Skip to main content

The Conformation of Glucagon

  • Chapter
Glucagon I

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 66 / 1))

Abstract

The biological activity of glucagon is mediated through binding, with high affinity and specificity, to a membrane receptor, implying extensive and well-defined inter-molecular interactions (see Chap. 13). However, in dilute aqueous solutions glucagon has little defined secondary structure and almost certainly exists as a population of conformers in equilibrium. The formation of the receptor-hormone complex must involve either selection of one conformer from the population or induction of a conformer as the interaction takes place. Whatever the mechanism, the definition of the receptor-bound conformer, as well as the nature of the hormone- receptor interactions must be a primary objective in the understanding of the biology of glucagon and the design of glucagon agonists and inhibitors (Blundell 1979; Blundell and Humbel 1980). Unfortunately, the receptor has yet to be defined biochemically and so difect study of the receptor-hormone complex is not possible at present. Instead we must examine the conformation of glucagon in aqueous solution, in crystals, in lipid micelles and other environments in order to establish the nature of the conformational dependence on intermolecular interactions. Here, I first describe recent developments, especially in the use of X-ray diffraction and proton nuclear magnetic resonance (NMR) spectroscopy which have allowed description of the conformation in great detail under varied conditions. I then discuss the relevance of these conformations to the molecular biology of glucagon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beaven GH, Gratzer WB, Davies HG (1969) Formation and structure of gels and fibrils from glucagon. Eur J Biochem 11: 37–42

    Article  PubMed  CAS  Google Scholar 

  • Blanchard MH, King MY (1966) Evidence of association of glucagon from optical rotary dispersion and concentration difference spectra. Biochem Biophys Res Commun 25: 298–303

    Article  PubMed  CAS  Google Scholar 

  • Blundell TL (1979) Conformation and molecular biology of pancreatic hormones. II. Glucagon. Trends Biochem Sci 4: 80–83

    Article  CAS  Google Scholar 

  • Blundell TL, Humbel RE (1980) Hormone families: pancreatic hormones and homologous growth factors. Nature 287: 781–787

    Article  PubMed  CAS  Google Scholar 

  • Blundell TL, Johnson LN (1976) Protein crystallography. Academic Press, London New York

    Google Scholar 

  • Blundell TL, Dockerill S, Sasaki K, Tickle IJ, Wood SP (1976) The relation of structure to storage and receptor binding of glucagon. Metabolism 25: 1331–1336

    Article  PubMed  CAS  Google Scholar 

  • Blundell TL, Dockerill S, Pitts JE, Wood SP, Tickle IJ (1978) Glucagon and pancreatic hormone. III. X-ray analysis, conformation and receptor binding. In: Nichols P (ed) Membrane proteins. Pergamon, Oxford New York, pp 249–257

    Google Scholar 

  • Boesch C, Bundi A, Oppliger M, Wiithrich K (1978) NMR studies of the molecular conformation of monomeric glucagon in aqueous solution. Eur J Biochem 91: 209–214

    Article  PubMed  CAS  Google Scholar 

  • Boesch C, Brown LR, Wüthrich K (1982) Physicochemical characterisation of glucagon-containing lipid micelles, unpublished results

    Google Scholar 

  • Braun W, Boesch C, Brown LR, Go N, Wiithrich K (1981) Combined use of protein-proton Overhauser enhancements and a distance geometry algorithm for determination of polypeptide conformations: application to micelle-bound glucagon. Biochim Biophys Acta 667: 377–396

    PubMed  CAS  Google Scholar 

  • Brown LR, Boesch C, Wüthrich K (1981) Location and orientation relative to the micelle surface for glucagon in mixed micelles with dodecylphosphocholine EPR and NMR studies, unpublished results

    Google Scholar 

  • Bussolati G, Capella C, Vassallo G, Solcia E (1971) Xanthydrol staining of pancreatic A-cell granules. Diabetologia 7: 181–188

    Article  PubMed  CAS  Google Scholar 

  • Chou PY, Fasman GD (1975) The conformation of glucagon: predictions and consequences. Biochemistry 14: 2536–2541

    Article  PubMed  CAS  Google Scholar 

  • Dockerill S (1978) Structure function studies with insulin and glucagon. DPhil thesis, Sussex University, Brighton

    Google Scholar 

  • Edelhoch H, Lippoldt RE (1969) The conformation of glucagon in detergents. Biol Chem 244: 3876–3883

    CAS  Google Scholar 

  • Epand RM (1971) Studies of the conformation of glucagon. Can J Biochem 49: 166–169

    PubMed  CAS  Google Scholar 

  • Epand RM, Jones AJS, Sayer B (1977) Molecular interactions in the model lipoprotein com-plex formed between glucagon and dimyristoylglycerophosphocholine. Biochemistry 16: 4360–4368

    Article  PubMed  CAS  Google Scholar 

  • Finney JL (1978) Volume occupation, environment and accessibility in proteins. J Mol Biol 119: 415–441

    Article  PubMed  CAS  Google Scholar 

  • Gratzer WB, Beaven GH (1969) Relation between conformation and association state. J Biol Chem 244: 6675–6679

    PubMed  CAS  Google Scholar 

  • Gratzer WB, Bailey E, Beaven GH (1967) Conformational states of glucagon. Biochem Biophys Res Commun 28: 914–919

    Article  PubMed  CAS  Google Scholar 

  • Gratzer WB, Beaven GH, Rattle HWE, Bradbury EM (1968) A conformational study of glucagon. Eur J Biochem 3: 276–283

    Article  PubMed  CAS  Google Scholar 

  • Gratzer WB, Creeth JM, Beaven GH (1972) Presence of trimers in glucagon solution. Eur J Biochem 31: 505 - 509

    Article  PubMed  CAS  Google Scholar 

  • Johnson RE, Hruby VJ, Rupley J A (1979) A calorimetry study of glucagon association. Bio-chemistry 18: 1176–1179

    CAS  Google Scholar 

  • King MV (1959) The unit cell and space group of cubic glucagon. J Mol Biol 1: 375–378

    Article  CAS  Google Scholar 

  • King MV (1965) A low resolution structural model for cubic glucagon based on packing of cylinders. J Mol Biol 11: 549–561

    Article  PubMed  CAS  Google Scholar 

  • Lange RH (1976) Crystallography of islet secretory granules. In: Fujita T (ed) Endocrine gut and pancreas. Elsevier, Amsterdam Oxford New York, pp 167–178

    Google Scholar 

  • Lange RH (1979) Distribution of molecule numbers per secretion granule. A study of crystals in glucagon secreting cells. Eur J Cell Biol 20: 71–75

    PubMed  CAS  Google Scholar 

  • Lange RH, Klein C (1974) Rhombic dodecahedral secretory granules in glucagon producing islet cells. Cell Tiss Res 148: 561–563

    Article  CAS  Google Scholar 

  • Lange RH, Kobayashi K (1980) Cubic crystals in endocrine pancreatic A-cells of a teleost, Fugu rubripes. J Ultrastruct Res 72: 20–26

    Article  PubMed  CAS  Google Scholar 

  • Lee B, Richards FM (1971) Interpretation of protein structures: estimation of static accessibility. J Mol Biol 55: 379–400

    Article  PubMed  CAS  Google Scholar 

  • Lin MC, Nicosia S, Rodbell M (1976) Effects of iodination of tyrosyl residues on the binding and action of glucagon at its receptor. Biochemistry 15: 4537–4540

    Article  PubMed  CAS  Google Scholar 

  • Panijpan B, Gratzer WB (1974) Circular dichroism studies of glucagon. Eur J Biochem 45: 547–553

    Article  PubMed  CAS  Google Scholar 

  • Patel DJ, (1970) Proton NMR of glucagon. Macromolecules 3:448–449

    Article  CAS  Google Scholar 

  • Rodbell M, Birnbaumer L, Pohl SL, Sundby F (1971) The reaction of glucagon with its receptor. Proc Natl Acad Sci USA 68: 909–913

    Article  PubMed  CAS  Google Scholar 

  • Ross JBA, Rousslang KW, Deranleau DA, Kwiram AL (1976) Optical detection of magnetic resonance of glucagon. A conformation change related to critical length of the peptide chain. J Am Chem Soc 98: 6781–6782

    Google Scholar 

  • Ross JBA, Rousslang KW, Deranleau DA, Kwiram AL (1977) Glucagon conformation: use of optically detected magnetic resonance and phosphorescence of tryptophan. Biochemistry 16: 5398–5402

    Article  PubMed  CAS  Google Scholar 

  • Sasaki K, Dockerill S, Adamiak DA, Tickle IJ, Blundell TL (1975) X-ray analysis of glucagon and its relationships to receptor binding. Nature 257: 751–757

    Article  PubMed  CAS  Google Scholar 

  • Schiffer N, Edmundsen AB (1967) A helical wheel for glucagon. Biophys J 7: 121–134

    Article  PubMed  CAS  Google Scholar 

  • Schneider AB, Edelhoch H (1972) Conformational changes of glucagon bound to lysolecithin. J Biol Chem 247: 4992–4995

    PubMed  CAS  Google Scholar 

  • Srere PA, Brooks GC (1969) The circular dichroism of glucagon solutions. Arch Biochem Biophys 129: 708–710

    Article  PubMed  CAS  Google Scholar 

  • Swann JC, Hammes GC (1969) Self-association of glucagon. Equilibrium studies. Biochemistry 8: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Wagman ME (1981) Proton NMR studies of glucagon association in solution. PhD thesis, Harvard University, Cambridge, Massachusetts

    Google Scholar 

  • Wagman ME, Dobson CM, Karplus M (1980) Proton NMR studies of the association and folding of glucagon in solution. FEBS Lett 119: 265–270

    Article  PubMed  CAS  Google Scholar 

  • Wright DE, Rodbell M (1979) Glucagon 16 binds to the glucagon receptor and activates hepatic adenylate cyclase. J Biol Chem 254: 268–269

    PubMed  CAS  Google Scholar 

  • Wu CSC, Yang JT (1980) Helical conformation of glucagon in surfactant solutions. Biochemistry 19: 2117–2122

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blundell, T.L. (1983). The Conformation of Glucagon. In: Lefèbvre, P.J. (eds) Glucagon I. Handbook of Experimental Pharmacology, vol 66 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68866-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68866-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68868-3

  • Online ISBN: 978-3-642-68866-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics