Skip to main content

Chromosomal DNA Sequences and Their Organization

  • Chapter

Part of the book series: Encyclopedia of Plant Physiology ((922,volume 14 / B))

Abstract

One of the most bewildering features about the nuclear DNA of higher plants is the variability in amount and type between different species. The haploid DNA contents of angiosperms ränge from about 0.5 to over 200 pg (Bennett and Smith 1976). Sometimes the Variation is extensive within a genus. For example, there is a threefold Variation in haploid DNA content within the genus Lathyrus without any Variation in chromosome number (Rees and Hazarike 1969) and a tenfold Variation in the genus Crepis (Jones and Brown 1976). The amount of DNA in Angiosperms at the lowest end of the ränge, i. e., about 0.5 pg is approximately five times the amount in Drosophila melanogaster, a fact which immediately provokes the conclusion that higher plants contain a considerable excess of DNA over what is needed to specify their biological complexity (Hinegardner 1976). The large amounts of DNA in plants and the extensive Variation in DNA content between species pose many problems of a technical as well as an intellectual nature for research on chromosomal DNA sequences.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

C0t :

unit of DNA reassociation after melting (definition see p. 47)

HAP:

hydroxyapatite. Restriction enzymes

Bam HI:

Bacillus amyloliquefaciens

Bgl II:

Bacillusglobigii

Eco RI:

Escherichia coli RY 13

Hae III:

Haemophilus aegypticus

Hind III :

Haemophilusinfluenzae Rd

Hpa II :

Haemophilus parainfluenzae

Pst I :

Providencia stuartii

Sal I :

Streptomyces albus

Sma I :

Serratia marcescens

Xba I :

Xanthomonas badrii

References

  • Appels R, Driscoll C, Peaeock WJ (1978) Heterochromatin and highly repeated DNA sequences in rye (Seeale cereale). Chromosoma 70: 67–89

    Article  CAS  Google Scholar 

  • Appels R, Gerlach WL, Dennis ES, Swift H, Peacock WJ (1980) Molecular and chromosomal Organisation of DNA sequences coding for ribosomal RNAs in cereals. Chromosoma 78: 293–311

    Article  CAS  Google Scholar 

  • Arthur RR, Straus NA (1978) DNA sequence Organisation in the genome of the domestic chicken (Gallus domesticus) Can J Biochem 56: 257–263

    CAS  Google Scholar 

  • Bachmann K, Price HJ (1977) Repetitive DNA in Cichorieae (compositae). Chromosoma 61: 267–275

    Article  CAS  Google Scholar 

  • Baulcombe D, Verma DPS (1978) Preparation of a complementary DNA for leghaemoglobin and direct demonstration that leghaemoglobin is encoded by the soybean genome. Nucl Acid Res 5: 4141 - 4153

    Article  CAS  Google Scholar 

  • Bazetoux S, Jouanin L, Huguet T (1978) Characterisation of inverted repeated sequences in wheat nuclear DNA. Nucl Acid Res 5: 751–769

    Article  CAS  Google Scholar 

  • Bedbrook J, Gerlach WL (1980) Cloning of repeated sequence DNA from cereal plants. In: Setlow J, Hollaender A (eds) Genetic engineering, principles and methods Vol II, Plenum, New York

    Google Scholar 

  • Bedbrook J, Gerlach WL, Thompson RD, Jones J, Flavell RB (1978) Molecular cloning of higher plant DNA. In: Rubenstein I, Gengenbach B, Phillip RL (eds) Genetic improvement of crops. Univ Minnesota Press, pp 93–114

    Google Scholar 

  • Beiford HS, Thompson WF (1979) Single copy DNA homologies and the phylogeny of Atriplex. Carnegie Inst Washington Year Book 78: 217–223

    Google Scholar 

  • Bendich AF, Anderson RS (1977) Characterisation of families of repeated DNA sequences from four vascular plants. Biochemistry 16: 4655–4663

    Article  PubMed  CAS  Google Scholar 

  • Bendich AJ, Taylor WC (1977) Sequence arrangement in satellite DNA from the muskmelon. Plant Physiol 59: 604–609

    Article  PubMed  CAS  Google Scholar 

  • Bendich AJ, Ward BL (1980) On the evolution and functional significance of DNA sequence Organisation in vascular plants. In: Leaver CJ (ed) Genome Organisation and expression in plants. Plenum, New York, pp 17–30

    Google Scholar 

  • Bennett MD, Smith JB (1976) Nuclear DNA amounts in Angiosperms. Proc R Soc London Ser B 274: 227–274

    CAS  Google Scholar 

  • Bogenhagen DF, Sakonju S, Brown DD (1980) A control region in the center of the 5S RNA gene directs specific initiation of transcription. II The 3’ border of the region. Cell 19: 27–35

    Article  PubMed  CAS  Google Scholar 

  • Bouchard RA, Swift H (1977) Nature of the heterogeneity in mispairing of reannealed middle repetitive fern DNA. Chromosoma 61: 317–333

    Article  PubMed  CAS  Google Scholar 

  • Britten RJ, Davidson EH (1976) Studies on nucleic acid reassociation kinetics: Empirical equations describing DNA reassociation. Proc Natl Acad Sei USA 73: 415–419

    Article  PubMed  CAS  Google Scholar 

  • Britten RJ, Kohne DE (1968) Repeated sequences in DNA. Science 161. 529–540

    Article  PubMed  CAS  Google Scholar 

  • Britten RJ, Graham DE, Neufeld BR (1974) An analysis of repeating DNA sequences by reassociation. In: Grossman L, Moldave K (eds) Methods in enzymology 29E. Academic Press, London New York, pp 363–418

    Google Scholar 

  • Capesius I, Bierweiler B, Bachmann K, Rucker W, Nagl W (1975) An A + T rieh satelliteDNA in a monocotyledonous plant, Cymbidium. Biochim Biophys Acta 395:67–73

    Google Scholar 

  • Cavalier-Smith T (1974) Palindromic base sequences and replication of eucaryotic chromosome ends. Nature (London) 250:467–470

    Google Scholar 

  • Cavalier-Smith T (1978) Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate and the Solution of the DNA C-value paradox. J Cell Sei 34: 247–278

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (1980) How selfish is DNA? Nature (London) 285: 617–618

    Article  CAS  Google Scholar 

  • Chilton MD (1975) Ribosomal DNA in a nuclear satellite of tomato. Genetics 81: 469–483

    PubMed  CAS  Google Scholar 

  • Chilton MD, McCarthy BJ (1973) DNA from maize with and without B chromosomes: a comparative study. Genetics 74: 605–614

    PubMed  CAS  Google Scholar 

  • Chooi WY (1971) Comparison of the DNA of six Vicia species by the method of DNADNA hybridisation. Genetics 68: 213–230

    PubMed  CAS  Google Scholar 

  • Cox BJ, Turnock B (1973) Synthesis and processing of ribosomal RNA in cultured plant cells. Eur J Biochem 37: 367–376

    Article  PubMed  CAS  Google Scholar 

  • Cullis CA (1973) DNA differences between flax genotypes. Nature (London) 243: 515–516

    Article  CAS  Google Scholar 

  • Cullis CA (1977) Molecular aspects of the environmental induetion of heritable changes in flax. Heredity 38: 129–154

    Article  Google Scholar 

  • Cullis CA, Davies DR (1975) Ribosomal DNA amounts in Pisum sativum. Genetics 81: 485–492

    PubMed  CAS  Google Scholar 

  • Cullis CA, Schweizer D (1974) Repetitious DNA in some Anemone species. Chromosoma 44: 417–421

    Article  CAS  Google Scholar 

  • Davidson EH, Britten RJ (1979) Regulation of gene expression: possible role of repetitive sequences. Science 204: 1052–1059

    Article  PubMed  CAS  Google Scholar 

  • Davidson EH, Hough BR, Amenson CS, Britten RJ (1973) General interspersion of repetitive with non repetitive sequence elements in the DNA of Xenopus. J Molec Biol 77: 1–23

    Article  PubMed  CAS  Google Scholar 

  • Dennis ES, Gerlach WL, Peacock WJ (1980) Identical polypyrimidine-polypurine satellite DNAs in wheat and barley. Heredity 44: 349–366

    Article  CAS  Google Scholar 

  • Dhillon SS, Rake AV, Miksche JP (1980) Reassociation kinetics and cytophotometric characterisation of peanut (Arachis hypogaea L) DNA. Plant Physiol 65: 1121–1127

    Article  PubMed  CAS  Google Scholar 

  • Doolittle WF, Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature (London) 284: 601–603

    Article  CAS  Google Scholar 

  • Dover GA (1980) Ignorant DNA? Nature (London) 285: 618–620

    Article  CAS  Google Scholar 

  • Epplen JT, Leipoldt M, Engel W, Schmidtke J (1978) DNA sequence Organisation in avian genomes. Chromosoma 69: 307–321

    Article  PubMed  CAS  Google Scholar 

  • Flavell RB (1980) The molecular characterisation and Organisation of plant chromosomal DNA sequences. Annu Rev Plant Physiol 31: 569–596

    Article  CAS  Google Scholar 

  • Flavell RB (1981) Molecular changes in chromosomal DNA Organisation and origins of phenotypic Variation. Chromosomes Today. Bennett, MD, Bobrow, M and Hewitt, eds. George Allen & Unwin, London, pp 42–254

    Google Scholar 

  • Flavell RB, Smith DB (1974) Variation in nucleolar organiser rRNA gene multiplicity in wheat and rye. Chromosoma 47: 327–334

    Article  CAS  Google Scholar 

  • Flavell RB, Smith DB (1976) Nucleotide sequence Organisation in the wheat genome. Heredity 37: 231–252

    Article  Google Scholar 

  • Flavell RB, Smith DB (1977) Hyperpolymer formation during renaturation of DNA from genomes with different sequence Organisation. Nucl Acid Res 4: 2429–2444

    Article  CAS  Google Scholar 

  • Flavell RB, Bennett MD, Smith JB, Smith DB (1974) Genome size and the proportion of repeated sequence DNA in plants. Biochem Genet 12: 257–269

    Article  PubMed  CAS  Google Scholar 

  • Flavell RB, Rimpau J, Smith DB, O’Dell M, Bedbrook JR (1979) The evolution of plant genome structure. In: Leaver CJ (ed) Plant genome Organisation and expression. Plenum, New York, pp 35–47

    Google Scholar 

  • Gerlach WL, Dyer TA (1980) Sequence Organisation of the repeating units in the nucleus of wheat which contain 5S rRNA genes. Nucl Acid Res 8: 4851–4865

    Article  CAS  Google Scholar 

  • Gerlach WL, Peacock WJ (1980) Chromosomal locations of highly repeated DNA sequences in wheat. Heredity 44: 269–276

    Article  CAS  Google Scholar 

  • Goldberg RB (1978) DNA sequence Organisation in the soybean plant. Biochem Genet 16: 45–68

    Article  PubMed  CAS  Google Scholar 

  • Goldberg RB, Hoschek G, Kamalay JC (1978) Sequence complexity of nuclear and polysomal RNA in leaves of the tobacco plant. Cell 14: 123–131

    Article  PubMed  CAS  Google Scholar 

  • Graham DE, Neufeld BR, Davidson EH, Britten RJ (1974) Interspersion of repetitive and non-repetitive DNA sequence in the sea urchin genome. Cell 1: 127–137

    Article  CAS  Google Scholar 

  • Gurley WB, Hepburn AG, Key JL (1979) Sequence Organisation of the soybean genome. Biochim Biophys Acta 561: 167–183

    PubMed  CAS  Google Scholar 

  • Hake S, Walbot V (1980) The genome of Zea mays, its Organisation and homology to related grasses. Chromosoma 79: 251–270

    Article  CAS  Google Scholar 

  • Hamer DH, Thomas CA (1974) The cleavage of Drosophila melanogaster DNA by restriction endonucleases. Chromosoma 49: 243–267

    Article  Google Scholar 

  • Hinegardner R (1976) Evolution of genome size. In: Ayala FJ (ed) Molecular evolution. Sinauer, Sunderland, pp 179–199

    Google Scholar 

  • Hinnebusch AG, Clark VE, Koltz LC (1978) Length dependence in reassociation kinetics of radioactive tracer DNA. Biochemistry 17: 1521–1529

    Article  PubMed  CAS  Google Scholar 

  • Huguet T, Jouanin L (1972) Wheat DNA: Study of the heavy satellite in Ag+-Cs2S04 density gradient. Biochem Biophys Res Commun 46: 1169–1174

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson J, Flavell RB, Jones J (1981) Physical mapping of plant chromosomes by in situ hybridisation. In: Setlow J, Hollaender A (eds) Genetic engineering Vol III, Plenum, New York

    Google Scholar 

  • Ingle J, Pearson GC, Sinclair J (1973) Species distribution and properties of nuclear satellite DNA in higher plants. Nature New Biol 242: 193–197

    Article  PubMed  CAS  Google Scholar 

  • Ingle J, Timmis JN, Sinclair J (1975) The relationships between satellite deoxyribonucleic acid, ribosomal ribonucleic and gene redundancy and genome size in plants. Plant Physiol 55: 496–501

    Article  PubMed  CAS  Google Scholar 

  • Jones JDG, Flavell RB (1982 a) The mapping of highly repeated DNA families and their relationship to C bands in chromosomes of Seeale eereale. Chromosoma, in press

    Google Scholar 

  • Jones JDG, Flavell RB (1982 b) The structure, amount and localisation of defined repeated sequences in species of the genus Seeale. Chromosoma, in press

    Google Scholar 

  • Jones RN, Brown LM (1976) Chromosome evolution and DNA Variation in Crepis. Heredity 36: 91–104

    Article  Google Scholar 

  • Kadouri A, Atsmon D, Edelman M (1975) Satellite-rich DNA in cucumber: Hormonal enhancement of synthesis and subcellular identiflcation. Proc Natl Acad Sei USA 72: 2260–2264

    Google Scholar 

  • Kiper M, Herzfeld F (1978) DNA sequence Organisation in the genome of Petroselinum sativum. Chromosoma 65: 335–351

    Article  CAS  Google Scholar 

  • Kiper M, Bartels D, Herzfeld F, Richter G (1979) The expression of a plant genome in hnRNA and mRNA. Nucl Acid Res 6: 1961–1978

    Article  CAS  Google Scholar 

  • Kiper M, Bolte M, Herzfeld F (1980) Reiteration frequency of genes coding for abundant and rare messenger RNA in greened barley seedlings. Heredity 45: 233–243

    Article  CAS  Google Scholar 

  • Lamppa GK, Bendich AJ (1979) Chloroplast DNA sequence homologues among vascular plants. Plant Physiol 63: 660–668

    Article  PubMed  CAS  Google Scholar 

  • Leaver CJ, Key JL (1970) Ribosomal RNA synthesis in plants. J Molec Biol 49: 671–680

    Article  PubMed  CAS  Google Scholar 

  • Mann MB, Smith HO (1977) Specificity of Hpa II and Hae III DNA methylases. Nucl Acid Res 4: 4211–4221

    Article  CAS  Google Scholar 

  • Miksche JP, Hotta Y (1973) DNA base composition and repetitious DNA in several conifers. Chromosoma 41: 29–36

    Article  CAS  Google Scholar 

  • Mitra R, Bhatia CR (1973) Repeated and non-repeated nucleotide sequences in diploid and polyploid wheat species. Heredity 31: 251–262

    Article  Google Scholar 

  • Murray MG, Cuellar RE, Thompson WF (1978) DNA sequence Organisation in the pea genome. Biochemistry 17: 5781–5790

    Article  PubMed  CAS  Google Scholar 

  • Murray MG, Palmer JD, Cuellar RE, Thompson WF (1979) Deoxyribonucleic acid sequence Organisation in the mung bean genome. Biochemistry 18: 529–5266

    Article  Google Scholar 

  • Nandi VS, Wang JC, Davidson N (1965) Separation of deoxyribonucleic acids by Hg(II) binding and Cs2S04 density gradient centrifugation. Biochemistry 4: 1687–1696

    Article  CAS  Google Scholar 

  • Narayan RKJ, Rees H (1976) Nuclear DNA Variation in Lathyrus. Chromosoma 54: 141–154

    Article  CAS  Google Scholar 

  • Nathans D, Smith HO (1975) Restriction endonucleases in the analysis and restructuring of DNA molecules. Annu Rev Biochem 44: 273–293

    Article  PubMed  CAS  Google Scholar 

  • Nze-ekekang L, Patellon M, Schafer A, Kovoor A (1974) Repetitive DNA of higher plants. Separation of fractions of different complexity from Jerusalem artichoke tissue by reassociation kinetics. J Exp Bot 25: 320–329

    Google Scholar 

  • Orgel LE, Crick FHC (1980) Selfish DNA: the ultimate parasite. Nature (London) 284: 604–607

    Article  CAS  Google Scholar 

  • Palmer JD, Murray MG, Thompson WR (1979) Studies on chloroplast DNA of mung bean and pea. Carnegie Inst Washington Yearb 78: 226–231

    Google Scholar 

  • Pearson WR, Davidson EH, Britten RJ (1977) A program for least squares analysis of reassociation and hybridisation data. Nucl Acid Res 4: 1727–1735

    Article  CAS  Google Scholar 

  • Pellegrini M, Goldberg RB (1979) DNA sequence Organisation in soybean investigated by electron microscopy. Chromosoma 75: 309–326

    Article  CAS  Google Scholar 

  • Preisler RS, Thompson WF (1978) Distribution of nucleotide sequence divergence among families of repetitive sequences in mung bean DNA. Carnegie Inst Washington Yearb 77: 323–330

    Google Scholar 

  • Preisler RS, Thompson WF (1981a) Evolutionary sequence divergence within repeated DNA families of higher plant genomes. I. Analysis of reassociation kinetics. J Molec Evol 17: 78–84

    Google Scholar 

  • Preisler RS, Thompson WF (1981b) Evolutionary sequence divergence within repeated DNA families of higher plant genomes. II. Analysis of thermal denaturation. J Molec Evol 17: 85–93

    Google Scholar 

  • Ramirez SA, Sinclair JH (1975) Intraspecific Variation of ribosomal gene redundancy in Zea mays. Chromosoma 80: 495–504

    CAS  Google Scholar 

  • Ranjekar PK, Lafontaine JG, Pallotta D (1974) Characterisation of repetitive DNA in rye (Seeale cereale). Chromosoma 48: 427–440

    Article  CAS  Google Scholar 

  • Ranjekar PK, Pallotta D, Lafontaine JG (1976) Analysis of the genome of plants. II. Characterisation of repetitive DNA in barley (Hordeum vulgare) and wheat (Tritieumaestivum). Biochem Biophys Acta 425: 30–40

    PubMed  CAS  Google Scholar 

  • Ranjekar PK, Pallotta D, Lafontaine JG (1978) Analysis of plant genomes. III. Denaturation and reassociation properties of cryptic satellite DNAs in barley (Hordeum vulgare) and wheat (Tritieum aestivum). Biochim Biophys Acta 520: 103–110

    PubMed  CAS  Google Scholar 

  • Rees H, Hazarika MH (1969) Chromosome evolution in Lathyrus. Chromosomes Today 2: 157–165

    Google Scholar 

  • Rimpau J, Smith DB, Flavell RB (1978) Sequence Organisation analysis of the wheat and rye genomes by interspecies DNA/DNA hybridisation. J Molec Biol 123: 327–359

    Article  PubMed  CAS  Google Scholar 

  • Rimpau J, Smith DB, Flavell RB (1980) Sequence Organisation in barley and oats chromosomes revealed by interspecies DNA/DNA hybridisation. Heredity 44: 131–149

    Article  CAS  Google Scholar 

  • Sakonju S, Bogenhagen DF, Brown DD (1980) A control region in the centre of the 5S RNA gene directs specific initiation of transcription. I. The 5’ border of the region. Cell 19: 13–25

    Article  PubMed  CAS  Google Scholar 

  • Schildkraut CL, Marmur J, Doty P (1962) Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J Molec Biol 4: 430–443

    Article  PubMed  CAS  Google Scholar 

  • Scott NS, Possingham JV (1980) Chloroplast DNA in expanding spinach leaves. J Exp Bot 31: 1081–1092

    Article  Google Scholar 

  • Smith MJ, Britten RJ, Davidson EH (1975) Studies on nucleic acid reassociation kinetics. Reactivity of Single stranded tails in DNA-DNA renaturation. Proc Natl Acad Sci USA 72: 4805–4809

    Google Scholar 

  • Smith DB, Flavell RB (1975) Characterisation of the wheat genome by renaturation kinetics. Chromosoma 50: 223–242

    Article  CAS  Google Scholar 

  • Smith DB, Flavell RB (1977) Nucleotide sequence Organisation in the rye genome. Biochim Biophys Acta 474: 82–97

    PubMed  CAS  Google Scholar 

  • Smyth DR, Stern H (1973) Repeated DNA synthesized during pachytene in Lilium henryi. Nature (London) 245: 94–96

    CAS  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Molec Biol 98: 503–517

    Article  PubMed  CAS  Google Scholar 

  • Stack SM, Comings DE (1979) The chromosomes and DNA of Allium cepa. Chromosoma 70: 161–181

    Article  CAS  Google Scholar 

  • Stein DB, Thompson WF (1975) DNA hybridisation and evolutionary relationships in three Osmunda species. Science 189: 888–890

    Article  PubMed  CAS  Google Scholar 

  • Straus N (1972) Reassociation of bean DNA. Carnegie Inst Washington Yearb 71: 257–259

    Google Scholar 

  • Sullivan D, Brisson N, Goodchild B, Verma DPS, Thomas DY (1981) Molecular cloning and Organisation of two leghaemoglobin genomic sequences of soybean. Nature (London) 289: 516–518

    Article  CAS  Google Scholar 

  • Sun SM, Slightom JL, Hall TC (1981) Intervening sequences in a plant gene–comparison of the partial sequence of cDNA and genomic DNA of French bean phaseolin. Nature (London) 289: 37–41

    Article  CAS  Google Scholar 

  • Thompson WF (1976) Aggregate formation from short fragments of plant DNA. Plant Physiol 57: 617–622

    Article  PubMed  CAS  Google Scholar 

  • Thompson WF, Murray MG (1980) Sequence Organisation in pea and mung bean DNA and a model for genome evolution. In: Davies DR, Hopwood DA (eds) Fourth John Innes Symp. John Innes Inst, Norwich, UK, pp 31–45

    Google Scholar 

  • Thompson WF, Murray MG, Cuellar RE (1979) Contrasting patterns of DNA sequence Organisation in plants. In: Leaver CJ (ed) Genome Organisation and expression in plants. Plenum, New York

    Google Scholar 

  • Thompson WF, Rubenstein I (1980) The nuclear genome. Organisation and funetion. In: Stumpf PK, Conn CE (eds) The biochemistry of plants Vol. 6. Academic Press, London New York

    Google Scholar 

  • Ullman JS, McCarthy BJ (1973) The relationship between mismatched base pairs and the thermal stability of DNA duplexes. Biochim Biophys Acta 294: 405–415

    PubMed  CAS  Google Scholar 

  • Varsanyi-Breiner A, Gusella JF, Keys C, Housman DE, Sullivan D, Brisson N, Verma DPS (1979) The Organisation of a nuclear DNA sequence from a higher plant: Molecular cloning and characterisation of soybean ribosomal DNA. Gene 7: 317–334

    Google Scholar 

  • Walbot V, Dure L (1976) Development biochemistry of cottonseed embryogenesis and germination. J Molec Biol 101: 503–536

    Article  PubMed  CAS  Google Scholar 

  • Wahl MW, Stern M, Stark GR (1979) Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl-paper and rapid hybridisation by using dextran sulfate. Proc Natl Acad Sei USA 76: 3683–3687

    Article  CAS  Google Scholar 

  • Walbot V, Goldberg RB (1980) Plant genome Organisation and its relationship to classical plant genetics. In: Hall TC, Davies JW (eds) Nucleic acids in plant Voll, CRC Press, Boca Raton, pp 3–40

    Google Scholar 

  • Wells R, Royer HD, Hollenberg CP (1976) Non Xenopus-like DNA sequence Organisation in the Chironomus tentans genome. Mol Gen Genet 147: 45–51

    Article  PubMed  CAS  Google Scholar 

  • Wetmur JG, Davidson N (1968) Kinetics of reassociation of DNA. J Molec Biol 31: 349–370

    Article  PubMed  CAS  Google Scholar 

  • Wilson JT, Kattermann FRH, Endrizzi JE (1976) Analysis of repetitive DNA in three species of Gossypium. Biochem Genet 14: 1071–1075

    Article  PubMed  CAS  Google Scholar 

  • Wilson DA, Thomas CA (1974) Palindromes in chromosomes. J Molec Biol 84: 115–144

    Article  PubMed  CAS  Google Scholar 

  • Wimpee CF, Rawson JRY (1979) Characterisation of the nuclear genome of pearl millet. Biochim Biophys Acta 562: 192–206

    PubMed  CAS  Google Scholar 

  • Zimmerman JL, Goldberg RB (1977) DNA sequence Organisation in the genome of Nicotiana tabacum. Chromosoma 59: 227–252

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin-Heidelberg

About this chapter

Cite this chapter

Flavell, R.B. (1982). Chromosomal DNA Sequences and Their Organization. In: Parthier, B., Boulter, D. (eds) Nucleic Acids and Proteins in Plants II. Encyclopedia of Plant Physiology, vol 14 / B. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68347-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68347-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68349-7

  • Online ISBN: 978-3-642-68347-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics