Skip to main content

Cybernetic

  • Chapter
Biophysics
  • 1187 Accesses

Abstract

Ever since Shannon established the theory of statistical information in 1948 it has been possible to specify the “information content” or the amount of “information” of a message quantitatively. This is determined by the probability (expected probability) of the occurrence of the message. Frequently occurring messages then have a small information content and infrequently appearing messages a large information content. If p(xi) is the probability of a message (e.g., for the occurrence of a symbol x t of the information source), the corresponding information content I i is given by

$$I_i = \text{ld}\frac{\text{1}} {{p(x_i \text{)}}} = - \text{ld}\,\,p(x_i )$$
(1)

Id is the logarithm to base 2 and fixes the scale in such a way that a message with p = 0.5 shows an information content of I= 1 bit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Selected References

  • Gallager, R.: Information Theory and Reliable Communication. Wiley, New York 1968.

    MATH  Google Scholar 

  • Goldmann, S.: Information Theory. Prentice Hall I.N.C. New York 1953.

    Google Scholar 

  • Küpfmüller, K.: Informationsverarbeitung durch den Menschen. Nachr. techn. Z. 12, 68–74 (1959).

    Google Scholar 

  • Marko, H.: The Bidirectional Communication Theory — A Generalization of Information Theory. IEEE Comm. 21, 1345–1351 (1973).

    Article  Google Scholar 

  • Marko, H.: Ein Funktionsmodell für die Aufnahme, Speicherung und Erzeugung von Information im Nervensystem. Bewußtsein. Hrsg. H. W. Klement. Baden-Baden: agis-Verlag 1975.

    Google Scholar 

  • Mayer, W.: Gruppenverhalten von Totenkopfaffen unter besonderer Berücksichtigung der Kommunikationstheorie. Kybernetik 8, 59–68 (1970).

    Article  Google Scholar 

  • Neuburger, E.: Kommunikation der Gruppe (Ein Beitrag zur Informationstheorie). München: Oldenbourg 1970.

    Google Scholar 

  • NTG-Empfehlung: NTG 0102 Informationstheorie-Begriffe. Nach richtentechn. Z. 19, 231–234 (1966).

    Google Scholar 

  • Peters, J.: Einführung in die Allgemeine Informationstheorie. Berlin-Heidelberg-New York: Springer 1967.

    MATH  Google Scholar 

  • Shannon, C. E.: A Mathematical Theory of Communication. Bell Syst. Tech. J. 27, 379–423, 623–652 (1948).

    MathSciNet  MATH  Google Scholar 

  • Zemanek, H.: Elementare Informationstheorie. Wien und München: Oldenbourg 1959.

    MATH  Google Scholar 

  • Edrich, W.: Interaction of light and gravity in the orientation of the waggle dance of honey bees, Anim. Behav. 25, 342–363 (1977)

    Article  Google Scholar 

  • Fernandez, C., Goldberg, J. M.: Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. J. Neurophysiol. 39, 970–1008 (1976)

    Google Scholar 

  • Görner, P.: Beispiele einer Orientierung ohne richtende Außenreize. Fortschr. Zool. 21, 20–45 (1973)

    Google Scholar 

  • Harmon, L.D.: Problems in neural modeling. From: Neural theory and Modeling, R. F. Reiss ed., Stanford University Press, California 1964, pp. 9–30.

    Google Scholar 

  • Holst, E. von, Mittelstaedt, H.: Das Reafferenzprinzip. Naturwiss. 37, 464–476 (1950).

    Article  ADS  Google Scholar 

  • See also: The reafference principle. In: Gallistel, C. R.: The organization of action. Wiley New York 1980, pp. 176–209.

    Google Scholar 

  • MacKay, D.M.: Towards an information-flow model of human behaviour. Brit. J. Psychol. 47, 30–43 (1956).

    Article  Google Scholar 

  • Mittelstaedt, H.: Control systems of orientation in insects. Ann. Rev. Entomol. 7, 177–198 (1962).

    Article  Google Scholar 

  • Mittelstaedt, H.: Basic control patterns of orientational homeostasis. Symp. Soc. Exp. Biol. 18, 365–385 (1964).

    Google Scholar 

  • Mittelstaedt, H.: On the processing of postural information. In: Schöne, H. ed.: Mechanisms of spatial orientation. G. Fischer Verl. Stuttgart 1975, pp. 128–141.

    Google Scholar 

  • Mittelstaedt, H.: Kybernetische Analyse von Orientierungsleistungen. In: Kybernetik 1977, pp. 144–195. München, Wien: Oldenbourg 1978.

    Google Scholar 

  • Mittelstaedt, H.: A new solution to the problem of the subjective vertical. Naturwiss. 70, 1983 in press.

    Google Scholar 

  • Scharstein, H.: Der Mechanismus der Sollwertverstellung bei der Kursregelung der roten Waldameise (Formicapolyctena). Dissertation München 1975

    Google Scholar 

  • Blakemore, C., Campbell, F.W.: On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. J. Physiol. 203, 237–260 (1969).

    Google Scholar 

  • Campbell, F.W., Robson, J.G.: Application of Fourier analysis to the visibility of gratings. J. Physiol. 197, 551–566 (1968).

    Google Scholar 

  • Hauske, G., Lupp, U., Wolf, W.: Matched filters - a new concept in vision. Photo. Sci. Eng. 22, 59–64 (1978).

    Google Scholar 

  • Kelly, D.H.: Studies of visual perception. Stanford Research Institute. Report SRI Project 6347 (1967).

    Google Scholar 

  • Kelly, D.H.: Theory of Flicker and transient responses. II. Counterphase gratings. J. Opt. Soc. Am. 61, 632–640 (1971).

    Article  ADS  Google Scholar 

  • Küpfmüller, K.: Die Systemtheorie der elektrischen Nachrichtenübertragung, 4. Aufl. Stuttgart: Hirzel Verlag 1974.

    Google Scholar 

  • Marko, H.: Die Systemtheorie der homogenen Schichten. Kybernetik 5, 221–240 (1969).

    Article  MATH  Google Scholar 

  • Marko, H.: Ein Funktionsmodell für die Aufnahme, Speicherung und Erzeugung von Information im Nervensystem. Bewußtsein, Klement, H.W. (Hrsg.). Baden-Baden: agis-Verlag 1975.

    Google Scholar 

  • Marko, H., Giebel, H.: Recognition of handwritten characters with a system of homogeneous layers. NTZ 23, 455–459 (1970).

    Google Scholar 

  • Marko, H.: Methoden der Systemtheorie. Berlin-Heidelberg-New York: Springer 1977.

    MATH  Google Scholar 

  • Marko, H.: Models of visual perception. In: Biomedical pattern recognition and image processing. Berlin, Dahlem Konferenzen 79. Fu, K.S., Pavlidis, T. (eds.), pp. 269–296. Weinheim: Vlg. Chemie 1979.

    Google Scholar 

  • Marko, H.: The z-Model — A Proposal for Spatial and Temporal Modeling of Visual Threshold Perception. Biol. Cybern. 39, pp. 111–123 (1981)

    Article  MATH  Google Scholar 

  • Brakenberg, V., Strausfeld, N.J.: Principles of the mosaic organization in the visual system’s neuropil of Musca domestica L. In: Handbook of Sensory Physiology, Bd.II: Central Processing of Visual Information. Berlin-Heidelberg-New York: Springer 1973.

    Google Scholar 

  • Götz, K.G.: Principles of optomotor reactions in insects. In: Bibliotheca Ophthalmologica Bd. 82, S.251–259. Basel: Karger 1972.

    Google Scholar 

  • Hassenstein, B., Reichardt, W.: Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Z. Naturforsch. IIb, 513–524(1956).

    Google Scholar 

  • Kirschfeld, K.: Das neurale Superpositionsauge. In: Fortschritte der Zoologie, Bd. 21, S.229–257. Stuttgart: Gustav Fischer 1973.

    Google Scholar 

  • Land, M. F., Collett, T.S.: Chasing behaviour of houseflies. J. comp. Physiol. 89, 331–357 (1974).

    Article  Google Scholar 

  • Marmarelis, P.Z., McCann, G.D.: Development and application of white-noise modeling techniques for studies of insect visual nervous system. Kybernetik 12, 74–90 (1973).

    Article  Google Scholar 

  • Poggio, T.: Processing of visual information in insects: outline of a theoretical characterization. In: Drischel, H. (Ed.): Biocybernetics. Leipzig: Fischer 1975.

    Google Scholar 

  • Poggio, T., Reichardt, W.: Visual control of orientation behaviour in the fly. II. Towards the underlying neural interactions. Quart. Rev. Biophysics 9, 377–438 (1976).

    Article  Google Scholar 

  • Reichardt, W.: Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. In: Rosenblith, W.A. (Ed.): Sensory Communication, pp.303–317. Cambridge Mass.: MIT Press 1961.

    Google Scholar 

  • Reichardt, W.: Musterinduzierte Flugorientierung. Naturwissenschaften 60, 122–138 (1973).

    Article  ADS  Google Scholar 

  • Reichardt, W., Poggio, T.: A theory of the pattern induced flight orientation of the fly Musca domestica II. Biol. Cybernetics 18, 69–80 (1975).

    Google Scholar 

  • Reichardt, W., Poggio, T.: Visual control of orientation behaviour in the fly. I. A quantitative analysis. Quart. Rev. Biophysics 9, 311–375 (1976).

    Google Scholar 

  • Reichardt, W., Poggio, T.: Figure-ground discrimination by relative movement in the visual system of the fly. Part I: Experimental results. Biol. Cybern. 35, 81–100 (1979).

    Article  Google Scholar 

  • Aschoff, J. (Ed.): Circadian Clocks. Amsterdam: North-Holland Publ. 1965.

    Google Scholar 

  • Bünning, E.: The physiological clock (3rd Ed.). Berlin-Heidelberg-New York: Springer 1973.

    Google Scholar 

  • Chance, B., Pye, E.K., Ghosh, A, Hess, B. (Eds.): Biological and biochemioal oscillators. New York-London: Academic Press 1973.

    Google Scholar 

  • Cowan, I.R.: Oscillations in stomatal conductance and plant functioning associated with stomatal conductance: observations and a model. Planta 106, 185–219 (1972).

    Article  Google Scholar 

  • Engelmann, W., Johnsson, A.: Attenuation of the petal movement rhythm in Kalanchoe with light pulses. Phys. Plant. 43, 68–76 (1978).

    Article  Google Scholar 

  • Johnsson, A., Heathcote, D.: Experimental evidence and models on circumnutations. Z. Pflanzenphysiol. 70, 371–405 (1973).

    Google Scholar 

  • McFarland, D.J.: Feedback mechanisms in animal behaviour. New York-London: Academic Press 1971.

    Google Scholar 

  • Menaker, M. (Ed.): Biochronometry. Washington: National Academy of Sciences 1971.

    Google Scholar 

  • Milsum, J.H.: Biological control systems analysis. New York: McGraw-Hill Book Comp. 1966.

    Google Scholar 

  • Pavlidis, Th.: Biological oscillators: their mathematical analysis. New York-London: Academic Press 1973.

    Google Scholar 

  • Pittendrigh, C.S.: The circadian oscillation in Drosophila pseudoobscura pupae: A model for the photoperiodic clocks. Z. Pflanzenphysiol. 54, 275–307 (1966).

    Google Scholar 

  • Wever, R.: The circadian system of man. Berlin-Heidelberg-New York: Springer 1979.

    Book  Google Scholar 

  • Winfree, A.T.: Integrated view of resetting a circadian clock. J. theoret. Biol. 28, 327–374 (1970).

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mittelstaedt, H., Marko, H., Reichardt, W., Johnsson, A. (1983). Cybernetic. In: Hoppe, W., Lohmann, W., Markl, H., Ziegler, H. (eds) Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68877-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68877-5_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68879-9

  • Online ISBN: 978-3-642-68877-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics