Mizokami K (1977) Demonstration of masked acidic glycosaminoglycans in normal human trabecular meshwork. Jap J Ophthalmol 21:57–71

    CAS  Google Scholar 

  • Moran JF, Triggle DJ (1971) Multiple ligand binding sites at the cholinergic receptor. In: Triggle DJ, Moran JF, Barnard EA (eds) Cholinergic ligand interactions. Academic, London, pp 119–136

    Google Scholar 

  • Morton WR, Drance SM, Fairclough M (1970) Effect of echothiophate iodide on the lens. Am J Ophthalmol 68:1003–1010

    Google Scholar 

  • Moses RA (1981 a) Intraocular pressure. In: Moses RA (ed) Adler’s physiology of the eye. Clinical application, 7th edn. Mosby, St. Louis, chap 8, pp 227–254

    Google Scholar 

  • Moses RA (1981 b) Accommodation. In: Moses RA (ed) Adler’s physiology of the eye. Clinical application, 7th edn. Mosby, St. Louis, chap 11, pp 304–325

    Google Scholar 

  • Müller HK, Kleifeld O, Hockwin O, Dardenne U (1956) Der Einfluß von Pilocarpin und Mintacol auf den Stoffwechsel der Linse. Ber Dtsch Ophthalmol Ges 60:115–120

    Google Scholar 

  • Nagataki S, Brubaker RF (1982) The effect of pilocarpine on aqueous humor formation in humans. Arch Ophthalmol 100:818–821

    Article  PubMed  CAS  Google Scholar 

  • Neal MJ, Gilroy J (1975) High affinitiy choline transport in the isolated rat retina. Brain Res 93:548–551

    Article  PubMed  CAS  Google Scholar 

  • Nichols CW, Koelie GB (1967) Acetylcholinesterase method for demonstration in amacrine cells of rabbit retina. Science 155:477–478

    Article  PubMed  CAS  Google Scholar 

  • Nichols CW, Koelie GB (1968) Comparison of the localization of acetylcholinesterase and non–specific Cholinesterase activities in mammalian and avian retinas. J Comp Neurol 133:1–16

    Article  PubMed  CAS  Google Scholar 

  • Niemeyer G (1978) Cholinergic antagonists fail to block S potentials in the cat retina. Invest Ophthalmol Vis Sci 17 [ARVO suppl]:385

    Google Scholar 

  • Nishida S, Sears ML (1969 a) Fine structural innervation of the dilator muscle of the iris of the albino guinea pig studied with permanganate fixation. Exp Eye Res 8:292–296

    Article  PubMed  CAS  Google Scholar 

  • Nishida S, Sears ML (1969b) Dual innervation of the iris sphincter muscle of the albino guinea pig. Exp Eye Res 8:467–469

    Article  PubMed  CAS  Google Scholar 

  • Nomura T, Smelser GK (1974) The identification of adrenergic and cholinergic nerve endings in the trabecular meshwork. Invest Ophthalmol 13:525–532

    PubMed  CAS  Google Scholar 

  • Olsen JS, Neufeld AH (1979) The rabbit cornea lacks cholinergic receptors. Invest Ophthalmol Vis Sci 18:1216–1225

    PubMed  CAS  Google Scholar 

  • Pantuck EJ (1966) Echothiophate iodide eye drops and prolonged response to suxamethonium. Br J Anaesthesiol 38:406–407

    Article  CAS  Google Scholar 

  • Parod RJ, Putney JW Jr (1978a) An alpha-adrenergic receptor mechanism controlling potassium permeability in the rat lacrimal gland acinar cell. J Physiol 281:359–369

    PubMed  CAS  Google Scholar 

  • Parod RJ, Putney JW Jr (1978 b) The role of calcium in the receptor mediated control of potassium permeability in the rat lacrimal gland. J Physiol 281:371–81

    PubMed  CAS  Google Scholar 

  • Parod RJ, Putney JW Jr (1980) Stimulus–permeability coupling in rat lacrimal gland. Am J Physiol 239:G106–G113

    PubMed  CAS  Google Scholar 

  • Parod RJ, Leslie BA, Putney JW Jr (1980) Muscarinic and alpha-adrenergic stimulation of Na and Ca uptake by dispersed lacrimal cells. Am J Physiol 239:G99–G105

    PubMed  CAS  Google Scholar 

  • Pesin SR, Candia OA (1982) Acetylcholine concentration and its role in ionic transport by the corneal epithelium. Invest Ophthalmol Vis Sci 22:651–659

    PubMed  CAS  Google Scholar 

  • Petersen RA, Lee K-J, Donn A (1965) Acetylcholinesterase in the rabbit cornea. Arch Ophthalmol 73:370–377

    Article  PubMed  CAS  Google Scholar 

  • Philipson B, Kaufman PL, Fagerholm P, Axelsson U, Bárány EH (1979) Echothiophate cataracts in monkeys. Electron microscopy and microradiography. Arch Ophthalmol 97:340–346

    Article  PubMed  CAS  Google Scholar 

  • Putney JW Jr, Parod RJ, Marier SH (1977) Control by calcium of exocytosis and membrane permeability to potassium in the rat lacrimal gland. Life Sci 20:1905–1912

    Article  PubMed  CAS  Google Scholar 

  • Putney JW Jr, Van de Walle CM, Leslie BA (1978) Stimulus-secretion coupling in the rat lacrimal gland. Am J Physiol 235:C188–C198

    PubMed  CAS  Google Scholar 

  • Raina MK, Bito LZ (1979) Correlation between muscarinic receptor concentration, measured by 3 H–quinuclidinyl benzilate binding, and in vivo cholinergic sensitivity of cat eyes. Invest Ophthalmol Vis Sci 18 [ARVO suppl]:189

    Google Scholar 

  • Raviola E, Raviola G (1962) Richerche istochemiche sulla retina di coniglio nel corso dello sviluppo postnatale. Z Zellforsch 56:552–572

    Article  PubMed  CAS  Google Scholar 

  • Reale EL, Luciano L, Spitznas M (1971) The fine structural localization of acetylcholinesterase activity in the retina and optic nerve of rabbits. J Histochem Cytochem 19:85–96

    Article  PubMed  CAS  Google Scholar 

  • Reddy DVN (1967) Distribution of free amino acids and related compounds in ocular fluids, lens, and plasma of various mammalian species. Invest Ophthalmol 6:478–483

    PubMed  CAS  Google Scholar 

  • Reddy DVN, Kinsey VE, Skrentny BA, Hopkins EK (1962) Transport of alpha-aminoiso-butyric acid into ocular fluids and lens. Invest Ophthalmol 1:41–51

    PubMed  CAS  Google Scholar 

  • Richardson KC (1964) The fine structure of the albino rabbit iris with special reference to the identification of adrenergic and cholinergic nerves and nerve endings in its intrinsic muscles. Am J Anat 114:173–205

    Article  PubMed  CAS  Google Scholar 

  • Rogell GD (1979) Internal ophthalmoplegia after argon laser panretinal photocoagulation. Arch Ophthalmol 97:904–905

    Article  PubMed  CAS  Google Scholar 

  • Rohen JW (1964) Handbuch der mikroskopischen Anatomie des Menschen. Springer, Berlin Heidelberg New York, pp 217–221

    Google Scholar 

  • Rohen JW, Lütjen E, Bárány EH (1967) The relation between the ciliary muscle and the trabecular meshwork and its importance for the effect of miotics on aqueous outflow resistance. Albrecht Von Graefes Arch Klin Exp Ophthalmol 172:23–47

    Article  PubMed  CAS  Google Scholar 

  • Rohen JW, Futa R, Lütjen-Drecoll E (1981) The fine structure of the cribriform meshwork in normal and glaucomatous eyes as seen in tangential sections. Invest Ophthalmol Vis Sci 21:574–585

    PubMed  CAS  Google Scholar 

  • Ross CD, McDougal DB (1976) The distribution of choline acetyltransferase activity in vertebrate retina. J Neurochem 26:521–526

    Article  PubMed  CAS  Google Scholar 

  • Ross D, Cohen AI, McDougal DB (1975) Choline acetyltransferase and acetylcholinesterase in normal and biologically fractionated mouse retinas. Invest Ophthalmol 14:756–761

    PubMed  CAS  Google Scholar 

  • Ruskell GL (1971) Facial parasympathetic innervation of the choroidal blood vessels in monkeys. Exp Eye Res 12:166–172

    Article  PubMed  CAS  Google Scholar 

  • Ruttner F (1947) Die tonische Pupillenreaktion: klinische und anatomische Untersuchungen. Mschr Psychiat Neurol 114:265–330

    Article  CAS  Google Scholar 

  • Sarthy PV, Lam DMK (1979) Endogenous levels of neurotransmitter candidates in photoreceptor cells of the turtle retina. J Neurochem 32:455–561

    Article  PubMed  CAS  Google Scholar 

  • Schachtschabel DP, Bigalke B, Rohen JW (1977) Production of glycosaminoglycans by cell cultures of the trabecular meshwork of the primate eye. Exp Eye Res 24:71–80

    Article  CAS  Google Scholar 

  • Schimek R, Lieberman WJ (1961) The influence of Cyclogyl and Neo–synephrine on tonographic studies of miotic control in open angle glaucoma. Am J Ophthalmol 51:781–784

    PubMed  CAS  Google Scholar 

  • Schwartz IR, Bok D (1979) Electron microscopic localization of α-bungarotoxin I125 binding sites in the outer plexiform layer of the goldfish retina. J Neurocytol 8:53–66

    Article  PubMed  CAS  Google Scholar 

  • Scott AB (1980) Botulinum toxin injection into extraocular muscles as an alternative to strabismus surgery. Ophthalmology 87:1044–1049

    PubMed  CAS  Google Scholar 

  • Scott AB, Rosenbaum A, Collins CC (1973) Pharmacologic weakening of extraocular muscles. Invest Ophthalmol 12:924–927

    PubMed  CAS  Google Scholar 

  • Sears ML (1981) The aqueous. In: Moses RA (ed) Adler’s physiology of the eye. Clinical application, 7th edn. Mosby, St. Louis, chap 7, pp 204–226

    Google Scholar 

  • Sears ML, Selker RG (1967) Denervation supersensitivity of the lacrimal gland. Am J Ophthalmol 63:481–483

    PubMed  CAS  Google Scholar 

  • Shabo AL, Maxwell DS, Kreiger AE (1976) Structural alterations in the ciliary process and the blood-aqueous barrier of the monkey after systemic urea injections. Am J Ophthalmol 81:162–172

    PubMed  CAS  Google Scholar 

  • Shaffer RN (1961) In: Newell FW (ed) Glaucoma, transactions of the 5th conference. Josiah Macy Jr Foundation, New York, pp 234–237

    Google Scholar 

  • Shaffer RN, Hetherington J Jr (1966) Anticholinesterase drugs and cataracts. AM J Ophthalmol 62:613–618

    PubMed  CAS  Google Scholar 

  • Shefter E (1971) Structural variations in cholinergic ligands. In: Triggle DJ, Moran JF, Barnard EA (eds) Cholinergic ligand interactions. Academic, London, pp 83–117

    Google Scholar 

  • Sloan LS, Sears ML, Jablonski M (1960) Convergence accommodation relationships. Arch Ophthalmol 63:283–306

    Article  PubMed  CAS  Google Scholar 

  • Stevenson RW, Wilson WS (1974) Drug-induced depletion of acetylcholine in the rabbit corneal epithelium. Biochem Pharmacol 23:3449–3457

    Article  PubMed  CAS  Google Scholar 

  • Stevenson RW, Wilson WS (1975) The effect of acetylcholine and eserine on the movement of Na+ across the corneal epithelium. Exp Eye Res 21:235–244

    Article  PubMed  CAS  Google Scholar 

  • Stjernschantz J (1976) Effect of parasympathetic stimulation on intraocular pressure, formation of aqueous humor and outflow facility in rabbits. Exp Eye Res 22:639–645

    Article  PubMed  CAS  Google Scholar 

  • Stone RA (1979 a) The transport of para–aminohippuric acid by the ciliary body and by the iris of the primate eye. Invest Ophthalmol Vis Sci 18:807–818

    PubMed  CAS  Google Scholar 

  • Stone RA (1979b) Cholic acid accumulation by the ciliary body and by the iris of the primate eye. Invest Ophthalmol Vis Sci 18:819–826

    PubMed  CAS  Google Scholar 

  • Swan K, Hart W (1940) A comparative study of the effects of mecholyl, doryl, eserine, pilocarpine, atropine, and epinephrine on the blood-aqueous barrier. Am J Ophthalmol 23:1311–1319

    CAS  Google Scholar 

  • Tangkrisanavinont V, Pholpramool C (1979) Extracellular free calcium and fluid secretion by the rabbit lacrimal gland in vivo. Pfluegers Arch 382:275–277

    Article  CAS  Google Scholar 

  • Tarkkanen A, Karjalainen K (1966) Cataract formation during miotic treatment for chronic open–angle glaucoma. Acta Ophthalmol 44:932–939

    CAS  Google Scholar 

  • Thaysen JH, Thorn NA (1954) Excretion of urea, sodium, potassium and chloride in human tears. Am J Physiol 178:160–164

    PubMed  CAS  Google Scholar 

  • Törnqvist G (1966) Effect of cervical sympathetic stimulation on accommodation in monkeys. An example of a beta-adrenergic, inhibitory effect. Acta Physiol Scand 67:363–372

    Article  PubMed  Google Scholar 

  • Triggle DJ, Triggle CR (1976) Chemical pharmacology of the synapse. Academic, London, pp 291–398,602–629

    Google Scholar 

  • Uga S (1968) Electron microscopy of the ciliary muscle. II. On the fine structure of the anterior terminal portion of the ciliary muscle. Acta Soc Ophthalmol Jpn 72:1019–1025

    CAS  Google Scholar 

  • Usdin E (1970) Reactions of cholinesterases with substrate inhibitors and reactivators. In: Radouco-Thomas C, Karczmar AG (eds) Anticholinesterase agents. International encyclopedia of pharmacology and therapeutics, Sect. 13, vol 1. Pergamon, Oxford, pp 47–354

    Google Scholar 

  • Uusitalo R (1972 a) Effect of sympathetic and parasympathetic stimulation on the secretion and outflow of aqueous humor in the rabbit eye. Acta Physiol Scand 86:315–326

    Article  PubMed  CAS  Google Scholar 

  • Uusitalo R (1972b) The action of physostigmine, morphine, cyclopentolate and homatro-pine on the secretion and outflow of aqueous humor in the rabbit eye. Acta Physiol Scand 86: 239–249

    Article  PubMed  CAS  Google Scholar 

  • van Alphen GWHM (1957) Acetylcholine synthesis in corneal epithelium. Arch Ophthalmol 58:449–451

    Article  Google Scholar 

  • van Alphen GWHM, Robinette SL, Macri FJ (1962) Drug effects on ciliary muscle and choroid preparations in vitro. Arch Ophthalmol 68:81–93

    Article  Google Scholar 

  • van Alphen GWHM, Kern R, Robinette S (1965) Adrenergic receptors of the intraocular muscles. Comparison to cat, rabbit, and monkey. Arch Ophthalmol 74:253–259

    Article  Google Scholar 

  • Van Buskirk EM, Grant WM (1973) Lens depression and aqueous outflow in enucleated primate eyes. Am J Ophthalmol 76:632–640

    PubMed  Google Scholar 

  • van Heyningen R (1975) What happens to the human lens in cataract? Sci Am 233:70–81

    Article  PubMed  Google Scholar 

  • Vogel Z, Maloney GJ, Ling A, Daniels MP (1977) Identification of synaptic acetylcholine receptor sites in retina with peroxidase–labeled α-bungarotoxin. Proc Natl Acad Sci USA 74:3268–3272

    Article  PubMed  CAS  Google Scholar 

  • Volk CR, Wirtschafter JD, Summers CG (1979) Temporary denervation of the cat iris sphincter muscle: an experimental model of the “tonic pupil” syndrome. Invest Ophthalmol Vis Sci 18 [ARVO suppl]:280

    Google Scholar 

  • von Brücke H (1938) Die Behandlung der Trigeminusneuralgie durch Alkoholinjektion ins Ganglion Gasseri. Arch f. Klin Chirurg 192:328–353

    Google Scholar 

  • von Brücke H, Heilauer HF, Umrath K (1949) Azetylcholin und Aneuringehalt der Hornhaut und seine Beziehungen zur Nervenversorgung. Ophthalmologica 117:19–35

    Article  PubMed  Google Scholar 

  • Wahl JW, Tyner GS (1965) Echothiophate iodide: the effect of 0.0625% solution on blood Cholinesterase. Am J Ophthalmol 60:419–427

    PubMed  CAS  Google Scholar 

  • Wålinder P-E (1966) Influence of pilocarpine on iodopyracet and iodide accumulation by rabbit ciliary body — iris preparations. Invest Ophthalmol 5:378–385

    PubMed  Google Scholar 

  • Wålinder P-E, Bill A (1969a) Aqueous flow and entry of cycloleucine into the aqueous humor of vervet monkeys (Cercopithecus ethiops). Invest Ophthalmol 8:434–445

    PubMed  Google Scholar 

  • Wålinder P-E, Bill A (1969b) Influence of intraocular pressure and some drugs on aqueous flow and entry of cycloleucine into the aqueous humor of vervet monkeys (Cercopithecus ethiops). Invest Ophthalmol 8:446–458

    PubMed  Google Scholar 

  • Walsh FB, Hoyt WF (1969) Clinical neuro–ophthalmology, 3rd edn. Williams and Wilkins, Baltimore, pp 496–501,1277–1297

    Google Scholar 

  • Warwick R (1954) The ocular parasympathetic nerve supply and its mesencephalic sources. J Anat 88:71–93

    PubMed  CAS  Google Scholar 

  • Whitewell J (1958) Denervation of the lacrimal secretion. Br J Ophthalmol 42:518–525

    Article  Google Scholar 

  • Wilke K (1974) Early effects of epinephrine and pilocarpine on the intraocular pressure and the episcleral venous pressure in the normal human eye. Acta Ophthalmol 52:231–241

    CAS  Google Scholar 

  • Williams JD, Cooper JR (1965) Acetylcholine in bovine corneal epithelium. Biochem Pharmacol 14:1286–1289

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura H, Hosokawa K (1963) Studies on the mechanism of salt and water secretion from the lacrimal gland. Jpn J Physiol 13:303–318

    Article  PubMed  CAS  Google Scholar 

  • Younge BR, Buske ZJ (1976) Tonic pupil. A simple screening test. Can J Ophthalmol 11:295–299

    PubMed  CAS  Google Scholar 

  • Zlock D, Erickson K, Kaufman P, Brasier A, Polansky J (1983) Cholinergic r̄x results in a decreased content of muscarinic receptors in ciliary muscle. Invest Ophthalmol Vis Sci 24 (ARVO Suppl): 199

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kaufman, P.L., Wiedman, T., Robinson, J.R. (1984). Cholinergics. In: Sears, M.L. (eds) Pharmacology of the Eye. Handbook of Experimental Pharmacology, vol 69. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69222-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69222-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69224-6

  • Online ISBN: 978-3-642-69222-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics