Skip to main content

The Neuropharmacology of Circadian Timekeeping in Mammals

  • Conference paper
Vertebrate Circadian Systems

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

Richter’s observation, that the homeostasis of circadian oscillations is reflected in their resistance to most chemical manipulations of the internal milieu, may be less generally valid today. For many years the only substance known to have a reproducible effect on circadian rhythms in mammals was deuterium oxide. Heavy water has been found to lengthen the freerunning period as an increasing function of its concentration in the body (Daan and Pittendrigh 1976). Under light-dark (LD) cycles of different periods, heavy water has also been observed to alter the range of entrainment (Hayes and Palmer 1976). Unfortunately, the mechanism by which deuterium oxide alters rhythm characteristics in mammals is completely unknown.

“How can this clock be speeded up; slowed down; reset; or stopped? Blinded rats were subjected to almost every conceivable kind of metabolic, endocrinologic and neurologic interference ... to no effect.” C.P. Richter (1965)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldenhoff JB, Lux HD (1982) Effects of lithium on calcium-dependent membrane properties and on intracellular calcium-concentration in Helix neurons. In: Emrich HM, Aldenhoff JB, Lux HD (eds) Basic mechanisms in the action of lithium. Excerpta Medica, Amsterdam, pp. 50–63

    Google Scholar 

  • Azmitia EC, Segal M (1978) An autoradiographic analysis of the differential projections of the dorsal and medial raphe nuclei in the rat. J Comp Neurol 179: 641–668

    Article  PubMed  CAS  Google Scholar 

  • Block GA, Billiar RB (1981) Properties and regional distribution of nicotinic cholinergic receptors in the rat hypothalamus. Brain Res 212: 152–158

    Article  PubMed  CAS  Google Scholar 

  • Brownstein MJ, Palkovits M, Saavedra JM, Kizer KS (1975) Tryptophan hydroxylase in the rat brain. Brain Res 97: 163–166

    Article  PubMed  CAS  Google Scholar 

  • Campbell IC, Robinson DS, Lovenberg W, Murphy DL (1979) The effects of chronic regimens of clorgyline and pargyline on monoamine metabolism in the rat brain. J Neurochem 32: 49–55

    Article  PubMed  CAS  Google Scholar 

  • Cohen RM, Campbell IC, Dauphin M, Tallman JF, Murphy DL (1982) Changes in alpha and beta-receptor densities in rat brain as a result of treatment with monoamine oxidase inhibiting antidepressants. Neuropharmacology 21: 293–298

    Article  PubMed  CAS  Google Scholar 

  • Craig C, Tamarkin L, Garrick N, Wehr TA (1981) Long-term and short-term effects of clorgyline (a monoamine oxidase type A inhibitor) on locomotor activity and on pineal melatonin in the hamster. Abstract # 229.14 Soc Neurosci 11th Ann Meeting.

    Google Scholar 

  • Daan S, Pittendrigh CS (1976) A functional analysis of circadian pacemakers in nocturnal rodents. III. Heavy water and constant light: homeostasis of frequency? J Comp Physiol 106: 267–290

    Article  Google Scholar 

  • Engelmann W (1973) A slowing down of circadian rhythms by lithium ions. Z Naturforsch 28c: 733–736

    Google Scholar 

  • Groblewski TA, Nunez AA, Gold RM (1981) Circadian rhythms in vasopressin deficient rats. Brain Res Bull 6: 125–130

    Article  PubMed  CAS  Google Scholar 

  • Hayes CJ, Palmer JD (1976) The chronomutagenic effect of deuterium oxide on the period and entrainment of a biological rhythm. II. The reestablishment of lost entrainment by artificial LD cycles. Int J Chronobiol 4:63–69

    PubMed  CAS  Google Scholar 

  • Hofmann K, Günderoth-Palmowski M, Wiedemann G, Engelmann W (1978) Further evidence for period lengthening effect of Li+ on circadian rhythms. Z Naturforsch 33c: 231–233

    CAS  Google Scholar 

  • Honma KI, Hiroshige T (1979) Participation of brain catecholaminergic neurons in a self-sustained circadian oscillation of plasma corticosterone in the rat. Brain Res 169: 519–529

    Article  PubMed  CAS  Google Scholar 

  • Honma KI, Watanabe K, Hiroshige T (1979) Effects of parachlorophenylalanine and 5,6-dihydroxy-tryptamine on the freerunning rhythms of locomotor activity and plasma corticosterone in the rat exposed to continuous light. Brain Res 169: 531–455

    Article  PubMed  CAS  Google Scholar 

  • Johnsson A, Pflug B, Engelmann W, Klemke W (1979) Effect of lithium carbonate on circadian periodicity in humans. Pharmacopsychiatria 12: 423–425

    Article  CAS  Google Scholar 

  • Kafka MS, Wirz-Justice A, Naber D, Wehr TA (1981) Circadian acetylcholine receptor rhythm in rat brain and its modification by imipramine. Neuropharmacology 20: 421–425

    Article  PubMed  CAS  Google Scholar 

  • Kafka MS, Wirz-Justice A, Naber D, Marangos PJ, O’Donahue T, Wehr TA (1982) Effect of lithium on circadian neurotransmitter receptor rhythms. Neuropsychobiology 8: 41–50

    Article  PubMed  CAS  Google Scholar 

  • Kamase H (1980) The diurnal variations of monoamine oxidase activity in discrete nuclei of rat brain. Folia Psychiat et Neurolog Jap 34: 481–492

    CAS  Google Scholar 

  • Knapp S, Mandell AJ (1973) Short and long-term lithium administration: effects on the brain’s serotonergic biosynthetic systems. Science 180: 645–647

    Article  PubMed  CAS  Google Scholar 

  • Knapp S, Mandell AJ (1975) Effects of lithium chloride on parameters of biosynthetic capacity for 5-HT in rat brain. J Pharmac Exp Ther 198: 123–132

    Google Scholar 

  • Krieger MS, Morrell JI, Pfaff DW (1976) Autoradiographic localization of estradiol concentrating cells in the female hamster brain. Neuroendocrinology 22: 193–205

    Article  PubMed  CAS  Google Scholar 

  • Kripke DF, Wyborney VG (1980) Lithium slows rat circadian activity rhythms. Life Sci 26: 1319–1321

    Article  PubMed  CAS  Google Scholar 

  • Kripke DF, Judd LL, Hubbard B, Janowsky DS, Huey LY (1979) The effect of lithium carbonate on the circadian rhythm of sleep in normal human subjects. Biol Psychiat 14: 545–548

    PubMed  CAS  Google Scholar 

  • Langer SZ, Briley M (1981) High-affinity 3 H-imipramine binding: a new biological tool for studies in depression. TINS 4: 28–31

    Google Scholar 

  • Maggi A, Enna SJ (1980) Regional alterations in rat brain neurotransmitter systems following chronic lithium treatment. J Neurochem 34: 888–892

    Article  PubMed  CAS  Google Scholar 

  • McEachron DL, Kripke DF, Wyborney VG (1981a) Lithium promotes entrainment of rats to long circadian light-dark cycles. Psychiatry Res 2: 511–9

    Google Scholar 

  • McEachron DL, Kripke DF, Hawkins R, Haus E, Pavlinac D, Deftos L (1982) Lithium delays biochemical circadian rhythms in rats. Neuropharmacology 8: 12–29

    CAS  Google Scholar 

  • Meyer DC, Quay WB (1976) Hypothalamic and suprachiasmatic uptake of serotonin in vitro: twenty-four hour changes in male and proestrous female rats. Endocrinology 98: 1160–1165

    Article  PubMed  CAS  Google Scholar 

  • Morin LP, Fitzgerald KM, Zucker I (1977a) Estradiol shortens the period of hamster circadian rhythms. Science 196: 305–307

    Article  PubMed  CAS  Google Scholar 

  • Morin LP, Fitzgerald KM, Rusak B, Zucker I (1977b) Circadian organization and neural mediation of hamster reproductive rhythms. Psychoneuroendocrinology 2: 73–98

    Article  PubMed  CAS  Google Scholar 

  • Naber D, Wirz-Justice A, Kafka MS, Wehr TA (1980) Dopamine receptor binding in rat striatum: ultradian rhythm and its modification by chronic imipramine. Psychopharmacology 68: 1–5

    Article  PubMed  CAS  Google Scholar 

  • Nishino H, Koizumi K (1977) Responses of neurons in the suprachiasmatic nuclei of the hypothalamus to putative transmitters. Brain Res 120: 167–172

    Article  PubMed  CAS  Google Scholar 

  • Palkovitz M (1980) Topography of chemically identified neurons in the central nervous system: progress in 1977–1979. Med Biol 58: 188–227

    Google Scholar 

  • Palkovits M, Saavedra JM, Kobayashi RM, Brownstein M (1974) Choline acetyltransferase content of limbic nuclei of the rat. Brain Res 79: 443–450

    Article  PubMed  CAS  Google Scholar 

  • Parent A, Butcher LL (1976) Organization and morphologies of acetylcholinesterase-containing neurons in the thalamus and hypothalamus of the rat. J Comp Neurol 170: 205–226

    Article  PubMed  Google Scholar 

  • Peroutka SJ, Snyder SH (1980) Long-term antidepressant treatment decreases spiroperidol-labelled receptor binding. Science 210: 88–90

    Article  PubMed  CAS  Google Scholar 

  • Richter CP (1965) Biological clocks in medicine and psychiatry. Thomas, Springfield, p 21

    Google Scholar 

  • Rusak B, Zucker I (1979) Neural regulation of circadian rhythms. Physiol Rev 59: 449–526

    PubMed  CAS  Google Scholar 

  • Saavedra JM (1975) Localization of biogenic amine-synthesizing enzymes in discrete hypothalmic nuclei. In: Anatomical neuroendocrinology. Karger, Basel, p 397

    Google Scholar 

  • Saavedra JM, Brownstein MT, Palkovits M (1976) Distribution of catechol-O-methyltransferase, histamine N-methyltransferase and monoamine oxidase in specific areas of the rat brain. Brain Res 118: 152–156

    Article  PubMed  CAS  Google Scholar 

  • Saavedra JM, Palkovits M, Brownstein MJ, Axelrod J (1974) Serotonin distribution in the nuclei of the rat hypothalamus and preoptic region. Brain Res 77: 157–165

    Article  PubMed  CAS  Google Scholar 

  • Sangdee C, Franz DN (1980) Lithium enhancement of central 5-HT transmission induced by 5-HT precursors. Biol Psychiatry 15: 59–75

    PubMed  CAS  Google Scholar 

  • Savage DD, Frazer A, Mendels J (1979) Differential effects of monoamine oxidase inhibitors and serotonin reuptake inhibitors on 3H-serotonin receptor binding in rat brain. Eur J Pharmacol 58: 87–88

    Article  PubMed  CAS  Google Scholar 

  • Schultz JE, Siggins GR, Schocker FW, Türck M, Bloom FE (1981) Effects of prolonged treatment with lithium and tricyclic antidepressants on discharge frequency, norepinephrine responses and beta receptor binding in rat cerebellum: electrophysiological and biochemical comparison. J Pharmacol Exp Ther 216: 28–38

    PubMed  CAS  Google Scholar 

  • Segal M, Dudai Y, Amsterdam A (1978) Distribution of an α-bungarotoxin-binding cholinergic nicotinic receptor in rat brain. Brain Res 148: 105–119

    Article  PubMed  CAS  Google Scholar 

  • Strumwasser F, Viele DP (1980) Lithium increases the period of a neuronal Orcadian oscillator. Soc Neurosci Abstr 6: 707

    Google Scholar 

  • Szafarczyk A, Ixart G, Malaval F, Nouguier-Soulé J, Assenmacher I (1979) Effects of lesions of the suprachiasmatic nuclei and of p-chlorophenylalanine on the circadian rhythms of adrenocorti-cotrophic hormone and corticosterone in the plasma, and on locomotor activity of rats. J Endocrinol 83: 1–16

    Article  PubMed  CAS  Google Scholar 

  • Szafarczyk A, Alonso G, Ixart G, Malaval F, Nouguier-Soulé J, Assenmacher I (1980a) Serotoniner-gic system and circadian rhythms of ACTH and corticosterone in rats. Am J Physiol 239: E482–E489

    PubMed  CAS  Google Scholar 

  • Szafarczyk A, Ixart G, Malaval F, Nouguier-Soulé J, Assenmacher I (1980b) The influence of the time of administration of 5-hydroxytryptophan on its restoring effect on the circadian rhythm of plasma ACTH in rats under pcpa treatment. C R Soc Biol 174:170–175

    CAS  Google Scholar 

  • Wehr TA, Goodwin FK (1981) Biological rhythms and psychiatry. In: Arieti S, Brodie HKH (eds) American handbook of psychiatry, vol VII. Basic Books, N.Y. pp 46–74

    Google Scholar 

  • Wirz-Justice A, Wehr TA (1981) Uncoupling of circadian rhythms in hamsters and man. In: Koella WP (ed) Sleep 1980, Karger, Basel, pp. 69–72

    Google Scholar 

  • Wirz-Justice A, Wehr TA, Goodwin FK, Kafka MS, Naber D, Marangos PJ, Campbell IC (1980a) Antidepressant drugs slow circadian rhythms in behaviour and brain neurotransmitter receptors. Psychopharmacol Bull 16: 45–47

    PubMed  CAS  Google Scholar 

  • Wirz-Justice A, Kafka MS, Naber D, Wehr TA (1980b) Circadian rhythms in rat brain alpha and beta-adrenergic receptors are modified by chronic imipramine. Life Sci 27: 341–347

    Article  PubMed  CAS  Google Scholar 

  • Wirz-Justice A, Kafka MS, Naber D, Campbell IC, Marangos PJ, Tamarkin L, Wehr TA (1982a) Clor-gyline delays the phase-position of circadian neurotransmitter receptor rhythms. Brain Res 241: 115–122

    Article  PubMed  CAS  Google Scholar 

  • Wirz-Justice A, Wehr TA, Goodwin FK, Campbell IC (1982b) Antidepressant drugs can slow or dissociate circadian rhythms. Experientia (in press)

    Google Scholar 

  • Zatz M, Brownstein MJ (1979) Intraventricular carbachol mimics the effects of light on the circadian rhythm in the rat pineal gland. Science 203: 358–360

    Article  PubMed  CAS  Google Scholar 

  • Zatz M, Brownstein MJ (1981) Injection of alpha-bungarotoxin near the suprachiasmatic nucleus blocks the effects of light on nocturnal pineal enzyme activity. Brain Res 213: 438–442

    Article  PubMed  CAS  Google Scholar 

  • Zatz M, Herkenham MA (1981) Intraventricular carbochol mimics the phase-shifting effect of light on the circadian rhythm of wheel-running activity. Brain Res 212: 234–238

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Wirz-Justice, A., Groos, G.A., Wehr, T.A. (1982). The Neuropharmacology of Circadian Timekeeping in Mammals. In: Aschoff, J., Daan, S., Groos, G.A. (eds) Vertebrate Circadian Systems. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68651-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68651-1_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68653-5

  • Online ISBN: 978-3-642-68651-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics