Skip to main content

Branched-Chain Sugars

  • Chapter
Plant Carbohydrates I

Part of the book series: Encyclopedia of Plant Physiology ((921,volume 13 / A))

Abstract

Comparison of the list of branched-chain monosaccharides presented in the first review on this matter by Shafizadeh in 1956 with that given in this chapter and a recent chapter by Grisebach (1980) shows that not only new representatives of this class of natural compounds have been detected, but also that some (cordyceptose, abequose, tyvelose) had to be cancelled as a consequence of more detailed chemical analysis. Nevertheless, at present, some 20 monosaccharides with a branched skeleton are known, two of which are produced by green plants while the remaining originate from microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achenbach H, Grisebach H (1964) Biogenesis of the macrolides. XI. Biosynthesis of magnamycin. Z Naturforsch 19b: 561–568

    Google Scholar 

  • Achenbach H, Karl W (1975a) Zur Struktur des Antibiotikums Aldgamycin E. Chem Ber 108: 759–771

    CAS  Google Scholar 

  • Achenbach H, Karl W (1975b) Aldgamycin F, ein neues Antibiotikum aus Streptomyces lavendulae. Chem Ber 108: 780–789

    CAS  Google Scholar 

  • Anderson RL, Hanson RE, Sapico VL (1975) D-Fructose-1-phosphate kinase. Methods Enzymol 42 C: 63–66

    PubMed  CAS  Google Scholar 

  • Ankel H, Feingold DS (1965) Biosynthesis of uridine diphosphate D-xylose. I. Uridine diphosphate glucuronate carboxy-lyase of wheat germ. Biochemistry 4: 2468–2475

    CAS  Google Scholar 

  • Bacon JSD (1963) The occurrence of apiose in polysaccharide fractions from certain plants. Biochem J 89:103 P–104 P

    Google Scholar 

  • Bacon JSD, Cheshire MV (1971) Apiose and mono-O-methyl sugars as minor constituents of the leaves of deciduous trees and various other species. Biochem J 124: 555–562

    PubMed  CAS  Google Scholar 

  • Baddiley J, Blumson NL, Di Girolamo A, Di Girolamo M (1961) Thymidine diphospate sugar derivatives and their transformation in Streptomyces griseus. Biochim Biophys Acta 50: 391–393

    PubMed  CAS  Google Scholar 

  • Bakhaeva GP, Berlin YA, Chuprunova OA, Kolosov MN, Peck GY, Piotrovich LA, Shemyakin MM, Vasina IV (1967) The stereochemistry of olivomycins. Chem Commun 1: 10–11

    Google Scholar 

  • Bakhaeva GP, Berlin YA, Boldyreva EF, Chuprunova OA, Kolosov MN, Soifer VS, Vasiljeva TE, Yartseva IV (1968) The structure of aureolic acid (mithramycin). Tetrahedron Lett 32: 3595–3598

    PubMed  Google Scholar 

  • Baron D, Grisebach H (1973) Further studies on the mechanism of action of UDP-apiose/UDP-xylose synthase from cell cultures of parsley. Eur J Biochem 38: 153–159

    CAS  Google Scholar 

  • Baron D, Streitberger U, Grisebach H (1973) Improved method for purification of UDP- apiose/UDP-xylose synthase from cell cultures of parsley. Biochim Biophys Acta 293: 526–533

    PubMed  CAS  Google Scholar 

  • Beck E (1967) Isolierung und Charakterisierung eines Apiogalakturonans aus der Zellwand von Lemna minor. Z Pflanzenphysiol 57: 444–461

    Google Scholar 

  • Beck E (1969) Isolierung und Identifizierung von Clusianose, einem 1-O-oc-D-Galactopyrano-syl-Hamamelit. Z Pflanzenphysiol 61: 360–366

    CAS  Google Scholar 

  • Beck E, Kandier O (1965) Apiose als Bestandteil der Zellwand höherer Pflanzen. Z Naturforsch 20 b: 62–67

    Google Scholar 

  • Beck E, Kandier O (1966) Isotopenstudien zur Biosynthese von Apiose in Lemna. Z Pflanzenphysiol 55: 71–84

    CAS  Google Scholar 

  • Beck E, Knaupp I (1974) Biosynthese der Hamamelose. III. Identifizierung von Hamamelose- 21,5-Diphosphat, Hamamelose-5-Phosphat und Hamamelose-21-Phosphat. Z Pflanzenphysiol 72: 141–147

    CAS  Google Scholar 

  • Beck E, Sellmair J, Kandier O (1968) Biosynthese der Hamamelose. I. Die intramolekulare 14C-Verteilung in Hamamelose nach Assimilation von 14C02 und 14C-positionsmarkier- ter Glucose durch Blätter von Primula clusiana Tausch. Z Pflanzenphysiol 58: 434–451

    CAS  Google Scholar 

  • Beck E, Stransky H, Fürbringer M (1971) Synthesis of hamamelose-diphosphate by isolated spinach chloroplasts. FEBS Lett 13: 229–234

    PubMed  CAS  Google Scholar 

  • Beck E, Wieczorek J, Reinecke W (1980) Purification and properties of hamamelosekinase. Eur J Biochem 107: 485–489

    PubMed  CAS  Google Scholar 

  • Bell DJ, Isherwood FA, Hardwick NE, Cahn RS (1954) D-(+)-Apiose from the monocotyledon, Posidonia australis. J Chem Soc: 3702–3706

    Google Scholar 

  • Berlin YA, Esipov SE, Kolosov MN, Shemyahin MM (1966a) Olivomycin IV. The structure of olivomycin. Tetrahedron Lett 14: 1431–1436

    PubMed  CAS  Google Scholar 

  • Berlin YA, Esipov SE, Kolosov MN, Shemyakin MM (1966b) The structure of the olivomycin-chromomycin antibiotics. Tetrahedron Lett 15: 1643–1647

    PubMed  CAS  Google Scholar 

  • Beusekom CF van (1967) Über einige Apiose-Vorkommnisse bei den Helobiae. Phytochemistry 6: 573–576

    Google Scholar 

  • Birch AJ, Cameron DW, Holloway RW, Rickards RW (1960) Further examples of biological C-methylation. Novobiocin and actinomycin. Tetrahedron Lett 25: 26–31

    Google Scholar 

  • Birch A J, Holloway PW, Rickards RW (1962) Biosynthesis of noviose, a branched-chain monosaccharide. Biochim Biophys Acta 57: 143–145

    PubMed  CAS  Google Scholar 

  • Blumson NL, Baddiley J (1961) Thymidine diphosphate mannose and thymidine diphosphate rhamnose in streptomyces griseus. Biochem J 81: 114–124

    CAS  Google Scholar 

  • Brimacombe JS, Smith CW, Minshall J (1974) A synthesis of methyl D-aldgaroside B. Tetrahedron Lett 35: 2997–3000

    Google Scholar 

  • Brimacombe JS, Mahmood S, Rollins A J (1975) Branched-chain sugars V. Identification and synthesis of vinelose. J Chem Soc Perkin Trans 1: 1292–1297

    Google Scholar 

  • Bruton J, Horner WH (1966) Biosynthesis of streptomycin III. Origin of the carbon atoms of streptose. J Biol Chem 241: 3142–3146

    PubMed  CAS  Google Scholar 

  • Burton JS, Overend WG, Williams NR (1965) Branched-chain sugars III. The introduction of branching into methyl 3,4-O-isopropylidene-ß-L-arabinoside and the synthesis of L- hamamelose. J Chem Soc: 3433–3445

    Google Scholar 

  • Candy DJ, Baddiley J (1965) The biosynthesis of streptomycin: the origin of the C-formyl group of streptose. Biochem J 96: 526–529

    PubMed  CAS  Google Scholar 

  • Candy DJ, Blumson NL, Baddiley J (1964) Biosynthesis of streptomycin. Incorporation of 14C-labeled compounds into streptose and N-methyl-L-glucosamine. Biochem J 91:31–35 Chakraborti SR ( 1959 ) Chemical investigation of Indian species. Chem Abstr 22602a

    Google Scholar 

  • Chakraborti SR (1959) Chemical investigation of Indian species. Chem Abstr 22602a

    Google Scholar 

  • Chrastil J (1956) Identification of carbohydrates in kok-saghyz (Taraxacum kok-saghyz) and chromatography of apiose. Chem Listy 50: 163–164

    CAS  Google Scholar 

  • Cooper DJ, Yudis MD, Guthrie RD, Prior AM (1971) The gentamicin antibiotics. I. Structure and absolute stereochemistry of methyl garosaminide. J Chem Soc (C): 960–963

    Google Scholar 

  • Corcoran JW (1961) Actinomycete antibiotics II. Participation of the methionine methyl group in the biogenesis of L-cladinose, a branched-chain monosaccharide. J Biol Chem 236: PC 27–28

    Google Scholar 

  • Corcoran JW (1964) The biosynthesis of erythromycin. Lloydia 27:1-14 Corcoran JW (1975) S-adenosylmethionine: erythromycin-C,0-methyltransferase. Methods Enzymol 43: 487–498

    Google Scholar 

  • Corcoran JW (1975) S-adenosylmethionine: erythromycin-C,0-methyltransferase. Methods Enzymol 43:487–498

    Google Scholar 

  • Darvill AG, McNeil M, Albersheim P (1978) Structure of plant cell walls VIII. A new pectic polysaccharide. Plant Physiol 62: 418–422

    PubMed  CAS  Google Scholar 

  • Davenport HE, Dupont MS (1972) The enzymic hydrolysis of malonated flavone glycosides. Biochem J 129:18 P–19 P

    Google Scholar 

  • Duff RB (1965) The occurrence of apiose in Lemna (duckweed) and other angiosperms. Biochem J 94: 768–772

    PubMed  CAS  Google Scholar 

  • Duff RB, Knight AH (1963) The occurrence of apiose in Lemna (duckweed) and other angiosperms. Biochem J 88:33 P–34 P

    Google Scholar 

  • Eguchi Y, Takagi M, Uda F, Kimata K, Okuda S, Suzuki N, Suzuki S (1973) Biosynthesis of branched-chain deoxysugars V. J Biol Chem 248: 3341–3352

    PubMed  CAS  Google Scholar 

  • Eickenbusch JD, Sellmair J, Beck E (1971) Biosynthese der Hamamelose II. Der Einbau von Radiokohlenstoff aus 14C-markierten Substanzen des Glykolat- und Tricarbonsäure-zyklus in Hamamelose in Blättern von Primula clusiana Tausch. Z Pflanzenphysiol 65: 24–34

    CAS  Google Scholar 

  • Ellestad GA, Kunstmann MP, Lancaster JE, Mitscher LA, Morton G (1967) Structures of methyl aldgarosides A and B obtained from the neutral macrolide antibiotic aldgamycin E. Tetrahedron 23: 3893–3902

    CAS  Google Scholar 

  • Ezekiel AD, Overend WG, Williams NR (1969) Branched-chain sugars IX. The synthesis of hamamelitannin. Carbohydr Res 11: 233–239

    CAS  Google Scholar 

  • Farooq MO, Gupta SR, Riamuddin M, Rahman W, Seshadri TR (1953) Chemical examination of celery seeds. J Sci Ind Res 12 B: 400–407

    Google Scholar 

  • Farooq MO, Varshney JP, Rahman W (1957) On the glycosides of Apium petroselinum (parsley). Naturwissenschaften 44: 444

    CAS  Google Scholar 

  • Farooq MO, Varshney JP, Rahman W (1958) On the presence of apiin in Indian celery seeds C. (Apium graveolens). Naturwissenschaften 45: 265

    CAS  Google Scholar 

  • Freudenberg K, Blümmel F (1924) Tannins and related compounds XVII. Hamameli-tannin III. Ann Chem 440: 45–59

    CAS  Google Scholar 

  • Funabashi M, Yamazaki S, Yoshimura J (1975) Branched-chain sugars VII. Determination of the configuration of L-vinelose by synthesis. Carbohydr Res 44: 275–283

    CAS  Google Scholar 

  • Ganguly AK, Sarre OZ (1969) Structure and absolute stereochemistry of evermicose. Chem Commun 1149–1150

    Google Scholar 

  • Ganguly AK, Sarre OZ, Reimann H (1968) Evernitrose, a naturally occurring nitro sugar from everninomicins. J Am Chem Soc 90: 7129–7130

    PubMed  CAS  Google Scholar 

  • Ganguly AK, Sarre OZ, Szmulewicz S (1971) Structure of evertetrose and everninonitrose. Chem Commun 746

    Google Scholar 

  • Gaugler RW, Gabriel O (1973) Biological mechanisms involved in the formation of deoxy sugars VII. J Biol Chem 248: 6041–6049

    PubMed  CAS  Google Scholar 

  • Gebb C, Baron D, Grisebach H (1975) Spectroscopic evidence for the formation of a 4-keto intermediate in the UDP-Apiose/UDP-Xylose synthase reaction. Eur J Biochem 54: 493–498

    PubMed  CAS  Google Scholar 

  • Gilck H (1972) Der Mechanismus der Hamamelose-Biosynthese: In vivo Untersuchungen mit Blättern von Primula clusiana Tausch. Thesis Univ Munich

    Google Scholar 

  • Gilck H, Beck E (1974) Biosynthese der Hamamelose IV. Nachweis der Biosynthesesequenz: Fructose-diphosphat → Hamamelose-diphosphat → Hamamelose-monophosphat → Hamamelose. Z Pflanzenphysiol 72: 395–409

    CAS  Google Scholar 

  • Gilck H, Thanbichler A, Sellmair J, Beck E (1975) A simple method for the isolation of crystalline D-hamamelose. Carbohydr Res 39: 160–161

    CAS  Google Scholar 

  • Gonzales-Porque P, Strominger JL (1972) Enzymatic synthesis of cytidine diphosphate 3,6-dideoxyhexose VI. J Biol Chem 247: 6748–6756

    Google Scholar 

  • Gottlieb D, Shaw PD (1967) Antibiotics. Springer, Berlin Heidelberg New York Grisebach H (1978) Biosynthesis of sugar components of antibiotic substances. Adv Carbohydr Chem 35: 81–126

    Google Scholar 

  • Grisebach H (1978) Biosynthesis of sugar components of antibiotic substances. Adv Carbohydr Chem 35:81–126

    Google Scholar 

  • Grisebach H (1980) Branched chain sugars: occurrence and biosynthesis. In: Stumpf PK, Conn EE (eds) The biochemistry of plants, Vol. Ill Preiss J (ed) Carbohydrates: structure and function. Academic Press, New York

    Google Scholar 

  • Grisebach H, Achenbach H (1962) Biogenesis of the macrolides V. The origin of the carbon chain of mycarose. Z Naturforsch 17 b: 63–64

    Google Scholar 

  • Grisebach H, Bilhuber W (1967) Zur Biosynthese des Apigenins und Chrysoeriols in der Petersilie. Z Naturforsch 22 b: 746–751

    Google Scholar 

  • Grisebach H, Döbereiner U (1966) Zur Biosynthese der Apiose I. Einbau markierter Vorstufen in Apiose bei Apium petroselinum. Z Naturforsch 21 b: 429–435

    Google Scholar 

  • Grisebach H, Sandermann H Jr (1966) Zur Biosynthese der Apiose II. D-Glucuronsäureals spezifische Vorstufe der D-Apiose in Petersilie. Biochem Z 346: 322–327

    CAS  Google Scholar 

  • Grisebach H, Schmid R (1972) Chemie und Biochemie verzweigtkettiger Zucker. Angew Chem 84: 192–206

    Google Scholar 

  • Gustine DL, Yuan DHF, Kindel PK (1975) Uridine diphosphate D-glucuronic acid cyclase and uridine diphosphate D-glucuronic acid carboxy-lyase I from Lemna minor. Purification, characterization, and separation from uridine diphosphate D-glucuronic acid carboxylase II. Arch Biochem Biophys 170: 82–91

    PubMed  CAS  Google Scholar 

  • Hanna R, Picken M, Mendicino J (1973) Purification of a specific D-apiitol dehydrogenase from a micrococcus isolated from the surface of germinating parsley seeds. Biochim Biophys Acta 315: 259–271

    CAS  Google Scholar 

  • Hanson B, Johannson I, Lindberg B (1966) A disaccharide dibenzoate from Daviesia latifolia. Acta Chem Scand 20: 2358–2362

    Google Scholar 

  • Hart DA, Kindel PK (1970a) Isolation and partial characterization of apiogalacturonans from the cell wall of Lemna minor. Biochem J 116: 569–579

    Google Scholar 

  • Hart DA, Kindel PK (1970b) A novel reaction involved in the degradation of apiogalacturonans from Lemna minor and the isolation of apibiose as a product. Biochemistry 9: 2190–2196

    Google Scholar 

  • Hattori S, Imaseki H (1959) A new glycoside in Viburnum furcatum Blume. J Am Chem Soc 81: 4424–4427

    CAS  Google Scholar 

  • Ho PT (1979) Branched-chain sugars. Reaction of furanoses with formaldehyde: A simple synthesis of D- and L-apiose. Can J Chem 57: 381–383

    CAS  Google Scholar 

  • Hösel W, Barz W (1970) Flavonoide aus Cicer arietinum L. Phytochemistry 9: 2053–2056

    Google Scholar 

  • Hofheinz W, Grisebach H (1962) Biogenesis of macrolides X. The occurrence of L-mycarose in erythromycin C. Z Naturforsch 176: 852

    Google Scholar 

  • Hulyalkar RK, Jones JKN, Perry MB (1965) The chemistry of D-Apiose, II. The configuration of D-apiose in apiin. Can J Chem 43: 2085–2091

    CAS  Google Scholar 

  • Karrer W, Cherbuliez E, Eugster CH (1977) Konstitution und Vorkommen der organischen Pflanzenstoffe. Ergänzungsband 1, Birkhäuser, Basel, Stuttgart

    Google Scholar 

  • Kelleher WJ, Grisebach H (1971) Hydride transfer in the biosynthesis of uridine diphosphoapiose from uridine diphospho-D-glucuronic acid with an enzyme preparation of Lemna minor. Eur J Biochem 23: 136–142

    PubMed  CAS  Google Scholar 

  • Kelleher WJ, Baron D, Ortmann R, Grisebach H (1972) Proof for the origin of the branch hydroxymethyl carbon of D-Apiose from carbon 3 of D-glucuronic acid. FEBS Lett 22: 203–204

    PubMed  CAS  Google Scholar 

  • Keller-Schierlein W, Roncari G (1962) Metabolic products of actinomycetes: XXXIII. Hydrolysis products of lankamycin, lankavose and 4-O-acetylarcanose. Helv Chim Acta 45: 138–152

    CAS  Google Scholar 

  • Keller-Schierlein W, Roncari G (1964) Metabolic products of microorganisms. XLVI. Constitution of lankamycin. Helv Chim Acta 47: 78–103

    CAS  Google Scholar 

  • Kimata K, Suzuki S (1966) Studies on cytidine diphosphate glucose pyrophosphorylase and related enzymes of Azotobacter vinelandii. J Biol Chem 241: 1099–1113

    PubMed  CAS  Google Scholar 

  • Kindel PK, Watson RR (1973) Synthesis, characterization and properties of uridine 5′-(α-D-apio-D-furanosyl pyrophosphate). Biochem J 133: 227–241

    PubMed  CAS  Google Scholar 

  • Korzybski TG (1967) Antibiotics. Polish Sei Publ, Warzawa; Pergamon Press, Oxford Kreuzaler F, Hahlbrock K (1973) Flavonoid glycosides from illuminated cell suspension cultures of Petroselinum hortense. Phytochemistry 12: 1149–1152

    Google Scholar 

  • Kreuzaler F, Hahlbrock K (1973) Flavonoid glycosides from illuminated cell suspension cultures of Petroselinum hortense. Phytochemistry 12:1149–1152

    Google Scholar 

  • Lettau R (1969) Untersuchungen zur Verbreitung der Apiose in der Zellwand von grünen Pflanzen. Staatsexamensarbeit, Technical Univ Munich

    Google Scholar 

  • Maier W, Matern U, Grisebach H (1975) On the role of dihydrostreptomycin in streptomycin biosynthesis. FEBS Lett 49: 317–319

    PubMed  CAS  Google Scholar 

  • Malhotra A, Murti WS, Seshadri TR (1965) Isolation of lanceolarin, a new glycoside of biochanin-A, from the root-bark of Dalbergia lanceolaria. Tetrahedron Lett 36: 3191–3196

    Google Scholar 

  • Mascaro LJ Jr., Kindel PK (1977) Characterization of [14C]apiogalacturonans synthesized in a cell-free system from Lemna minor. Arch Biochem Biophys 183: 139–148

    PubMed  CAS  Google Scholar 

  • Matern U, Grisebach H (1972) Studies on the biosynthesis of the branched-chain sugars from the quinocycline complex. Eur J Biochem 29:5–11

    Google Scholar 

  • Matern U, Grisebach H (1974) Bildung eines oxoäthylverzweigten Zuckers aus Thymidin- diphosphatglucose und Pyruvat mit einem zellfreien System aus Streptomyces aureofaciens. Z Naturforsch 29 c: 407–413

    Google Scholar 

  • Matern U, Grisebach H (1977) UDP-apiose/UDP-xylose synthase. Subunit composition and binding studies. Eur J Biochem 74: 303–312

    PubMed  CAS  Google Scholar 

  • Matern U, Grisebach H, Karl W, Achenbach H (1972) Structure of the sugar components of the quinocycline complex. Eur J Biochem 29: 1–4

    PubMed  CAS  Google Scholar 

  • Matern H, Brillinger GU, Pape H (1973) Stoffwechselprodukte von Mikroorganismen 114. Thymidin-diphospho-D-glucose-oxidoreduktase aus Streptomyces rimosus. Arch Mikrobiol 88: 37–48

    PubMed  CAS  Google Scholar 

  • Mayer W, Kunz W (1959) Über ein zweites Vorkommen von Hamamelitannin. Naturwissenschaften 46: 206–207

    CAS  Google Scholar 

  • Mayer W, Kunz W, Loebich F (1965) Die Struktur des Hamamelitannins. i 688: 232–238

    CAS  Google Scholar 

  • McNeil M, Darvill AG, Albersheim P (1979) The structural polymers of the primary cell walls of dicots. In: Herz W, Grisebach H, Kirby GW (eds) Progress in the chemistry of organic natural products. Springer, Wien, New York, Vol. 37, pp 191–249

    Google Scholar 

  • Melo A, Glaser L (1968) The mechanism of 6-deoxyhexose synthesis II. J Biol Chem 243: 1475–1478

    PubMed  CAS  Google Scholar 

  • Melo A, Elliott WH, Glaser L (1968) The mechanism of 6-deoxyhexose synthesis I. J Biol Chem 243: 1467–1474

    PubMed  CAS  Google Scholar 

  • Mendicino J, Abou-Issa H (1974) Conversion of UDP-D-glucuronic acid to UDP-D-apiose and UDP-D-xylose by an enzyme isolated from Lemna minor. Biochim Biophys Acta 364: 159–172

    PubMed  CAS  Google Scholar 

  • Mendicino J, Hanna P (1970) The synthesis of isomers of D-abiofuranosyl 1-phosphate. J Biol Chem 245: 6113–6124

    PubMed  CAS  Google Scholar 

  • Miyamoto M, Kawamatsu Y, Shinohara M, Nakadaira Y, Nakanashi K (1966a) Structures and properties of the sugars obtained from the chromomycins. Tetrahedron 22:2785–2799 Miyamoto M, Kawamatsu Y, Kawashima K, Shinohara M, Nakanishi K (1966 b) The full structures of three chromomycins. Tetrahedron Lett 6: 545–552

    PubMed  CAS  Google Scholar 

  • Miyamoto M, Kawamatsu Y, Kawashima K, Shinohara M, Nakanishi K (1966b) The full structures of three chromomycins. Tetrahedron Lett 6:545–552

    Google Scholar 

  • Nakaoki T, Morita N, Motosune H, Hiraki A, Takeuchi T (1955) Medicinal resources II. Components of the leaves of Sophora angustifolia, Vicia hirsuta, and Linaria japonica. Pharm Soc Jpn 75: 172–176

    CAS  Google Scholar 

  • Neal DL, Kindel PK (1970) D-Apiose reductase from Aerobacter aerogenes. J Bacteriol 101: 910–915

    PubMed  CAS  Google Scholar 

  • Nordström CG, Swain R, Hamblin AJ (1953) Flavone glycosides of parsley. I. Isolation of 7-C-apiosylglucosyl-luteolin. Chem Ind: 85

    Google Scholar 

  • Ohta N, Tagishita K (1970) Isolation and structure of new flavonoids, flavoyadorinin A., flavoyadorinin B and homoflavoyadorinin B, in the leaves of Viscum album var. coloratum epiphyting to Pyrus communis (pear). Agr Biol Chem 34: 900–907

    CAS  Google Scholar 

  • Okuda S, Suzuki N, Suzuki S (1967) Isolation and structure of cytidine diphosphate-6-deoxy- 3-C-methyl-2-O-methyl-L-aldohexopyranoside (cytidine diphosphate vinelose) from Azotobacter vinelandii. J Biol Chem 242: 958–966

    PubMed  CAS  Google Scholar 

  • Okuda S, Suzuki N, Suzuki S (1968) Biosynthesis of branched chain deoxysugars. J Biol Chem 243: 6353–6360

    PubMed  CAS  Google Scholar 

  • Ortmann R, Sandermann H Jr., Grisebach H (1970) Transfer of apiose from UDP-apiose to 7-O-(ß -D-glucosyl)-apigenin and 7-0-(ß-D-glucosyl)-chrysoeriol with an enzyme preparation from parsley. FEBS Lett 7: 164–166

    PubMed  CAS  Google Scholar 

  • Ortmann R, Sutter A, Grisebach H (1972) Purification and properties of UDP-apiose: 7-0-(ß-D-glucosyl)-flavone apiosyltransferase from cell suspension cultures of parsley. Biochim Biophys Acta 289: 293–302

    PubMed  CAS  Google Scholar 

  • Ortmann R, Matern U, Grisebach H, Stadler P, Sinnwell V, Paulsen H (1974) NADPH- dependent formation of thymidine-diphosphodihydrostreptose from thymidine-diphospho-D-glucose in a cell-free system from Streptomyces griseus and its correlation with streptomycin biosynthesis. Eur J Biochem 43: 265–271

    PubMed  CAS  Google Scholar 

  • Overend G, Williams NR (1965) Branched-chain sugars IV. The synthesis of D-hamamelose and D-epihamamelose. J Chem Soc: 3446–3448

    Google Scholar 

  • Ovodov YS, Ovodova RG, Bondarenko OD, Krasikova IN (1971) Pectic substances of Zosteraceae IV. Pectinase digestion of zosterine. Carbohydr Res 18: 311–318

    CAS  Google Scholar 

  • Ovodova RG, Vaskovsky VE, Ovodov YS (1968) The pectic substances of Zosteraceae. Carbohydr Res 6: 328–332

    CAS  Google Scholar 

  • Pan YT, Kindel PK (1977) Characterization of particulate D-apiosyl- and D-xylosyl-transferase from Lemna minor. Arch Biochem Biophys 183: 131–138

    PubMed  CAS  Google Scholar 

  • Pape H, Brillinger G (1973) Stoffwechselprodukte von Mikroorganismen 113. Biosynthese von Thymidin-diphosphomycarose durch ein zellfreies System aus Streptomyces rimosus. Arch Mikrobiol 88: 25–35

    PubMed  CAS  Google Scholar 

  • Pape H, Schmid R, Grisebach H, Achenbach H (1969) Übertragung der intakten Methylgruppe des Methionins bei der Biosynthese der L-mycarose. Eur J Biochem 10: 479–483

    PubMed  CAS  Google Scholar 

  • Patrick AD (1956) Occurrence of apiose in Hevea brasiliensis. Nature (London) 178: 216

    CAS  Google Scholar 

  • Paulsen H, Redlich H (1974) Synthese der vier isomeren Methyl-D-aldgaroside. Strukturermittlung des Methylaldgarosids B aus Aldgamycin E. Chem Ber 107:2992–3012 Paulsen H, Sinnwell V, Stadler P (1972) Synthese verzweigter Kohlenhydrate mit Aldehyd-Seitenkette - Einfache Synthese von L-Streptose und D-Hamamelose. Angew Chem 84: 112–113

    Google Scholar 

  • Paulsen H, Sinnwell V, Stadler P (1972) Synthese verzweigter Kohlenhydrate mit Aldehyd-Seitenkette - Einfache Synthese von L-Streptose und D-Hamamelose. Angew Chem 84:112–113

    Google Scholar 

  • Paulsen H, Roden K, Sinn well V, Koebernick W (1977) Einfache Synthese der Pillarose. Chem Ber 110: 2146–2149

    CAS  Google Scholar 

  • Pezzanite JO, Chardy J, Lau PY, Wood G, Walker DL, Fraser-Reid B (1975) A revised structure for the antibiotic pillaromycin A. J Am Chem Soc 97: 6250–6251

    PubMed  CAS  Google Scholar 

  • Picken JM, Mendicino J (1967) The biosynthesis of D-apiose in Lemna minor. J. Biol Chem 242: 1629–1634

    PubMed  CAS  Google Scholar 

  • Ragoonwala R, Friedrich H (1967) Über das Vorkommen von Flavonglykosiden in Capsicum-Pflanzen. Naturwissenschaften 54: 368

    Google Scholar 

  • Rahman AU (1958) Über das Vorkommen von Apiin in Sellerie. Z Naturforsch 13 b:201–202

    Google Scholar 

  • Rappaportt J, Giacopello D, Seldes AM, Blanco MC, Deulofeu V (1977) Phenolic glycosides from Solanum glaucophyllum: A new quercetin triglycoside containing D-apiose. Phytochemistry 16: 1115–1116

    CAS  Google Scholar 

  • Reimann H, Jaret RS, Cooper DJ (1971) Sisomicin: Stereochemistry and attachment of the unsaturated sugar moiety. Chem Commun: 924–925

    Google Scholar 

  • Roberts RM, Shah RH, Loewus F (1967) Inositol metabolism in plants IV. Biosynthesis of apiose in Lemna and Petroselinum. Plant Physiol 42: 659–666

    PubMed  CAS  Google Scholar 

  • Sandermann H Jr., Grisebach H (1968) Zur Biosynthese der Apiose 3. Untersuchungen über das Vorkommen von UDP-Apiose und anderer UDP-Zucker in Petersilie (Apium petroselinum L.). Eur J Biochem 6: 404–410

    PubMed  CAS  Google Scholar 

  • Sandermann H Jr., Tisue GT, Grisebach H (1968) Biosynthesis of D-apiose IV. Formation of UDP-apiose from UDP-D-glucuronic acid in cell-free extracts of parsley (Apium petroselinum L.) and Lemna minor. Biochim Biophys Acta 165: 550–552

    CAS  Google Scholar 

  • Scherpenberg H van, Gröbner W, Kandier O (1965) Zur Physiologie und zum Vorkommen der Hamamelose. Festschrift K. Mothes 65. Geburtstag, Gustav Fischer, Jena: 387–406

    Google Scholar 

  • Schildknecht H, Tansher B, Moeschier H, Edelmann J (1978) Detection and structure elucidation of leaf movement factors from Mimosaceae. Proc 11th Int Symp Chem Nat Prod Part I, Vol. 4, Bulgarian Acad Sci, Sofia: 97–111

    Google Scholar 

  • Schilling G, Keller A (1977) Zusammensetzung und Konformation von Hamamelose in Lösung. Ann Chem: 1475–1479

    Google Scholar 

  • Schmid R, Grisebach H (1970a) Zur Biosynthese der D-Aldgarose. Eur J Biochem 14: 243–252

    PubMed  CAS  Google Scholar 

  • Schmid R, Grisebach H (1970b) Zur Biosynthese der D-Aldgarose II. Nauforsch 25 b: 1259–1263

    CAS  Google Scholar 

  • Schmidt OT (1929) Über Zucker mit verzweigter Kohlenstoffkette I. Die Konstitution des Zuckers aus Hamameli-tannin. Ann Chem 476: 250–269

    CAS  Google Scholar 

  • Schmidt OT (1930) Über Zucker mit verzweigter Kohlenstoffkette II. Konstitution und Konfiguration von Apiose. Ann Chem 483: 115–123

    CAS  Google Scholar 

  • Schmidt OT, Heintz K (1934) Über Zucker mit verzweigter Kohlenstoffkette V. Die Synthese der Hamamelonsäure. Ann Chem 515: 77–96

    CAS  Google Scholar 

  • Schmidt OT, Weber-Molster CC (1934) Über Zucker mit verzweigter Kohlenstoffkette IV. Das optische Verhalten der Aldonsäuren in Gegenwart von Natriummolybdat. Ann Chem 515: 65–76

    CAS  Google Scholar 

  • Sellmair J, Kandier O (1970) Zur Physiologie von Hamamelose und Hamamelit in Primula clusiana Tausch. Z Pflanzenphysiol 63: 65–83

    CAS  Google Scholar 

  • Sellmair J, Beck E, Kandier O (1968) Isolierung und Identifizierung von Hamamelit aus Primula clusiana Tausch. Z Pflanzenphysiol 59: 70–79

    CAS  Google Scholar 

  • Sellmair J, Beck E, Kandier O, Kress A (1977) Hamamelose and its derivatives as chemotaxonomic markers in the genus Primula. Phytochemistry 16: 1201–1204

    CAS  Google Scholar 

  • Seshadri TR, Vydeeswaran S (1971) Cucurbitaceae, chemical examination of Luffa echinata. Phytochemistry 10: 667–669

    CAS  Google Scholar 

  • Shafizadeh F (1956) Branched-chain sugars of natural occurrence. Adv Carbohydr Chem 11: 263–283

    CAS  Google Scholar 

  • Subramanian SS, Nagarajan S (1970) Flavonoids of three Crotalaria species. Phytochemistry 9: 2581–2584

    CAS  Google Scholar 

  • Thanbichler A (1973) Über den Metabolismus der Hamamelose. Thesis, Univ Munich

    Google Scholar 

  • Thanbichler A, Beck E (1974) Catabolism of hamamelose. The anaerobic dissimilation of D-hamamelose by Kluyvera citrophila 627. Eur J Biochem 50: 191–196

    PubMed  CAS  Google Scholar 

  • Thanbichler A, Gilck H, Beck E (1971) Über den Katabolismus von Hamamelose [2-C- (Hydroxymethyl)-D-ribose]. I. Die Oxidation von Hamamelose durch Pseudomonas. Z Naturforsch 26 b: 912–915

    Google Scholar 

  • Umezawa H (1967) Index of antibiotics from actinomycetes. Univ Tokyo Press, Tokyo; Univ Park Press, State Coll, Pa

    Google Scholar 

  • Vongerichten E (1901) Über Apiin und Apiose. Ann Chem 318: 121–136

    Google Scholar 

  • Vongerichten E (1902) Über Apiose, eine ß-Oxymethylerythrose. Ann Chem 321: 71–83

    CAS  Google Scholar 

  • Wagner H, Demuth G (1972) 6-O-(D-Apiofuranosyl)-1,6,8-Trihydroxy-3-Methyl-Anthrachi- non, ein neues Glykosid (Frangulin B) aus der Rinde von Rhamnus frangula L. Tetrahedron Lett 49: 5013–5014

    Google Scholar 

  • Wagner H, Demuth G (1974) Anthraquinone glycosides from Rhamnus frangula: 6-0-Apiofuranosyl-1,6,8-trihydroxy-3-methylanthraquinone. Z Naturforsch 29 c:204–208

    Google Scholar 

  • Wagner H, Kirmayer W (1957) Uber das Vorkommen von Apigeninglykosiden in einigen Kompositenblüten. Naturwissenschaften 44: 307

    Google Scholar 

  • Wahl HP, Matern U, Grisebach H (1975) Two enzymes in Streptomyces griseus for the synthesis of dTDP-L-dihydrostreptose from dTDP-6-deoxy-D-xylo-4-hexosulose. Biochem Biophys Res Commun 64: 1041–1045

    PubMed  CAS  Google Scholar 

  • Walker DL, Fraser-Reid B (1975) Syntheses of “supposed” and “real” pillarose. J Am Chem Soc 97: 6251–6253

    PubMed  CAS  Google Scholar 

  • Watson RR, Kindel PK (1970) Enzymatic synthesis of apiin from UDP-D-apiose-14C and 0-ß-D-glucopyranosyl-(l→7)-apigenin. Plant Physiol 46 S:27

    Google Scholar 

  • Watson RR, Orenstein NS (1975) Chemistry and biochemistry of apiose. Adv Carbohydr Chem Biochem 31: 135–184

    PubMed  CAS  Google Scholar 

  • Wellmann E, Grisebach H (1971) Purification and properties of an enzyme preparation from Lemna minor catalyzing the synthesis of UDP-apiose and UDP-D-xylose from UDP-D-glucuronic acid. Biochim Biophys Acta 235: 389–397

    CAS  Google Scholar 

  • Wellmann E, Baron D, Grisebach H (1971) Two different enzymes for the biosynthesis of UDP-xylose from UDP-glucuronic acid in cell suspension cultures of parsley. Biochim Biophys Acta 244: 1–6

    PubMed  CAS  Google Scholar 

  • Wieczorek J (1976) Anreicherung und Charakterisierung der Enzyme des Hamamelosekatabolismus. Thesis, Univ Munich

    Google Scholar 

  • Wiley PF, MacKellar FA, Caron EL, Kelly RB (1968) Isolation, characterization and degradation of nogalamycin. Tetrahedron Lett 6: 663–668

    PubMed  CAS  Google Scholar 

  • Wiley PF, Duchamp DJ, Hsiung V, Chidester CG (1971) The structure, absolute configuration and chemistry of nogalose. J Org Chem 36: 2670–2673

    PubMed  CAS  Google Scholar 

  • Williams DT, Jones JKN (1964) The chemistry of apiose, Part I. Can J Chem 42: 69–72

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beck, E. (1982). Branched-Chain Sugars. In: Loewus, F.A., Tanner, W. (eds) Plant Carbohydrates I. Encyclopedia of Plant Physiology, vol 13 / A. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68275-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68275-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68277-3

  • Online ISBN: 978-3-642-68275-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics