Skip to main content

The Interaction of Circulating Oestrogens and Androgens in Regulating Mammalian Sexual Differentiation

  • Conference paper
Hormones and Behaviour in Higher Vertebrates

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

In mammals males are the heterogametic sex, and the Y chromosome codes for differentiation of the gonads into testes. With the exception of the primary sexual characteristic, gonadal sex, all other differences between males and females are thought to be mediated hormonally via secretions from the testes. In the absence of gonads, mammalian foetuses develop into phenotypic females (Jost 1972). The ovaries of female foetuses differentiate significantly later in development than do the testes, and it appears that the ovaries of female foetuses are not steroidogenic (cf., Gibori and Sridaran 1981). In mammalian species in which the period of gestation is relatively long, sexual differentiation is usually completed by birth. In short-gestation species, such as rats and mice, however, sexual differentiation commences during the last third of pregnancy and continues during the first week to 10 days of postnatal life. Previously, it was erroneously assumed that the differentiation of sexual behaviour in mice and rats began shortly after birth (Barraclough and Leathem 1954, Young et al. 1964). There is a critical coupling of the timing of the secretion of testosterone, the primary androgen secreted by the testes of foetuses and adults, and the development of both neural and peripheral androgen-target tissues. Extrinsic factors that interfere with this normal coupling (such as maternal stress or exposure to exogenous hormones) can radically alter the course of sexual differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baranao J, Chemes H, Tesone M (1981) Effect of androgen treatment of the neonate on rat testis and sex accessory organs. Biol Reprod 25: 851–858

    Article  PubMed  CAS  Google Scholar 

  • Barraclough C, Leathem J (1954) Infertility induced in mice by a single injection of testosterone propionate. Proc Soc Exp Biol Med 85: 673–674

    PubMed  CAS  Google Scholar 

  • Baum M (1979) Differentiation of coital behavior in mammals: a comparative analysis. Neurosci Biobehav Rev 3: 265–284

    Article  PubMed  CAS  Google Scholar 

  • Belisle S, Tulchinsky D (1980) Amniotic fluid hormones. In: Tulchinsky D, Ryan K (eds) Maternal-fetal endocrinology. Saunders, Philadelphia, pp 169–195

    Google Scholar 

  • Benno R, Williams T (1978) Evidence for intracellular localization of alpha-fetoprotein in the developing rat brain. Brain Res 142: 182–186

    Article  PubMed  CAS  Google Scholar 

  • Block E, Lew M, Klein M (1971) Studies on the inhibition of fetal androgen formation: testoste-rone synthesis by fetal and newborn mouse testes in vitro. Endocrinology 88: 41–46

    Article  Google Scholar 

  • Booth J (1977) Sexual behavior of neonatally castrated rats injected during infancy with oestro-gen and dihydrotestosterone. J Endocrinol 72: 135–141

    Article  PubMed  CAS  Google Scholar 

  • Bronson FH (1979) The reproductive ecology of the house mouse. Q Rev Biol 54: 265–299

    Article  PubMed  CAS  Google Scholar 

  • Christian J (1971) Population density and reproductive efficiency. Biol Reprod 4: 248–294

    PubMed  CAS  Google Scholar 

  • Clemens L, Gladue B, Coniglio L (1978) Prenatal endogenous androgenic influences on masculine sexual behavior and genital morphology in male and female rats. Horm Behav 10’40–53

    Google Scholar 

  • Conaway C (1971) Ecological adaptation and mammalian reproduction. Biol Reprod 4: 239–247

    PubMed  CAS  Google Scholar 

  • DeFries J, McClearn G (1970) Social dominance and Darwinian fitness in the laboratory mouse. Am Nat 104: 408–411

    Article  Google Scholar 

  • Del Campo C, Ginther O (1972) Vascular anatomy of the uterus and ovaries and the unilateral luteolytic effect of the uterus: guinea pigs, rats, hamsters, and rabbits. Am J Vet Res 33: 2561–2570

    PubMed  Google Scholar 

  • Desjardins C, Maruniak J, Bronson F (1973) Social rank in house mice: differentiation by ultraviolet visualization of urinary marking patterns. Science 182: 939–941

    Article  PubMed  CAS  Google Scholar 

  • Even M, vom Saal F (1983) Prenatal stress does not demasculinize male mice, it eliminates differences in sexual behavior due to intrauterine position. Abstract presented at the Conference on Reproductive Behavior, Medford, Mass.

    Google Scholar 

  • Gibori G, Sridaran R (1981) Sites of androgen and estradiol production in the second half of pregnancy in the rat. Biol Reprod 24: 249–256

    Article  PubMed  CAS  Google Scholar 

  • Gladue B, Clemens L (1980) Masculinization diminished by disruption of prenatal estrogen biosynthesis in male rats. Physiol Behav 25: 589–593

    Article  PubMed  CAS  Google Scholar 

  • Harrington J (1976) Recognition of territorial boundaries by olfactory cues in mice (Mus musculus L.). Z Tierpsychol 41: 295–306

    Article  PubMed  CAS  Google Scholar 

  • Herrenkohl L (1979) Prenatal stress reduces fertility and fecundity in female offspring. Science 206: 1097–1099

    Article  PubMed  CAS  Google Scholar 

  • Jost A (1972) A new look at the mechanisms controlling sex differentiation in mammals. Johns Hopkins Med J 130: 38–53

    PubMed  CAS  Google Scholar 

  • Kelch R, Lindholm U, Jaffe R (1971) Testosterone metabolism in target tissues: 2. Human fetal and adult reproductive tissues, perineal skin and skeletal muscle. J Clin Endocrinol 32: 449–456

    Article  CAS  Google Scholar 

  • Kime D, Vinson G, Major P, Kilpatrick R (1980) Adrenal-gonad relationships. In: Jones I, Henderson I (eds) General, comparative and clinical endocrinology of the adrenal cortex, vol III. Academic Press, London New York, pp 183–264

    Google Scholar 

  • Lieberburg I, McEwen D (1980) Steroid hormone receptors in the central nervous system. In: Litwack G (ed) Biochemical actions of hormones, vol VI. Academic Press, London New York, pp 415–459

    Google Scholar 

  • Lloyd JA, Christian J (1969) Reproductive activity of individual females in three experimental freely populations of house mice Mus musculus). J Mammal 50: 49–59

    Article  PubMed  CAS  Google Scholar 

  • MacLusky N, Naftolin F (1981) Sexual differentiation of the central nervous system. Science 211: 1294–1303

    Article  PubMed  CAS  Google Scholar 

  • Marcum JB (1974) The freemartin syndrome. Anim Breed Abstr 42: 227–242

    Google Scholar 

  • McEwen B, Chaptal C, Gerlach J, Wallach G (1975) The role of fetoneonatal estrogen binding proteins in the associations of estrogen with neonatal brain cell nuclear receptors. Brain Res 96: 400–406

    Article  PubMed  CAS  Google Scholar 

  • McLaren A, Michie D (1959) Experimental studies on placental fusion in mice. J Exp Zool 141: 47–74

    Article  Google Scholar 

  • McLaren A, Michie D (1960) Control of prenatal growth in mammals. Nature 187: 363–365

    Article  Google Scholar 

  • Meisel R, Ward I (1981) Fetal female rats are masculinized by male littermates located caudally in the uterus. Science 213: 239–242

    Article  PubMed  CAS  Google Scholar 

  • Reyes F, Boroditsky R, Winter J, Faiman C (1974) Studies on human sexual development. II. Fetal and maternal serum gonadotropin and sex steroid concentrations. J Clin Endocrinol Metab 38: 612–617

    Article  PubMed  CAS  Google Scholar 

  • Schachter B, Toran-Allerand C (1982) Intraneural alpha-fetoprotein and albumin are not synthesized locally in developing brain. Dev Brain Res 5: 93–98

    Article  CAS  Google Scholar 

  • Vignon F, Terqui M, Westley B, Derocq D, Rochefort H (1980) Effects of plasma estrogen sulfates in mammary cancer cells. Endocrinology 106: 1079–1086

    Article  PubMed  CAS  Google Scholar 

  • Vito C, Fox T (1982) Androgen and estrogen receptors in embryonic and neonatal rat brain. Dev Brain Res 2: 97–110

    Article  Google Scholar 

  • vom Saal FS (1971) Variation in phenotype due to random intrauterine positioning of male and female fetuses in rodents. J Reprod Fertil 62: 633–650

    Google Scholar 

  • vom Saal FS (1978) Cyproterone acetate exposure during gestation in mice retards fetal growth. Physiol Behav 21: 515–517

    Article  Google Scholar 

  • vom Saal FS (1983) Variation in infanticide and parental behavior in male mice due to prior intrauterine proximity to female fetuses: Elimination by prenatal stress. Physiol Behav 30: 675–681

    Article  Google Scholar 

  • vom Saal FS, Bronson FH (1978) In utero proximity of female mouse fetuses to males: Effect on reproductive performance during later life. Biol Reprod 19: 842–853

    Google Scholar 

  • vom Saal FS, Bronson FH (1980a) Sexual characteristics of adult female mice are correlated with their blood testosterone levels during prenatal development. Science 208:597–599

    Article  Google Scholar 

  • vom Saal FS, Bronson FH (1980b) Variation in length of the estrous cycle in mice due to former intrauterine proximity to male fetuses. Biol Reprod 22: 777–780

    Article  Google Scholar 

  • vom Saal FS, Pryor S, Bronson FH (1981) Change in oestrous cycle length during adolescence in mice is influenced by prior intrauterine position and housing. J Reprod Fertil 62: 33–37

    Article  Google Scholar 

  • vom Saal FS, Moyer C, Rines J (1982) Prenatal effects on aging in female mice. Pap Present Soc Study Reprod Meet, East Lancing, Michigan

    Google Scholar 

  • vom Saal F, Grant W, McCullen C, Laves K (1983) High fetal estrogen concentrations: Correlation with increased adult sexual activity and decreased aggression in male mice. Science 220: 1306–1309

    Google Scholar 

  • Ward I (1972) Prenatal stress feminizes and demasculinizes the behavior of males. Science 175: 82–84

    Article  PubMed  CAS  Google Scholar 

  • Ward IL, Weisz J (1980) Maternal stress alters plasma testosterone in fetal males. Science 207: 328–329

    Article  PubMed  CAS  Google Scholar 

  • Whalen R (1974) Sexual differentiation: Models, methods and mechanisms. In: Friedman R, Reichart R, Van de Wide R (eds) Sex differences in behavior. Wiley, New York, pp 467–481

    Google Scholar 

  • Wilson EO (1975) Sociobiology. The new synthesis. Belknap Press, Cambridge, Massachusetts

    Google Scholar 

  • Young W, Goy R, Phoenix C (1964) Hormones and sexual behavior. Science 143: 212–218

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vom Saal, F.S. (1983). The Interaction of Circulating Oestrogens and Androgens in Regulating Mammalian Sexual Differentiation. In: Balthazart, J., Pröve, E., Gilles, R. (eds) Hormones and Behaviour in Higher Vertebrates. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69216-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69216-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69218-5

  • Online ISBN: 978-3-642-69216-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics