Skip to main content

Dendritic Web Growth of Silicon

  • Conference paper
Silicon Chemical Etching

Part of the book series: Crystals ((CRYSTALS,volume 8))

Abstract

The dendritic web growth process is a crystal growth technique which produces thin, long, ribbons of essentially single-crystalline material. The ribbon morphology results from an interaction of crystallographic and surface tension forces so that possible contamination from shaping dies is avoided. Growth is from a melt so that the usual solutes can be used to “dope” the crystals to the desired conductivity type and resistivity. Rejected solutes readily diffuse away from the growth front so that impurities segregate very efficiently as in Czochralski growth. The structural quality of the material is excellent so that all usual semiconductor processing techniques compatible with a (111) orientation are applicable to dendritic web material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. John, H. F., Faust, J. W., Jr.: Controlled dendritic growth of materials with diamond lattice and zinc blende structures. In: Metallurgy of elemental and compound semiconductors. Grubel, R. O. (ed.) pp. 127–148. New York, London: Interscience 1961

    Google Scholar 

  2. Dermatis, S. N., Faust, J. W., Jr.: IEEE Commun. Electron. 65, 94 (1963)

    Google Scholar 

  3. Dushman, S.: Scientific foundations of vacuum technique, 2nd. ed. Lafferty, J. M. (ed.), p. 68. New York, London: Wiley 1962

    Google Scholar 

  4. Barrett, D. L. et al.: J. Electrochem. Soc. 118, 952 (1971)

    Article  CAS  Google Scholar 

  5. Seidensticker, R. G. et al.: Computer modeling of dendritic web growth processes and characterization of the material. In: Conf. record 13th IEEE photovoltaic specialists conference. pp. 358–362. IEEE• New York 1978

    Google Scholar 

  6. Duncan, C. S., Hopkins, R. H., Mazelsky, R.: J. Crystal Growth 11, 50 (1971)

    Article  CAS  Google Scholar 

  7. Duncan, C. S. et al.: Development of processes for the production of low cost silicon dendritic web for solar cells. In: Conf. record 14th IEEE photovoltaic specialists conference. pp. 25–30. IEEE: New York 1980

    Google Scholar 

  8. Surek, T.: J. Appl. Phys. 47, 4384 (1976)

    Article  CAS  Google Scholar 

  9. Hamilton, D. R., Seidensticker, R. G.: J. Appl. Phys. 31, 1165 (1960)

    Article  CAS  Google Scholar 

  10. Seidensticker, R. G., Hamilton, D. R.: J. Appl. Phys. 34, 1450 (1963)

    Article  Google Scholar 

  11. Hamilton, D. R., Seidensticker, R. G.: J. Appl. Phys. 34, 3113 (1963)

    Article  Google Scholar 

  12. Seidensticker, R. G., Hamilton, D. R.: J. Phys. Chem. Solids 24, 1585 (1963)

    Article  CAS  Google Scholar 

  13. Albon, N., Owen, A.: J. Phys. Chem. Solids 24, 899 (1963)

    Article  CAS  Google Scholar 

  14. Longini, R. L., Bennett, A. I., Jr., Smith, W. J.: Appl. Phys. 31, 1204 (1960)

    Article  CAS  Google Scholar 

  15. Bennett, A. I., Jr., Longini, R. L.: Phys. Rev. 116, 53 (1959)

    Article  CAS  Google Scholar 

  16. Davydov, A. A., Maslov, V. N.: Krystallografiya 9,472 (1964) trans. in Soy. Phys.-Cryst. 9, 393 (1965)

    Google Scholar 

  17. Tucker, T. N., Schwuttke, G. H.: Appl. Phys. Ltrs. 9, 219 (1966)

    Article  CAS  Google Scholar 

  18. Hanill, M. D. et al.: J. Crystal Growth 44,34 (1978)

    Article  Google Scholar 

  19. O’Hara, S.: J. Appl. Phys. 37, 3783 (1966)

    Article  Google Scholar 

  20. O’Hara, S., Bennett, A. I., Jr.: J. Appl. Phys. 35, 686 (1964)

    Article  Google Scholar 

  21. Swartz, J. C., Surek, T., Chalmers, B.: J. Electronic Materials 4, 255 (1975)

    Article  CAS  Google Scholar 

  22. Ciszek, T.: J. Appl. Phys. 47, 440 (1976)

    Article  CAS  Google Scholar 

  23. Duncan, C. S. et al.: Annual report. Silicon web process development. DOE/JPL 954–78/2

    Google Scholar 

  24. Mackintosh, B. J. et al.: Multiple ribbon growth by EFG. In: Conf. record 13th IEEE photovoltaic specialists conference. pp. 350–357. IEEE: New York 1978

    Google Scholar 

  25. Gurtler, R. et al.: The impact of defects on the photovoltaic potential of RTR silicon ribbon. In: Conf. record 13th IEEE photovoltaic specialists conference. pp. 363. IEEE: New York 1978

    Google Scholar 

  26. Gurtler, R.: J. Crystal Growth 50, 69 (1980)

    Article  CAS  Google Scholar 

  27. Hall, R. O. A.: Acta Cryst. 14, 1004 (1961)

    Article  CAS  Google Scholar 

  28. Logan, R. A., Bond, W. L.: J. Appl. Phys. 30, 332 (1959)

    Google Scholar 

  29. Burenkov, Yu. A., Nikanorov, S. P.: Fiz. Tver. Tela 16, 1496 (1974) trans. in Soy. Phys.-Solid State 16, 963 (1964)

    Google Scholar 

  30. Graham, C. D. et al.: Final report. Research and development of low cost processes for integrated solar arrays. p. 138. ERDA/SE/EC (11–1)-2721/FR/76/1

    Google Scholar 

  31. Boley, B. A., Weiner, J. H.: Theory of thermal stresses. p. 323. New York, London, Sydney: Wiley 1960

    Google Scholar 

  32. Seidensticker, R. G., Hopkins, R. H.: J. Crystal Growth 50, 221 (1980)

    Article  CAS  Google Scholar 

  33. Seidensticker, R. G., Stewart, A. M., Hopkins, R. H.: J. Crystal Growth 46, 51 (1979)

    Article  CAS  Google Scholar 

  34. Surek, T., Chalmers, B.: J. Crystal Growth 29, 1 (1975)

    Article  CAS  Google Scholar 

  35. Kodera, H.: Japan. J. Appl. Phys. 2, 212 (1963)

    Article  CAS  Google Scholar 

  36. Thurber, W. R., Mattis, R. L., Liu, Y. M.: J. Electrochem. Soc. 42, 2291 (1980)

    Article  Google Scholar 

  37. Davis, J. R. et al.: Characterization of the effects of metallic impurities on silicon solar cell performance. In: Conf. record 13th IEEE photovoltaic specialists conference. pp. 490–495. IEEE: New York 1978

    Google Scholar 

  38. Hopkins, R. H. et al.: J. Crystal Growth 42, 443 (1977)

    Article  Google Scholar 

  39. Hovel, H. J.: Semiconductors and semimetals. Vol. 11: Solar cells. (Willardson, R. K., Beer, A. C., eds.) p. 23. New York, San Francisco, London: Academic 1975

    Google Scholar 

  40. Campbell, R. B. et al.: Solar cells and modules from dendritic web silicon. In: Conf. record 14th IEEE photovoltaic specialists conference. pp. 332–336. IEEE: New York 1980

    Google Scholar 

  41. Seidensticker, R. G., Scudder, L., Brandhorst, H. W., Jr.: Dendritic web: a viable material for silicon solar cells. In: Conf. record 11th IEEE photovoltaic specialists conference. pp. 299–302. IEEE: New York 1975

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. Grabmaier

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Seidensticker, R.G. (1982). Dendritic Web Growth of Silicon. In: Grabmaier, J. (eds) Silicon Chemical Etching. Crystals, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68765-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68765-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68767-9

  • Online ISBN: 978-3-642-68765-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics