Skip to main content

The Ecological Role of Plant Growth Substances

  • Chapter
Hormonal Regulation of Development III

Part of the book series: Encyclopedia of Plant Physiology ((PLANT,volume 11))

Abstract

An ecophysiologist might rephrase our title as a question: “In what ways do events in the life cycle of a plant that are influenced by growth substances contribute to the plant’s adaptation in a particular environment?” Adaptation means survival, and survival often means maintaining a favorable energy balance in the plant. So, what roles do growth substances play in survival (often, maintenance of a favorable energy balance) of plants in natural ecosystems?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles FB, Leather GR (1971) Abscission: Control of cellulase secretion by ethylene. Planta 97: 87–91

    Google Scholar 

  • Ackerson RC (1980) Stomatal response of cotton to water stress and abscisic acid as affected by water-stress history. Plant Physiol 65: 455–459

    Article  PubMed  CAS  Google Scholar 

  • Ackerson RC (1982) Synthesis and movement of abscisic acid in water-stressed cotton leaves. Plant Physiol 69: 609–613

    Article  PubMed  CAS  Google Scholar 

  • Addicott FT (1970) Plant hormones in the control of abscission. Biol Rev 45: 485–524

    Article  CAS  Google Scholar 

  • Adkins SW, Ross JD (1981) Studies in wild oat seed dormancy. I. The role of ethylene in dormancy breakage and germination of wild oat seeds (Avena fatua L.) Plant Physiol 67: 358–362

    PubMed  CAS  Google Scholar 

  • Aharoni N, Blumenfeld A, Richmond AE (1976) Hormonal activity in detached lettuce leaves as affected by leaf water content. Plant Physiol 59: 1169–1173

    Article  Google Scholar 

  • Aharoni N, Marco S, Levi D (1977b) Involvement of gibberellins and abscisic acid in the supression of hypocotyl elongation in CMV-infected cucumbers. Physiol Plant Pathol 11: 189–194

    Article  CAS  Google Scholar 

  • Alden J, Hermann RK (1971) Aspects of the cold-hardiness mechanism in plants. Bot Rev 37: 37–142

    Article  CAS  Google Scholar 

  • Allard HA, Garner WW (1940) Observations on responses to length of day. USD A Tech Bull 727

    Google Scholar 

  • Alvim R, Thomas S, Saunders PF (1978) Seasonal variation in the hormone content of willow II. Effect of photoperiod on growth and abscisic acid content of trees under field conditions. Plant Physiol 62: 779–780

    Google Scholar 

  • Anderson RC, Katz AJ, Anderson MR (1978) Allelopathy as a factor in the success of Helianthus. J Chem Ecol 4: 9–16

    Article  Google Scholar 

  • Apelbaum A, Yang SF (1981) Biosynthesis of stress ethylene induced by water deficit. Plant Physiol 68: 594–596

    Article  PubMed  CAS  Google Scholar 

  • Aspinall D, Singh TN, Paleg LG (1973) Stress metabolism. 5. Abscisic acid and nitrogen metabolism in barley and Lolium temulum L. Aust J Biol Sci 26: 319–327

    Google Scholar 

  • Audus LJ (1979) Plant geosensors. J Exp Bot 30: 1051–1073

    Article  Google Scholar 

  • Bacon GJ, Bachelard EP (1974) Changes in growth substance levels associated with the conditioning of Pinus caribaea Mor. var. hondurensis B and G seedlings to water stress. Aust For Res 9: 241–254

    Google Scholar 

  • Bandurski RS, Schulze A, Dayanandan P, Kaufman PB (1984) Response to gravity by Zea mays seedlings. I. Time course of the response. Plant Physiol 74: 284–288

    Google Scholar 

  • Banko RJ, Boe AA (1975) Effects of pH, temperature, nutrition, ethephon, and chlorme-quat on endogenous cytokinin levels of Coleus blumei Benth J Am Soc Hortic Sci 100: 168–172

    CAS  Google Scholar 

  • Battle RW, Gaunt JK, Laidman DL (1976) The effect of photoperiod on endogenous y-tocopherol and plastochromanol in leaves of Xanthium strumarium L (cocklebur). Biochem Soc (Lond) Trans 4: 484–486

    CAS  Google Scholar 

  • Battle RW, Laidman DL, Gaunt JK (1977) The relationship between floral induction and y-tocopherol concentrations in leaves of Xanthium strumarium L. Biochem Soc (Lond) Trans 5: 322–324

    CAS  Google Scholar 

  • Beevers L (1976) Senescence. In: Bonner J, Varner JE (eds) Plant Biochemistry. Academic Press, New York, pp 771–794

    Google Scholar 

  • Behrens HM, Weisenseel MH, Sievers A (1982) Rapid changes in the pattern of electric current around the root tip of Lepidium sativum L. following gravistimulation. Plant Physiol 70: 1079–1083

    Article  PubMed  CAS  Google Scholar 

  • Bengston C, Klockare B, Klockare R, Larsson S, Sundqvist C (1978) The after-effect of water stress on chlorophyll formation during greening and the levels of abscisic acid and proline in dark grown wheat seedlings. Physiol Plant 43: 205–212

    Article  Google Scholar 

  • Bengtson C, Falk SO, Larsson S (1979) Effects of kinetin on transpiration rate and abscisic acid content of water stressed young wheat plants. Physiol Plant 45: 183–188

    Article  CAS  Google Scholar 

  • Bennet-Clark TA, Ball NG (1951) The diageotropic behavior of rhizomes. J Exp Bot 2: 169–203

    Article  Google Scholar 

  • Benzioni A, Mizrahi Y, Richmond AE (1974) Effect of kinetin of plant-response to salinity. New Phytol 73: 315–319

    Article  CAS  Google Scholar 

  • Bernier G, Kinet JM, Sachs RM (1981) The physiology of flowering Vol I: The initiation of flowers. Vol I I. Transition of reproductive growth. CRC, Boca Raton

    Google Scholar 

  • Bewley JD, Black M (1978, 1982 ) Physiology and biochemistry of seeds in relation to germination. In 2 Volumes. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Billings WD, Mooney HA (1968) The ecology of arctic and alpine plants. Biol Rev 43: 481–529

    Article  Google Scholar 

  • Biran I, Gur I, Halevy AH (1972) The relationship between exogenous growth inhibitors and endogenous levels of ethylene and tuberization of dahlias. Physiol Plant 27: 226–230

    Article  CAS  Google Scholar 

  • Blake TJ, Reid DM (1981) Ethylene, water relations and tolerance to waterlogging of three Eucalyptus species. Aust J Plant Physiol 8: 497–505

    Article  CAS  Google Scholar 

  • Blaschke H (1977) Water soluble growth regulating factors occurring in coniferous leaf litter leachates. Flora 166: 537–545

    CAS  Google Scholar 

  • Boucaud J, Ungar IA (1976) Hormonal control of germination under saline conditions of three halophytic taxa in the genus Suaeda. Physiol Plant 37: 143–148

    Article  CAS  Google Scholar 

  • Boussiba S, Richmond AE (1976) Abscisic acid and the after-effect of stress in tobacco plants. Planta 129: 217–219

    Article  CAS  Google Scholar 

  • Boyer JS (1970) Leaf enlargement and metabolic rates in corn, soybean, and sunflower at various leaf water potentials. Plant Physiol 46: 233–235

    Article  PubMed  CAS  Google Scholar 

  • Boyer N (1967) Modifications de la croissance de la tige de bryone (Bryonia dioica) a la suite d’irritations tactiles. CR Acad Sci Paris 264: 2114–2117

    Google Scholar 

  • Bradford KJ (1983) Water relations and growth of the flacca tomato mutant in relation to abscisic acid. Plant Physiol 72: 251–255

    Article  PubMed  CAS  Google Scholar 

  • Bradford KJ, Hsiao TC (1982) Physiological responses to moderate water stress. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology II. Water relations and carbon assimilation. Encyclopedia of plant physiology, new ser. Vol 12B. Springer, Berlin Heidelberg New York, pp 263–324

    Google Scholar 

  • Bradford KJ, Yang SF (1980) Xylem transport of 1-aminocyclopropane-l-carboxylic acid, an ethylene precursor, in waterlogged tomato plants. Plant Physiol 65: 322–326

    Article  PubMed  CAS  Google Scholar 

  • Braun JW, Khan AA (1976) Alleviation of salinity and high temperature stress by plant growth regulators permeated into lettuce seeds via acetone. J Am Soc Hortic Sci 101: 716–721

    CAS  Google Scholar 

  • Brauner L, Hager A (1958) Versuche zur Analyse der geotropischen Perzeption I. Planta 51: 115–1147

    Article  CAS  Google Scholar 

  • Brennan T, Gunckel JE, Frenkel C (1976) Stem sensitivity and ethylene involvement in phototropism of mung bean. Plant Physiol 57: 286–289

    Article  PubMed  CAS  Google Scholar 

  • Brian RW (1978) Hormones in healthy and diseased plants. Proc R Soc Lond Biol Sei 200: 231–243

    Article  CAS  Google Scholar 

  • Briggs WR (1963) Mediation of photo tropic responses of corn coleoptiles by lateral transport of auxin. Plant Physiol 38: 237–247

    Article  PubMed  CAS  Google Scholar 

  • Brix H, Portlock FT (1982) Flowering response of western hemlock seedlings to gibberel-lin and water-stress treatments. Can J For Res 12: 76–82

    Article  CAS  Google Scholar 

  • Brown ME (1972) Plant growth substances produced by microorganisms of soil and rhizosphere. J Appl Bacteriol 35: 443–451

    Article  CAS  Google Scholar 

  • Bryantseva ZN (1983) Effect of chlorocholine chloride on functional activity of wheat roots in connection with cold resistance. Sov Plant Physiol 29: 579–584

    Google Scholar 

  • Bucher JB (1981) S02-induced ethylene evolution of forest tree foliage, and its potential use as stress-indicator. (Short commun.) Eur J For Pathol 11: 369–373

    CAS  Google Scholar 

  • Bünning E (1969) Die Bedeutung tagesperiodischer Blattbewegungen für die Präzision der Tageslängenmessung. Planta 86: 209–217

    Article  Google Scholar 

  • Bünning E (1973) The physiological clock (3rd edn) Academic Press, New York

    Google Scholar 

  • Burg SP, Burg EA (1968) Ethylene formation in pea seedings: its relation to the inhibition of bud growth caused by indoleacetic acid. Plant Physiol 43: 1069–1074

    Article  PubMed  CAS  Google Scholar 

  • Burschka C, Tenhunen JD, Härtung W (1983) Diurnal variations in abscisic acid content and stomatal response to applied abscisic acid in leaves of irradiated and non-irradiated Arbutus unedo plants under naturally fluctuating environmental conditions. Oecologia 58: 128–131

    Article  Google Scholar 

  • Buschmann C, Lichtenthaler HK (1982) The effect of cytokinins on growth and pigment accumulation of radish seedlings ( Raphanus sativus L.) grown in the dark and at different light quanta fluence rates. Photochem Photobiol 35: 217–221

    Google Scholar 

  • Carpita NC, Nabors MW (1981) Growth physics and water relations of red-light-induced germination in lettuce seeds. V. Promotion of elongation in the embryonic axes by gibberellins and phytochrome. Planta 152: 131–136

    Google Scholar 

  • Carr DJ (1967) The relationship between florigen and the flower hormones. In: Fredrick JF, Weyer EM (eds) Plant growth regulators. Ann N Y Acad Sei Pub No 144: 305–312

    Google Scholar 

  • Carrington CM Sean, Firn RD (1983 a) Cell enlargement during gravicurvature of sunflower hypocotyls. J Exp Bot 34: 283–290

    Google Scholar 

  • Carrington CM Sean, Firn RD (1983 b) Solute production and net wall synthesis in the growing and non-growing cells of gravistimulated sunflower hypocotyls. Planta 157: 524–530

    Google Scholar 

  • Casperson G (1965) Über endogene Faktoren der Reaktionsholzbildung. Planta 64: 225–240

    Article  CAS  Google Scholar 

  • Catchpole AH, Hillman J (1969) Effect of ethylene on tuber formation in Solanum tuberosum. Nature 223: 1387

    Article  CAS  Google Scholar 

  • Chailakhyan MKH (1968) Internal factors of plant flowering. Ann Rev Plant Physiol 19: 1–36

    Article  Google Scholar 

  • Chanson A, Pilet PE (1981) Effect of abscisic acid on maize root gravireaction. Plant Sci Lett 22: 1–5

    Article  CAS  Google Scholar 

  • Chapman HW (1958) Tuberization in the potato plant. Physiol Plant 11: 215–224

    Article  Google Scholar 

  • Cho SC (1970) Response to gibberellic acid of the sterile cultured buds of Begonia. Sei Rep Tohoku Uni 25: 139–148

    Google Scholar 

  • Clark JE, Heath OVS (1959) Auxin and the bulbing of onions. Nature 184: 345–347

    Article  PubMed  CAS  Google Scholar 

  • Clark JE, Heath OVS (1962) Studies on the physiology of the onion plant V. Growth substance content. J Exp Bot 12: 227–249

    Google Scholar 

  • Cleland CF (1978) The flowering enigma. Bio Science 28: 265–269

    Google Scholar 

  • Cleland CF, Ajami A (1974) Identification of flower-inducting factor isolated from aphid honeydew as being salicylic acid. Plant Physiol 54: 904–906 (See also 54:899–90)

    Google Scholar 

  • Clifford PE, Fensom DS, Munt BI, McDowell WD (1982) Lateral stress initiates bending responses in dandelion peduncles: a clue to geotropism? Can J Bot 60: 2671–2673

    Article  Google Scholar 

  • Clifford PE, Reid DM, Pharis RP (1983) Endogenous ethylene does not initiate but may modify geobending-a role for ethylene in autotropism. Plant Cell Envir 6: 433–436

    Article  CAS  Google Scholar 

  • Cocucci S, Ranieri AM, Morgutti S, Ciroli F (1981) The role of darkness, GA and fusicoccin ( FC) in breaking photodormancy in Phacelia tanacetifolia seeds. Physiol Plant 52: 177–180

    Google Scholar 

  • Cottrell JE, Dale JE, Jeffcoat B (1982) The effects of daylength and treatment with gibberellic acid on spikelet initiation and development in Clipper barley. Ann Bot 50: 57–68

    CAS  Google Scholar 

  • Cracker LE, Abeles FB (1969) Abscission: role of abscisic acid. Plant Physiol 44: 1144–1149

    Article  PubMed  CAS  Google Scholar 

  • Crawford RMM (1982) Physiological responses to flooding. In: Lange OL, Nobel PL, Osmond CB, Ziegler H (eds) Physiological plant ecology II. Water relations and carbon assimilation. Encyclopedia of plant physiology, new ser Vol 12B. Springer, Berlin Heidelberg New York, pp 453–477

    Google Scholar 

  • Daie J, Campbell WF, Seeley SD (1981) Temperature-stress-induced production of abscisic acid and dihydrophaseic acid in warm-and cool-season crops. J Am Soc Hortic Sci 106: 11–13

    CAS  Google Scholar 

  • Daines RJ, Minocha SC (1983) Regulation of phenylalanine ammonia-lyase in germinating lettuce seeds (Lactuca sativa L. cv. Grand Rapids): Effects of abscisic acid and water stress. Z Pflanzenphysiol 110: 69–76

    Google Scholar 

  • Damptey HB, Coombe BG, Aspinall D (1978) Apical dominance, water deficit and axillary inflorescence growth in Zea mays: the role of abscisic acid. Ann Bot 42: 1447–1458

    CAS  Google Scholar 

  • Darwin C, Darwin F (1966) The power of movement in plants. Appleton New York “Authorized edition,” 1896, Appleton D, New York, reprinted by De Capo, New York

    Google Scholar 

  • Davenport TL, Jordan WR, Morgan PW (1977) Movement and endogenous levels of abscisic acid during water-stress-induced abscission in cotton seedlings. Plant Physiol 59: 1165–1168

    Article  PubMed  CAS  Google Scholar 

  • Davies WJ, Kozlowski TT (1975) Effects of applied abscisic acid and plant water stress on transpiration of woody angiosperms. For Sei 21: 191–195

    Google Scholar 

  • Dei M (1981) Evidence that ethylene is not involved in red-light-induced stimulation of chlorophyll formation in etiolated cucumber cotyledons. Plant Cell Physiol 22: 699–707

    CAS  Google Scholar 

  • Dennison DS (1974) Phototropism. In: Haupt W, Feinleib ME (eds) Physiology of movements. Encyclopedia of plant physiology, new ser Vol 7. Springer, Berlin Heidelberg New York, pp 506–566

    Google Scholar 

  • Digby J, Firn RD (1976) A critical assessment of the Cholodny-Went theory of shoot geotropism. Curr Adv Plant Sei 8: 953–960

    Google Scholar 

  • Domanski R, Kozlowski TT (1968) Variations in kinetin-like activity in Betula and Popu-lus during release from dormancy. Can J Bot 46: 397–403

    Article  CAS  Google Scholar 

  • Dörffling K (1966) Weitere Untersuchungen über korrelative Knospenhemmung. Planta 70: 257–274

    Article  Google Scholar 

  • Downton WJS, Loveys BR (1981) Abscisic acid content and osmotic relations of salt-stressed grapevine leaves. Aust J Plant Physiol 8: 443–452

    Article  CAS  Google Scholar 

  • Dugger WM, Ting IP (1970) Air pollution oxidants-their effects on metabolic processes in plants. Annu Rev Plant Physiol 21: 215–234

    Article  CAS  Google Scholar 

  • Eamus D, Wilson JM (1983) ABA levels and effects in chilled and hardened Phaseolus vulgaris. J Exp Bot 34: 1000–1006

    Article  CAS  Google Scholar 

  • Egley GH (1980) Stimulation of common cocklebur (Xanthium pensylvanicum) and red-root pigweed (Amaranthus retroflexus) seed germination by injections of ethylene into soil. Weed Sei 28: 510–514

    CAS  Google Scholar 

  • Ehleringer J, Forseth I (1980) Solar tracking by plants. Science 210: 1094–1098

    Article  PubMed  CAS  Google Scholar 

  • El-Antably HMM, Wareing PF, Hillman J (1967) Some physiological responses to DL abscisin (dormin). Planta 73: 74–90

    Article  CAS  Google Scholar 

  • Elliott DC (1982) Inhibition of cytokinin action and of heat aging induced potential for cytokinin action by inhibitors of membrane synthesis and function. Plant Physiol 69: 1169–1172

    Article  PubMed  CAS  Google Scholar 

  • Esashi Y (1960) Studies on the formation and sprouting of aerial tubers in Begonia evansiana IV. Photoperiodic conditions for tuberization and sprouting in the cutting plants. Sei Rep Tohoku Univ 27: 101–112

    Google Scholar 

  • Esashi Y (1964) Studies on the formation and sprouting of aerial tubers in Begonia. X. Tuberization under long days and in darkness. Plant Cell Physiol 5: 101–107

    Google Scholar 

  • Esashi Y, Leopold AC (1968) Regulation of tuber development in Begonia by cytokinin. In: Wightman P, Setterfield G (eds) Biochemistry and physiology of plant growth substances. Runge, Ottawa, pp 923–941

    Google Scholar 

  • Esashi Y, Eguchi T, Nagao M (1964) The role of auxin in the photoperiodic tuberization in Begonia evansiana. Plant Cell Physiol 5:413–427 Evans LT (1969) The induction of flowering, some case histories. Macmillan, South Melbourne, Victoria Evans LT (1971) Flower induction and the florigen concept. Annu Rev Plant Physiol 22: 365–394

    Google Scholar 

  • Even-Chez Z, Sachs RM (1980) Photosynthesis as a function of short day induction and gibberellic acid treatment in Bougainvillea San Diego Red. Plant Physiol 65: 65–68

    Article  Google Scholar 

  • Even-Chez Z, Sachs RM, Hackett WP (1979) Control of flowering in Bougainvillea San Diego Red. Metabolism of benzyladenine and the action of gibberellic acid in relation to short day induction. Plant Physiol 64: 646–651

    Google Scholar 

  • Ewing EE, Wareing PF (1978) Shoots, stolon and tuber formation on potato ( Solanum tuberosum L.) cuttings in response to photoperiod. Plant Physiol 61: 348–353

    Google Scholar 

  • Eze JMO, Dumbroff EB, Thompson JE (1981) Effects of moisture stress and senescence on the synthesis of absicisic acid in the primary leaves of bean. Physiol Plant 51: 418–422

    Article  CAS  Google Scholar 

  • Fedorova AI (1977) Effects of unfavorable environmental conditions on the level of abscisic acid in Siberina larch. Sov Plant Physiol 24: 985–988

    Google Scholar 

  • Feldman LJ (1981) Light-induced inhibitors from intact and cultured caps of Zea roots. Planta 153:471–475 Fellows RJ, Boyer JS (1978) Altered ultrastructure of cells of sunflower leaves having low water potentials. Protoplasma 93: 381–395

    Google Scholar 

  • Fernandez MB, Sanchez TR (1982) Seasonal pattern of growth regulators in tubers 4 of yellow nutsedge ( Cyperus esculentus ). Weed Sei 30: 83–86

    Google Scholar 

  • Fernandez TF, Gaborjanyi R (1976) Reversion of dwarfing induced by virus infection: effect of poly acrylic and gibberellic acids. Acta Phytopathol Acad Sei Hung 11: 271–276

    CAS  Google Scholar 

  • Firn RD, Digby J (1980) The establishment of tropic curvatures in plants. Ann Rev of Plant Physiol 31: 131–148

    Article  Google Scholar 

  • Fischer H (1905) Über die Blütenbildung in ihrer Abhängigkeit vom Licht und über die blütenbildenden Substanzen. Flora. 94: 478–490

    Google Scholar 

  • Fletcher RA, Adedipe NO, Ormrod DP (1972) Abscisic acid protects bean leaves from ozone-induced phyto toxicity. Can J Bot 50:2389 Forsline PL, Langille AR (1974) The influence of temperature and photoperiod on cytokinin activity in the katahdin potato. Am Potato J 51:309 Franssen JM, Bruinsma J (1981) Relationships between xanthoxin, phototropism, and elongation growth in the sunflower seedling Helianthus annuus L. Planta 151: 365–370

    Google Scholar 

  • Franssen JM, Firn RD, Digby J (1982) The role of the apex in the photo tropic curvature of Avena coleoptiles: positive curvature under conditions of continuous illumination. Planta 155: 281–286

    Article  Google Scholar 

  • Freeman BC, McArthur ED, Harper K, Blauer AC (1981) Influence of environment on the floral sex ratios of monoecious plants. Evolution 35: 194–197

    Article  Google Scholar 

  • Freeman MW, Martin GC (1981) Peach floral bud break and abscisic acid content as affected by mist, light, and temperature treatments during rest. J Am Soc Hortic Sci 106: 333–336

    CAS  Google Scholar 

  • Frimmel G (1977) The effect of mildew infection on winter hardiness and drought resistance. Z Pflanzenziicht 79: 256–260

    Google Scholar 

  • Galli MG, Levi M (1982) Increased drought resistance induced by pretreatment with abscisic acid in germinating embryos of Haplopappus gracilis. Physiol Plant 54: 425–430

    Article  CAS  Google Scholar 

  • Gianfagna T, Zeevaart J AD, Lusk WJ (1983) Effect of photoperiod on the metabolism of deuterium-labeled gibberellin A53 in spinach. Plant Physiol 72: 86–89

    Article  PubMed  CAS  Google Scholar 

  • Gilbertson-Ferriss TL, Brenner ML, Wilkins HF (1981) Localization of endogenous growth substances in Freesia hybrida Moya corms before and after a heat treatment. J Am Soc Hortic Sci 106: 460–463

    CAS  Google Scholar 

  • Giles KL, Cohen D, Beardsell MF (1976) Effects of water stress on the ultrastructure of leaf cells of Sorghum bicolor. Plant Physiol 57: 11–14

    Article  PubMed  CAS  Google Scholar 

  • Goeschl JD, Pratt HK, Bonner BA (1967) An effect of light on the production of ethylene and the growth of the plumular portion of etiolated pea seedlings. Plant Physiol 42: 1077–1080

    Article  PubMed  CAS  Google Scholar 

  • Goeschl JD, Rappaport L, Pratt HK (1966) Ethylene as a factor regulating the growth of pea epicotyls subjected to physical stress. Plant Physiol 41: 877–884

    Article  PubMed  CAS  Google Scholar 

  • Goleniowski M, DeBottini GA, Tizio R (1980) The effect of CCC (2-chloroethyl) trimeth-ylammonium chloride and its interaction with gibberellic acid (GA3) on quali-and quantitative evolution of gibberellin-like substances in potato plants ( Solarium tuberosum L.) grown under unfavorable photoperiodic conditions for tuberization. Phyton 38: 13–22

    Google Scholar 

  • Goode JE, Higgs KH, Hyrycz KJ (1978) Abscisic acid applied to orchard trees of Golden Delicious apple to control water stress. J Hortic Sci 53: 99–103

    CAS  Google Scholar 

  • Gorski T (1975) Germination of seeds in the shadow of plants. Physiol Plant 34: 342–346

    Article  Google Scholar 

  • Gorski T, Gorska K, Rybicki J (1978) Studies on germination of seeds under leaf canopy, Flora 167, 289–299 Gray D, Steckel JRA (1977) Pre-sowing seed treatment with cytokinin to prevent high temperature dormancy in lettuce ( Lactuca sativa) seeds. Seed Sci Technol 5: 473–477

    Google Scholar 

  • Greenwood MS (1981) Reproductive development in loblolly pine. II. The effect of age, gibberellin plus water stress and out-of-phase dormancy on long shoot growth behavior. AmJBot 68:1184—1190 Gregg KB (1982) Sunlight-enhanced ethylene evolution by developing inflorescence of Catasetum and Cycnoches and its relation to female flower production. Bot Gaz 143: 466–475

    Google Scholar 

  • Gregory FG, Veale J A (1957) A reassessment of the problem of apical dominance. Soc Exp Biol Symp 11: 1–20

    CAS  Google Scholar 

  • Gregory LE (1956) Some factors for tuberization in the potato plant. Am J Bot 43: 281–288

    Article  CAS  Google Scholar 

  • Gregory LE (1965) Physiology of tuberization in plants. In: Ruhland W (ed) Encycl of Plant Physiol. Vol 15. Springer, Berlin Gottingen Heidelberg, pp 1328–1356

    Google Scholar 

  • Guinn G (1982) Abscisic acid and abscission of young cotton bolls in relation to water availability and boll load. Crop Sci 22: 580–583

    Article  CAS  Google Scholar 

  • Gusta LV, Fowler DB, Tyler NJ (1982) The effect of abscisic acid and cytokinins on the cold hardiness of winter wheat. Can J Bot 60: 301–305

    Article  CAS  Google Scholar 

  • Halevy AH, Mayak S (1975) Interrelationship of several phytohormones in the regulation of rose petal senescence. Acta Hortic 41: 103–116

    Google Scholar 

  • Hall AB, Firn RD, Digby J (1980) Auxins and shoot-tropisms-a tenuous connection ? J Biol Educ 14:195–199 Hanks GR (1982) The response of tulips to gibberellins following different durations of cold storage. J Hortic Sci 57: 109–119

    Google Scholar 

  • Hanson JB, Trewavas AJ (1982) Regulation of plant cell growth: the changing perspective. New Phytol 90: 1–18

    Article  CAS  Google Scholar 

  • Hasegawa K, Shiihara S, Iwagawa T, Hase T (1982) Isolation and identification of a new growth inhibitor, raphanusanin, from radish seedlings and its role in light inhibition of hypocotyl growth. Plant Physiol 70: 626–628

    Article  PubMed  CAS  Google Scholar 

  • Health OVS, Holdsworth M (1943) Bulb formation and flower production in onion. Nature 152: 334–335

    Article  Google Scholar 

  • Hemberg T (1949) Significance of growth-inhibiting substances and auxins for the rest period of potato. Physiol Plant 2: 24–36

    Article  CAS  Google Scholar 

  • Henson IE (1981) Changes in abscisic acid content during stomatal closure in pearl millet (Pennisetum americanum (L.) Leeke) Plant Sci Lett 21: 121–127

    CAS  Google Scholar 

  • Henson IE (1982) Abscisic acid and water relations of rice (Oryza sativa L.): sequential responses to water stress in the leaf. Ann Bot 50: 9–24

    CAS  Google Scholar 

  • Henson IE (1983) Abscisic acid and water relations of rice (Oryza sativa L.): Effects of drought conditioning on abscisic acid accumulation in the leaf and stomatal response. Ann Bot 52: 247–255

    CAS  Google Scholar 

  • Henson IE, Wheeler CT (1977) Hormones in plants bearing nitrogen fixing root nodules: distribution and seasonal changes in levels of cytokinins in Alnus glutinosa. J Exp Bot 28: 205–214

    Article  CAS  Google Scholar 

  • Henson IE, Alagarswamy G, Mahalakshmi V, Bidinger FR (1982) Diurnal changes in endogenous abscisic acid in leaves of pearl millet (Pennisetum americanum (L.) Leeke) under field conditions. J Exp Bot 33:416–425 Hewett EW, Wareing PF (1973) Cytokinins in Populus x robusta: Changes during chilling and bud burst. Physiol Plant 28: 393–399

    Google Scholar 

  • Hiller LK, Kelly WC, Powell LE (1979) Temperature interactions with growth regulators and endogenous gibberellin-like activity during seedstalk elongation in carrots. Plant Physiol 63: 1055–1061

    Article  PubMed  CAS  Google Scholar 

  • Hillman SK, Wilkins MB (1982) Gravity perception decapped roots of Zea mays. Planta 155: 267–271

    Article  Google Scholar 

  • Hillman W (1976) Biological rhythms and physiological timing. Ann Rev Plant Physiol 27: 159–179

    Article  CAS  Google Scholar 

  • Hiraki Y, Ota Y (1975) The relationship between growth inhibition and ethylene production by mechanical stimulation in Lilium longiflorum. Plant Cell Physiol 16: 185–189

    CAS  Google Scholar 

  • Hodson HK, Hamner KC (1970) Floral inducing extract from Xanthium. Science 167: 384–385

    Article  PubMed  CAS  Google Scholar 

  • Holmes MG (1976) Spectral energy distribution in the natural environment and its implications for phytochrome function. In: Smith H (ed) Light and plant development. Butterworth, London, pp 407–476

    Google Scholar 

  • Holmes MG, Smith H (1975) The function of phytochrome in plants growing in the natural environment. Nature 254: 512–514

    Article  CAS  Google Scholar 

  • Holmes MG, Smith H ( 1977 a) The function of phytochrome in the natural environment. I. Characterization of daylight for studies in photomorphogenesis and photoperiod-ism. Photochem Photobiol 25: 533–538

    Google Scholar 

  • Holmes MG, Smith H ( 1977 b) The function of phytochrome in the natural environment. II. The influence of vegetation canopies on the spectral energy distribution of natural daylight. Photochem Photobiol 25: 539–545

    Google Scholar 

  • Holmes MG, Smith H ( 1977 c) The function of phytochrome in the natural environment. IV. Light quality and plant development. Photochem Photobiol 25: 551–557

    Google Scholar 

  • Hoshizaki T (1973) Influence of gravitational forces on plants. Environ Biol Med 2: 47–79

    PubMed  CAS  Google Scholar 

  • Hubac C, LePage-Degivry MT (1981) Abscisic acid content evolution during drought in cotton plants under different photoperiodic conditions. Physiol Veg 19: 87–97

    CAS  Google Scholar 

  • Ilino M (1982) Inhibitory action of red light on the growth of the maize mesocotyl: Evaluation of the auxin hypothesis. Planta 156: 388–395

    Article  Google Scholar 

  • Irvine RF, Osborne DJ (1973) The effect of ethylene on (1–14C) glycerol incorporation into phospholipids of etiolated pea stems. Biochem J 136: 1133–1135

    PubMed  CAS  Google Scholar 

  • Itai C, Richmond C, Vaadia Y (1968) The role of root cytokinins during water and salinity stress. Isr J Bot 17: 187–195

    CAS  Google Scholar 

  • Jackson DI, Field RJ (1972) Light and hormone interaction in apical dominance in Phaseolus vulgaris L. Ann Bot 36: 525–532

    CAS  Google Scholar 

  • Jackson MB, Campbell DJ (1979) Effects of benzyladenine and gibberellic acid on the responses of tomato plants to anaerobic root environments and to ethylene. New Phytol 82: 331–340

    Article  CAS  Google Scholar 

  • Jaffe MJ (1976 a) Thigmomorphogenesis: a detailed characterization of the response of beans (Phaseolus vulgaris L) to mechanical stimulation. Z Pflanzenphysiol 77:437–453

    Google Scholar 

  • Jaffe MJ (1976b) Thigmomorphogenesis: electrical resistance and mechanical correlates of the early events of growth retardation due to mechanical stimulation in beans. Z Pflanzenphysiol 78: 24–32

    Google Scholar 

  • Jaffe MJ, Biro R (1979) Thigmomorphogenesis: the effect of mechanical perturbation on the growth of plants, with special reference to anatomical changes, the role of ethylene, and interaction with other environmental stresses. In: Mussell H, Staples RC (eds) Stress physiology in crop plants. John Wiley & Sons, New York, p 25–59

    Google Scholar 

  • Jones MG, Zeevaart J AD (1982) Effect of photoperiod on metabolism of 3H gibberellins A1? 3-epi-Al9 and A20 in Agrostemma githago L. Plant Physiol 69: 660–662

    Article  PubMed  CAS  Google Scholar 

  • Jones RL (1973) Gibberellins: their physiological role. Annu Rev Plant Physiol 24: 571–598

    Article  CAS  Google Scholar 

  • Jordon WR, Morgan PW, Davenport TL (1972) Water stress enhances ethylene-mediated leaf abscission in cotton. Plant Physiol 50: 756–758

    Article  Google Scholar 

  • Julin-Tegelman A, Pinfield N (1983) Changes in the levels of endogenous cytokinin-like substances during cold-induced germination of Acer platanoides L. seeds. Z Pflanzenphysiol 110: 89–95

    CAS  Google Scholar 

  • Juniper BE (1976) Geotropism. Ann Rev Plant Physiol 27: 385–406

    Article  CAS  Google Scholar 

  • Junttila O (1980) Flower bud differentiation in Salix pentandra as affected by photoperiod, temperature and growth regulators. Physiol Plant 49: 127–134

    Article  CAS  Google Scholar 

  • Junttila O (1981) Effects of different gibberellins on elongation growth under short day conditions in seedlings of Salix pentandra. Physiol Plant 53: 315–318

    Article  CAS  Google Scholar 

  • Kane ME, Albert LS (1982) Environmental and growth regulator effects on heterophylly and growth of Proserpinaca intermedia (Haloragaceae). Aquat Bot 13:1 (Special issue) 73–86

    Google Scholar 

  • Kang BG, Burg SP (1973) Role of ethylene in phytochrome-induced anthocyanin synthesis. Planta 110: 227–235

    Article  CAS  Google Scholar 

  • Kang BG, Yokum CS, Burg SP, Ray PM (1967) Ethylene and carbon dioxide: mediation of hypocotyl hook opening response. Science 156: 958–959

    Article  PubMed  CAS  Google Scholar 

  • Kannangara T, Durley RC, Simpson GM, Stout DG (1982) Drought resistance of Sorghum bicolor 4. Hormonal changes in relation to drought stress in field-grown plants. Can J Plant Sci 62: 317–330

    Google Scholar 

  • Kao CH (1980) Retardation of senescence by low temperature and benzyladenine in intact primary leaves of soybean. Plant Cell Physiol 21: 339–344

    Google Scholar 

  • Karege F, Penel E, Greppin H (1982) Floral induction in spinach leaves by light, temperature and gibberellic acid: use of the photocontrol of basic peroxidase activity as biochemical marker. Z Pflanzenphysiol 107: 357–365

    CAS  Google Scholar 

  • Kasperbauer MJ (1971) Spectral distribution of light in a tobacco canopy and effect of end-of-day light quality on growth and development. Plant Physiol 47: 775–778

    Article  PubMed  CAS  Google Scholar 

  • Kato Y, Fukunharu N, Kobayashi R (1958) Stimulation of flower bud differentiation of conifers by gibberellin. In: Abstracts of the 2nd Meeting of the Japan Gibberellin Research Association, pp 67–68

    Google Scholar 

  • Kawase M (1974) Role of ethylene in induction of flooding damage in sunflower. Physiol Plant 31: 29–38

    Article  CAS  Google Scholar 

  • Kays SJ, Nicklow CW, Simons DH (1974) Ethylene in relation to the response of roots tp physical impedance. Plant Soil 40: 565–571

    Article  Google Scholar 

  • Keller PL, Coulter MW (1982) The relationship of endogenous gibberellins to light-regulated stem elongation rates in dwarf and normal cultivars of Pisum sativum L. Plant Cell Physiol 23: 409–416

    CAS  Google Scholar 

  • Khan MI, Khan MA, Khizar T (1976) Plant-growth regulators from species differing in salt tolerance as affected by soil salinity. Plant Soil 45: 267–271

    Article  CAS  Google Scholar 

  • Kimball SL, Salisbury FB (1973) Ultrastructural changes of plants exposed to low temperatures. Am J Bot 60: 1028–1033

    Article  Google Scholar 

  • Kimball SL, Salisbury FB (1974) Plant development under snow. Bot Gaz 135: 147–149

    Article  Google Scholar 

  • Kirkham MB (1983) Effect of ABA on the water relations of winter-wheat cultivars varying in drought resistance. Physiol Plant 59: 153–157

    Article  CAS  Google Scholar 

  • Koch J, Bergmann H (1979) Effect of phytohormones on water use efficiency (WUE) in Hordeum vulgare L. and Triticum aestivum L. Biochem Physiol Pflanz 174: 486–490

    Google Scholar 

  • Kohler KH, Dorfler M, Goring H (1980) The influence of light on the cytokinin content of Amaranthus seedlings. Biol Plant 22: 128–134

    Article  Google Scholar 

  • Koller D (1969) The physiology of dormancy and survival of plants in desert environments. In: Woolhouse HW (ed) Dormancy and Survival. Symp Soc Exp Biol No 23, pp 449–469

    Google Scholar 

  • Koller D, Hadas A (1982) Water relations in the germination of seeds. In: Lange OL, Osmond CB, Ziegler H (eds) Physiological plant ecology II. Water relations and carbon assimilation. Encyclopedia of plant physiology, new ser Vol 12B, Springer, Berlin Heidelberg New York, pp 401–432

    Google Scholar 

  • Kondo N, Sugahara K (1978) Changes in transpiration rate of S02-resistant and-sensitive plants with S02 fumigation and the participation of abscisic acid. Plant Cell Physiol 19: 365–373

    CAS  Google Scholar 

  • Korableva NP, Karavaeva KA, Metlitskii LV (1980) Changes of abscisic acid content in potato tuber tissues in the period of deep dormancy and during germination. Sov Plant Physiol 27:441–146 Krekule J, Kohli RK (1981) The condition of the apical meristem of seedlings response to a promotive effect of abscisic acid on flowering in the short-day plant, Chenopodium rubrum. Z Pflanzenphysiol 103: 45–51

    Google Scholar 

  • Krizek DT, Mandava NB (1983) Influence of spectral quality on the growth response of intact bean plants to brassinosteroid, a growth-promoting steroidal lactone. I. Stem elongation and morphogenesis. Physiol Plant 57: 317–323

    Google Scholar 

  • Krul WR (1978) Diffusible inhibitors of imbibition from senescent soybean pods. Hortic Sci 13: 41–42

    Google Scholar 

  • Lancaster JE, Mann JD (1977) Extrastomatal control of transpiration in leaves of yellow lupin. J Exp Bot 28: 1373–1379

    Article  CAS  Google Scholar 

  • Lang A (1965) Physiology of flower initiation. In: Ruhland W (ed) Encyclopedia of plant physiology Vol 15. Springer, Berlin Gottingen Heidelberg, pp 1380–1535

    Google Scholar 

  • Lang A, Chailakhyan MKH, Frolova IA (1977) Promotion and inhibition of flower formation in a day-neutral plant in grafts with a short-day plant and a long-day plant. Proc Natl Acad Sci 74: 2412–2416

    Article  PubMed  CAS  Google Scholar 

  • Langille AR, Forsline PL (1974) Influence of temperature and photoperiod on cytokinin pools in the potato Solanum tuberosum L. Plant Sci Lett 2: 189–191

    Article  CAS  Google Scholar 

  • Larque-Saavedra A, Wain RL (1974) Abscisic acid levels in relation to drought tolerance in varieties of Zea mays L. Nature 251: 716–717

    Article  CAS  Google Scholar 

  • Larque-Saavedra A, Wain RL (1976) Studies on plant growth-regulating substances. XLII. Abscisic acid as a genetic character related to drought tolerance. Ann Appl Biol 83: 291–297

    Google Scholar 

  • Leach RWA, Wareing PF (1967) Distribution of auxin in horizontal woody stems in relation to gravimorphism. Nature 214: 1025–1027

    Article  CAS  Google Scholar 

  • Lee JS, Mulkey TJ, Evans ML (1983) Reversible loss of gravitropic sensitivity in maize roots after tip application of calcium chelators. Science 220: 1375–1376

    Article  PubMed  CAS  Google Scholar 

  • Lenton JR, Perry VM, Saunders PF (1972) Endogenous abscisic acid in relation to photoperiodically induced bud dormancy. Planta 106: 13–22

    Article  CAS  Google Scholar 

  • Leopold AC, Brown KM, Emerson FH (1972) Ethylene in the wood of stressed trees. Hortic Sci 7:175 Levitt J (1972) Responses of plants to environmental stresses. Academic Press, London New York Lincoln RG, Cunningham A, Carpenter BH, Alexander J, Mayfield DL (1966) Florigenic acid from fungal cultures. Plant Physiol 41: 1079–1080

    Google Scholar 

  • Lipe JA, Morgan PW (1972) Ethylene role in fruit abscission and dehiscence processes. Plant Physiol 50: 759–764

    Article  PubMed  CAS  Google Scholar 

  • Lombard P, Richardson EA (1979) Physical principles involved in controlling phenologi-cal development. In: Barfleld BJ, Gerber JF (eds) Modification of the aerial environment of plants. St Joseph, Michigan, Am Soc Agric Eng, pp 429–440

    Google Scholar 

  • Longman KA (1982) Effects of gibberellin, clone and environment on cone initiation, shoot growth and branching in Pinus contorta. Ann Bot 50: 247–257

    Google Scholar 

  • Lozhnikova VN, Krekule J, Saidlova F, Bavrina TV, Chailakhyan MK (1977) Effects of growth substances on flowering of Chenopodium rubrum under different conditions of photoperiodic induction. Sov Plant Physiol 24: 810–813

    Google Scholar 

  • Lynch JM (1975b) Ethylene in soil. Nature 256: 576–577

    Article  CAS  Google Scholar 

  • Lynch JM, Harper SHT (1977) Effects of microorganisms and their products on seed germination. Letcombe Lab Ann Rep 50–52

    Google Scholar 

  • Makus DJ, Shannon C (1979) Temperature and photoperiod effects on abscisic acid content in Earliwax snapbean seed. Hort Science 14: 732–733

    CAS  Google Scholar 

  • Marinos NG, Fife DN (1972) Ultrastructural changes in wheat embryos during a “pre-sowing drought hardening” treatment. Protoplasma 74: 381–396

    Article  Google Scholar 

  • Markhart III AH, Fiscus EL, Naylor AW, Kramer PJ (1979) Effect of abscisic acid on root hydraulic conductivity. Plant Physiol 64: 611–614

    Article  PubMed  CAS  Google Scholar 

  • Mason HL, Langenheim JH (1957) Language analysis and the concept environment. Ecology 38: 325–340

    Article  Google Scholar 

  • Mauk CS, Langille AR (1978) Physiology of tuberization in Solanum tuberosum L. Cis-zeatin riboside in the potato plant: its identification and changes in endogenous levels as influenced by temperature and photoperiod. Plant Physiol 62: 438–442

    Article  PubMed  CAS  Google Scholar 

  • Mayer AM, Poljakoff-Mayber A (1975) The germination of seeds. 2nd edn. Pergamon, New York Mayer AM, Shain Y (1974) Control of seed germination. Annu Rev Plant Physiol 25:167–193

    Google Scholar 

  • McMichael BL, Elmore CD (1977) Proline accumulation in water-stressed cotton leaves. Crop Sci 17: 905–908

    Article  CAS  Google Scholar 

  • Menzel CM (1980) Tuberization in potato at high temperatures: responses to gibberellin and growth inhibitors. Ann Bot 46: 259–265

    CAS  Google Scholar 

  • Mertens R, Weiler EW (1983) Kinetic studies on the redistribution of endogenous growth regulators in gravireacting plant organs. Planta 158: 339–348

    Article  CAS  Google Scholar 

  • Metzger JD, Zeevaart J AD (1982) Photoperiodic control of gibberellin metabolism in spinach. Plant Physiol 69: 287–291

    Article  PubMed  CAS  Google Scholar 

  • Mielke EA, Dennis FG (1978) Hormonal control of flower bud dormancy in sour cherry (Prunus cerasus L.). III. Effects of leaves, defoliation and temperature on levels of abscisic acid in flower primordia. J Am Soc Hortic Sci 103: 446–449

    Google Scholar 

  • Misaghi I, Devay JE, Kosuge T (1972) Changes in cytokinin activity associated with the development of Verticillium wilt and water stress in cotton plants. Physiol Plant Pathol 2: 187–196

    Article  CAS  Google Scholar 

  • Mitchell CA (1977) Influence of mechanical stress on auxin-stimulated growth of excised pea stem sections. Physiol Plant 41: 129–134

    Article  CAS  Google Scholar 

  • Mittelheuser CJ, Van Steveninck RFM (1969) Stomatal closure and inhibition of transpiration induced by ( RS)-abscisic acid. Nature 221: 281–282

    Google Scholar 

  • Mizrahi Y, Blumenfeld A, Bittner S, Richmond AE (1971) Abscisic acid and cytokinin contents of leaves in relation to salinity and relative humidity. Plant Physiol 48: 752–755

    Article  PubMed  CAS  Google Scholar 

  • Mirzahi Y, Blumenfeld R, Richmond A (1972) The role of abscisic acid and salination in the adaptive response of plants to reduced root aeration. Plant Cell Physiol 13: 15–21

    Google Scholar 

  • Mizrahi Y, Richmond AE (1972 b) Mineral deficiency and abscisic acid. Isr J Bot 21:123 Moore PD (1978) Adaptation to waterlogged environments. Nature 271: 209

    Google Scholar 

  • Moore R, Pasieniuk J (1984) Graviresponsiveness and the development of columella tissue in primary and lateral roots of Ricinus communis. Plant Physiol 74: 529–533

    Article  PubMed  CAS  Google Scholar 

  • Morgan DC, Smith H (1978) The relationship between phytochrome photoequilibrium and development in light-grown Chenopodium album. Planta 142: 187–194

    Article  CAS  Google Scholar 

  • Morgan DC, Smith H (1979) A systematic relationship between phytochrome-controlled development and species habitat, for plants grown in simulated natural radiation. Planta 145: 253–258

    Article  CAS  Google Scholar 

  • Morgan DC, Smith H (1981) Non-photosynthetic responses to light quality. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology I. Responses to the physical environment. Encyclopedia of plant physiology, new ser Vol 12 A. Springer, Berlin Heidelberg New York, pp 109–134

    Google Scholar 

  • Morgan PW, Jordan WR, Davenport TL, Durham JI (1977) Abscission responses to moisture stress, auxin transport inhibitors, and ethephon. Plant Physiol 59: 710–712

    Article  PubMed  CAS  Google Scholar 

  • Moser BC, Hess CE (1968) The physiology of tuberous root development in Dahlia. Proc Am Soc Hortic Sci 93: 595

    Google Scholar 

  • Mousdale DM (1983) Seasonal variation and metabolism of abscisic acid in shoot bark and lateral buds of apple (Malus domestica Borkh.) Biochem Physiol Pflanz 178: 503–510

    CAS  Google Scholar 

  • Muir RM, Zhu L (1983) Effect of light in the control of growth by auxin and its inhibitors) in the sunflower. Physiol Plant 57: 407–410

    Article  CAS  Google Scholar 

  • Mulkey TJ, Evans ML (1982) Suppression of asymmetric acid efflux and gravitropism in maize roots treated with auxin transport inhibitors of sodium orthovanadate. J Plant Growth Regul 1: 259–265

    Google Scholar 

  • Munoz V, Butler WL (1975) Photoreceptor pigments for blue light in Neurospora crassa. Plant Physiol 55: 421–426

    Article  PubMed  CAS  Google Scholar 

  • Nagao M, Okagami N (1966) Effect of 2-chlorethyl-trimethyl-ammonium-chloride on the formation and dormancy of aerial tubers of Begonia. Bot Mag 79: 687–692

    CAS  Google Scholar 

  • Neel PL, Harris RW (1971) Motion-induced inhibition of elongation and induction of dormancy in Liquidambar. Science 173: 58–59

    Article  PubMed  CAS  Google Scholar 

  • Nelson JM, Sharpies GC (1980) Effect of growth regulators on germination of cucumber and other cucurbit seeds at suboptimal temperatures. Hort Science 15: 253–254

    CAS  Google Scholar 

  • Nir I, Klein S, Poljakoff-Mayber A (1970 b) The effect of water stress on mitochondria of root cells. Plant Physiol 45: 173–177

    Google Scholar 

  • Nitsch JP (1966) Photoperiodism et tuberisation. Bull Soc Fr Physiol Veg 12: 233–246

    Google Scholar 

  • Ogawa Y, King RW (1979) Establishment of photoperiodic sensitivity by benzyladenine and a brief red irradiation in dark grown seedlings of Pharbitis nil Chois. Plant Cell Physiol 20: 115–122

    CAS  Google Scholar 

  • Ogawa Y, Zeevaart JAD: The relation of growth regulators to flowering. In: Imamura S (ed) Physiology of flowering in pharbitis nil. Jpn Soc Plant Physiol, pp 107–119

    Google Scholar 

  • Ogunkanmi AB, Wellburn AR, Mansfield TA (1974) Detection and preliminary identification of endogenous antitranspirants in water-stressed sorghum plants. Planta 117: 293–302

    Article  CAS  Google Scholar 

  • Okazawa Y (1960) Studies on the relation between tuber formation of potato and its natural gibberellin content. Proc Crop Sci Soc Jpn 29: 121–124

    Article  Google Scholar 

  • Okazawa Y, Katsura N, Tagawa T (1967) Effects of auxin and kinetin on the development and differentiation of potato tissue cultured in vitro. Physiol Plant 20: 862–869

    Article  CAS  Google Scholar 

  • Pallas Jr JE, Kays SJ (1982) Inhibition of photosynthesis by ethylene-a stomatal effect. Plant Physiol 70: 598–601

    Article  PubMed  CAS  Google Scholar 

  • Palmer CE, Smith OE (1964) Effect of abscisic acid on elongation and kinetin-induced tuberization of isolated stolons of Solanum tuberosum. Plant Cell Physiol 10: 657–664

    Google Scholar 

  • Palmer JH (1956) The nature of the growth response to sunlight shown by certain stoloni-ferous and prostrate tropical plants. New Phytol 55: 346–355

    Article  Google Scholar 

  • Parups EV (1980) Gibberellins in photoperiodically treated Chrysanthemum cv. Improved Indianapolis White. Phyton 39: 121–126

    Google Scholar 

  • Perry TO, Hellmers H (1973) Effects of abscisic acid on growth and growth and dormancy of two races of red maple. Bot Gaz 134: 783–789

    Article  Google Scholar 

  • Peterson JC, Sacalis JN, Durkin DJ (1980) Alterations in abscisic acid content of Ficus benjamina leaves resulting from exposure to water stress and its relationship to leaf abscission. J Am Soc Hortic Sci 105: 793–798

    CAS  Google Scholar 

  • Pharis RP (1972) Flowering of Chrysanthemum under non-inductive long days by gibberellins and N6-benzyladenine. Planta 105: 205–212

    Article  CAS  Google Scholar 

  • Pharis RP, Kuo CG (1977) Physiology of gibberellins in conifers. Can J For Res 7: 299–325

    Article  CAS  Google Scholar 

  • Phillips IDJ (1975) Apical dominance. Annu Rev Plant Physiol 26: 341–367

    Article  CAS  Google Scholar 

  • Phillips IDJ, Hartung W (1976) Longitudinal and lateral transport of [3–4–3H] gibberellin A 1 and 3-indolyl (acetic acid–2–14C) in upright and geotropically responding green internode stems of Helianthus annuus. New Phytol 76: 1–9

    Article  CAS  Google Scholar 

  • Phillips IDJ, Wareing PF (1959) Studies in dormancy of sycamore. II. The effect of daylength on the natural growth inhibitor content of the shoot. J Exp Bot 10: 504–514

    Google Scholar 

  • Phillipson JJ (1983) The role of gibberellin A4/7, heat, and drought in the induction of flowering in Sitka spruce. J Exp Bot 34: 291–302

    Article  Google Scholar 

  • Pilet PE, Elliott MC (1981) Some aspects of the control of root growth and georeaction: the involvement of indoleacetic acid and abscisic acid. Plant Physiol 67: 1047–1050

    Article  PubMed  CAS  Google Scholar 

  • Pillay I, Railton ID (1983) Complete release of axillary buds from apical dominance in intact, light-grown seedlings of Pisum sativum L. following a single application of cytokinin. Plant Physiol 71: 972–974

    Article  PubMed  CAS  Google Scholar 

  • Poapst PA, Durkee AB, McGugan WA, Johnston FB (1968) Identification of ethylene in gibberellic acid-treated potatoes. Sci Food Agric 19: 325

    Article  CAS  Google Scholar 

  • Porpiglia PJ, Barden JA (1980) Peach leaf abscission following CGA–15281 and CGA–17856 applications as affected by temperature. J Am Soc Hortic Sci 105: 227–229

    CAS  Google Scholar 

  • Prisco JT, O’Leary JW (1973) The effects of humidity and cytokinin on growth and water relations of salt-stressed bean plants. Plant Soil 39: 263–27

    Article  CAS  Google Scholar 

  • Proebsting WM, Heftmann E (1980) The relationship of 3H-GA9 metabolism to photo-period-induced flowering in Pisum sativum L. Z Pflanzenphysiol 98: 305–309

    CAS  Google Scholar 

  • Pryce RJ (1972) Gallic acid as a natural inhibitor of flowering in Kalanchoe blossfeldiana. Phytochemistry 11: 1911–1918

    Article  CAS  Google Scholar 

  • Puppo A, Rigaud J (1978) Cytokinins and morphological aspects of French bean roots in the presence of Rhizobium. Physiol Plant 42: 202–206

    Article  CAS  Google Scholar 

  • Purvis ON (1961) The physiological analysis of vernalization. In: Ruhland W (ed) Encyclopedia of plant physiology. Springer, Berlin Gottingen Heidelberg, Vol 16, pp 76–122

    Google Scholar 

  • Putnam AR, Duke WB (1978) Allelopathy in agroecosystems. Annu Rev Phytopathol 16: 431–451

    Article  Google Scholar 

  • Quarrie SA (1980) Genotypic differences in leaf water potential, abscisic acid and proline concentrations in spring wheat during drought stress. Ann Bot 46: 383–394

    CAS  Google Scholar 

  • Quarrie SA, Henson IE (1982) Biparental inheritance of drought-induced accumulation of abscisic acid in wheat and pearl millet (Short commun.) Ann Bot 49: 265–268

    CAS  Google Scholar 

  • Quarrie SA, Jones HG (1977) Effects of abscisic acid and water stress on development and morphology of wheat. J Exp Bot 28: 192–203

    Article  CAS  Google Scholar 

  • Quarrie SA, Jones HG (1979) Genotypic variation in leaf water potential, stomatal conductance and abscisic acid concentration in spring wheat subjected to artificial drought stress. Ann Bot 44: 323–332

    CAS  Google Scholar 

  • Radin JW, Ackerson RC (1981) Water relations of cotton plants under nitrogen deficiency. III. Stomatal conductance, photosynthesis, and abscisic acid accumulation during drought. Plant Physiol 67: 115–119

    Google Scholar 

  • Radin JW, Ackerson RC (1982) Does abscisic acid control stomatal closure during water stress? What’s New In Plant Physiol 13 (3): 9–12

    CAS  Google Scholar 

  • Railton ID, Wareing PF ( 1973 c) Effects of daylength on endogenous gibberellins in Solanum andigena. III. Gibberellin production by the leaves. Physiol Plant 29: 430–433

    Google Scholar 

  • Rajagopal V, Anderson AS (1978) Does abscisic acid influence proline accumulation in stressed leaves? Planta 143:85–88 Rakhimbaev IR, Syrtanova GA, Solomina YF (1978) Effect of cold treatment on the level of biological activity of endogenous growth regulators in tulip bulbs. Sov Plant Physiol 25: 197–200

    Google Scholar 

  • Rappaport L, Wolf N (1969) The problem of dormancy in potato tubers and related structures. Soc Exp Biol Symp 23: 219–240

    CAS  Google Scholar 

  • Raschke K (1975) Stomatal action. Annu Rev Plant Physiol 26: 309–340

    Article  CAS  Google Scholar 

  • Raschke K (1976) How stomata resolve the dilemma of opposing priorities. Philos Trans R Acad Lon Biol Sci 273: 551–560

    Article  CAS  Google Scholar 

  • Raschke K, Zeevaart J AD (1976) Abscisic acid content, transpiration, and stomatal conductance as related to leaf age in plants of Xanthium strumarium L. Plant Physiol 58: 169–174

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen OS (1976) Water stress in plants. I. Abscisic acid level in tomato leaves after a long period of wilting. Physiol Plant 36: 208–212

    Article  CAS  Google Scholar 

  • Reid DM, Clements JB, Carr D (1968) Red light induction of gibberellin synthesis in leaves. Nature 217: 580–582

    Article  CAS  Google Scholar 

  • Rikin A, Atsmon D, Gitler C (1983) Quantitation of chill-induced release of a tubulin-like factor and its prevention by abscisic acid in Gossypium hirsutum L. Plant Physiol 71: 747–748

    Article  PubMed  CAS  Google Scholar 

  • Rikin A, Boussiba S, Mizrahi Y, Richmond AE (1973) The role of abscisic acid in the interrelationship between plant response and environmental stresses. Isr J Bot 22: 265–266

    Google Scholar 

  • Rikin A, Gitler C, Atsmon D (1981) Chilling injury in cotton (Gossypium hirsutum L.): light requirement for the reduction of injury and for the protective effect of abscisic acid. Plant Cell Physiol 22: 453–460

    CAS  Google Scholar 

  • Rikin A, Richmond AE (1975) Abscisic acid as a common factor in hormonal regulation of resistance to cold and drought in plants. Isr J Bot 24: 54

    Google Scholar 

  • Rikin A, Richmond AE, Waldman M, Dovrat A (1978) The role of abscisic acid and gibberellic acid in regulation of morphogenesis and cold resistance of alfalfa seedlings (.Medicago sativa L). Isr J Bot 24: 49

    Google Scholar 

  • Rikin A, Waldman M, Richmond AE, Dovrat A (1975) Hormonal regulation of morphogenesis and cold resistance. J Exp Bot 26: 175–183

    Article  CAS  Google Scholar 

  • Roberts EH (1972) Dormancy: a factor affecting seed survival in the soil. In: Roberts EH (ed) Viability of Seeds. Syracuse Univ Press, Syracuse, pp 321–359

    Chapter  Google Scholar 

  • Robitaille HA, Leopold AC (1974) Ethylene and the regulation of apple stem growth under stress. Physiol Plant 32: 301–304

    Article  CAS  Google Scholar 

  • Rohwer F, Schierle J (1982) Effect of light on ethylene production: red light enhancement of 1-aminocyclopropane-l-carboxylic acid concentration in etiolated pea shoots. Z Pflanzenphysiol 107: 295–300

    CAS  Google Scholar 

  • Rollin P (1972) Phytochrome control of seed germination. In: Mitrakos K, Shropshire Jr W (eds) Phytochrome. Academic Press, London New York, pp 229–254

    Google Scholar 

  • Rood SB, Pharis RP, Koshioka M, Major DJ (1983) Gibberellins and heterosis in maize. I. Endogenous gibberellin-like substances. Plant Physiol 71: 639–644

    Google Scholar 

  • Rosen PM, Musselman RC, Kender WJ (1978) Relationship of stomatal resistance to S02 and 03 injury in grapevines. Sci Hortic 8: 137–142

    Article  CAS  Google Scholar 

  • Sachs RM (1977) Nutrient diversion: an hypothesis to explain the chemical control of flowering. Hortic Sci 12: 220–222

    CAS  Google Scholar 

  • Salisbury FB (1976) Snow flowers. Utah Sci 37: 35–41

    Google Scholar 

  • Salisbury FB (1981) Response to photoperiod. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology I. Vol 12 A. Encyclopedia of plant physiology, new ser. Springer, Berlin Heidelberg New York, pp 135–167

    Google Scholar 

  • Salisbury FB (1982) Photoperiodism. Hortic Rev 4: 66–105

    Google Scholar 

  • Salisbury FB, Ross CW (1985) Plant physiology, 3rd edn. Wadsworth, Belmont, Cal Salisbury FB, Sliwinski JE, Mueller WJ, Harris CS (1982) How stems bend up. Utah Sci 43:42–49

    Google Scholar 

  • Samimy C (1978) Effect on light on ethylene production and hypocotyl growth of soybean seedlings. Plant Physiol 61: 772–774

    Article  PubMed  CAS  Google Scholar 

  • Sano H, Nagao M (1970) Change in the indoleacetic acid oxidase levels in leaves of Begonia evansiana under short day conditions. Plant Cell Physiol 11: 849–856

    CAS  Google Scholar 

  • Satter RL, Galston AW (1976) The physiological functions of phytochrome. In: Goodwin TW (ed) Chemistry and Biochemistry. Academic Press, London New York, pp 680–735

    Google Scholar 

  • Sawhney R, Webster JM (1975) The role of plant growth hormones in determining the resistance of tomato plants to the root-knot nematode, Meloidogyne incognita. Nematologica 21: 95–103

    Google Scholar 

  • Sawhney SS, Sawhney N, Kumar S, Nanda KK (1979) Enzyme activity and electrophoret-ic pattern of isoenzymes of amylase, catalase, and peroxidase in photo-and gibberellin-induced plants of Impatiens balsamina L. var. rose. New Phytol 82: 41–47

    Article  CAS  Google Scholar 

  • Schneider J, Legocka J (1981) The role of cytokinins in the development and metabolism of barley leaves. 5. Effect of light and kinetin on the transcriptional activity of chromatin in etiolated leaves. Biochem Physiol Pflanz 176: 614–624

    Google Scholar 

  • Schonbeck MW, Egley GH (1981) Changes in sensitivity of Amaranthus retroflexus L. seeds to ethylene during preincubation. Plant Cell Envir 4: 237–242

    CAS  Google Scholar 

  • Schopfer P (1977) Phytochrome control of enzymes. Annu Rev Plant Physiol 28: 223–252

    Article  CAS  Google Scholar 

  • Schwabe WW (1971) Physiology of vegetative reproduction and flowering. In: Steward FC (ed) Plant physiology-a treatise. Academic Press, London New York, pp 233–411

    Google Scholar 

  • Schwartz A, Koller D (1978) Phototropic response to vectorial light in leaves of Lavatera cretica L. Plant Physiol 61: 924–928

    Article  PubMed  CAS  Google Scholar 

  • Schwartz A, Koller D (1980) Role of the cotyledons in the phototropic response of Lavatera cretica seedlings. Plant Physiol 66: 82–87

    Article  PubMed  CAS  Google Scholar 

  • Scurfield G (1973) Reaction wood: its structure and function. Science 179: 647–655

    Article  PubMed  CAS  Google Scholar 

  • Seeley SD, Powell Jr LE (1981) Seasonal changes of free and hydrolyzable abscisic acid in vegetative apple buds. J Am Soc Hortic Sci 106: 405–409

    CAS  Google Scholar 

  • Selman IW, Kulasegaram S (1967) Development of the stem tuber in kohlrabi. J Exp Bot 18: 471–490

    Article  Google Scholar 

  • Sequeira L (1973) Hormone metabolism in diseased plants. Annu Rev Plant Physiol 24: 353–380

    Article  CAS  Google Scholar 

  • Shackel KA, Hall AE (1979) Reversible leaflet movements in relation to drought adaptation of cowpeas, Vigna unguiculata L. Walp Aust J Plant Physiol 6: 265–276

    Google Scholar 

  • Shein T, Jackson DI (1972) Interaction between hormones, light, and nutrition on extension of lateral buds in Phaseolus vulgaris L. Ann Bot 36: 791–800

    CAS  Google Scholar 

  • Shen-Miller J, Hinchman RR (1974) Gravity sensing in plants: a critique of the statolith theory. Bio Science 24: 643–651

    Google Scholar 

  • Singh G, Singh H (1980) Effect of growth regulators on the growth parameters of chickpea grown under different salinity levels. Indian J Agric Sci 50: 23–30

    CAS  Google Scholar 

  • Sivakumaran S, Hall MA (1978) Effects of age and water stress on endogenous levels of plant-growth regulators in Euphorbia lathyris L. J Exp Bot 29: 195–205

    Article  CAS  Google Scholar 

  • Sliwinski JE, Salisbury FB (1984) Gravitropism in higher plant shoots III. Cell dimensions during gravitropic bending; perception of gravity. Plant Physiol 76: 1000–1008

    Google Scholar 

  • Smirnov YS, Krupnikova TA, Shkolnik MY (1977) Contents of IAA in plants with different sensitivity to boron deficits. Sov Plant Physiol 24: 270–276

    Google Scholar 

  • Smith AM (1976) Ethylene in soil biology. Annu Rev Phytopathol 14: 53–74

    Article  CAS  Google Scholar 

  • Smith AM, Cook RJ (1974) Implications of ethylene production by bacteria for biological balance of soil. Nature 252: 703–705

    Article  CAS  Google Scholar 

  • Smith H (1978) Molecular biology of plant cells. Blackwell, Oxford Smith H, Holmes MG (1977) The function of phytochrome in the natural environment. III. Measurement and calculation of phytochrome photoequilibrium. Photochem Pho-tobiol 25: 547–550

    Google Scholar 

  • Smith H, Wareing PF (1964) Gravimorphism in trees. III. The possible implication of a root factor in the growth and dominance relationships of the shoots. Ann Bot 28: 297–309

    Google Scholar 

  • Sood V, Nanda KK (1979) Effect of gibberellic acid and monophenols on flowering of Impatiens balsamina in relation to the number of inductive and non-inductive photoperiodic cycles. Physiol Plant 45: 250–254

    Article  CAS  Google Scholar 

  • Sorokin HP, Thimann KV (1964) The histological basis for inhibition of axillary buds in Pisum. Protoplasma 59: 326–350

    Article  CAS  Google Scholar 

  • Spomer GG (1973) The concepts of “interaction” and “operational environment” in environmental analyses. Ecology 54: 200–204

    Article  Google Scholar 

  • Spomer GG, Salisbury FB (1968) Eco-physiology of Geum turbinatum and implications concerning alpine environments. Bot Gaz 129: 33–49

    Article  Google Scholar 

  • Stan HJ, Schicker S, Kassner H (1981) Stress ethylene evolution of bean plants-a parameter indicating ozone pollution. Atmos Environ 15: 391–395

    Article  CAS  Google Scholar 

  • Strobel GA (1974) Phytotoxins produced by plant parasites. Annu Rev Plant Physiol 25: 541–566

    Article  CAS  Google Scholar 

  • Suge H (1978) Growth and gibberellin production in Phaseolus vulgaris as affected by mechanical stress (Short commun.) Plant Cell Physiol 19: 1557–1560

    CAS  Google Scholar 

  • Suzuki T, Kondo N, Fujii T (1974) Distribution of growth regulators in relation to the light-induced geotropic responsiveness in Zea roots. Planta 145: 323–329

    Article  Google Scholar 

  • Sweeney BM (1979) Rhythmic phenomena in plants. Academic Press, London New York

    Google Scholar 

  • Tafazoli E, Vince-Prue D (1978) A comparison of the effects of long days and exogenous growth regulators on growth and flowering in strawberry, Fragaria x ananassa Duch. J H or tic Sci 53: 255–259

    Google Scholar 

  • Takahashi H, Saito T, Suge H (1983) Separation of the effects of photoperiod and hormones on sex expression in cucumber. Plant Cell Physiol 24: 147–154

    CAS  Google Scholar 

  • Takeba G, Matsubara S (1979) Measurement of growth potential of the embryo in New York lettuce seed under various combinations of temperature, red light and hormones. Plant Cell Physiol 20: 51–61

    CAS  Google Scholar 

  • Tasker R, Smith H (1977) The function of phytochrome in the natural environment. V. Seasonal changes in the radiant energy quality in woodlands. Photochem Photobiol 26: 487–491

    Google Scholar 

  • Taylor JS, Reid DM, Pharis RP (1981) Mutual antagonism of sulfur dioxide and abscisic acid in their effect on stomatal aperature in broad bean ( Vicia faba L.) epidermal strips. Plant Physiol 68: 1504–1507

    Google Scholar 

  • Taylor JS, Wareing PF (1979) The effect of light on the endogenous levels of cytokinins and gibberellins in seeds of sitka spruce ( Picea sitchensis Carriere ). Plant Cell Envir 2: 173–179

    Google Scholar 

  • Taylorson RR, Hendricks SB (1977) Dormancy in seeds. Annu Rev Plant Physiol 28: 331–354

    Article  CAS  Google Scholar 

  • Thomas B, Tull SE, Warner TJ (1980) Light-dependent gibberellin responses in hypocot-yls of Lactuca sativa L. Plant Sci Lett 19: 355–362

    Article  CAS  Google Scholar 

  • Tizio R (1966) Présence de kinines dans le périderme de tubercules de pomme de terre. CR Acad Sci 262: 868–869

    CAS  Google Scholar 

  • Tompsett PB, Fletcher AM (1979) Promotion of flowering on mature Picea sitchensis by gibberellin and environmental treatments. The influence of timing and hormonal concentration. Physiol Plant 45: 112–116

    Google Scholar 

  • Trewavas AJ (1981) How do plant growth substances work? Plant Cell Envir 4:203–228 Tucker DJ, Mansfield TA (1972) Effects of light quality on apical dominance in Xanthium strumarium and the associated changes in endogenous levels of abscisic acid and cytokinins. Planta 102: 140–151

    Google Scholar 

  • Tukey HB Jr (1970) The leaching of substances from plants. Annu Rev Plant Physiol 21: 305–324

    Article  CAS  Google Scholar 

  • Turgeon R, Webb JA (1971) Growth inhibition by mechanical stress. Science 174: 961–962

    Article  PubMed  CAS  Google Scholar 

  • van Schreven DA (1956) On the physiology of tuber formation in potatoes. I and II. Plant Soil 8: 49–86

    Article  Google Scholar 

  • Van Staden J (1978) The levels of endogenous cytokinins in daffodil bulbs stored under different environmental conditions. Z Pflanzenphysiol 86: 323–330

    Google Scholar 

  • Van Staden J (1981) Effect of photoperiod and gibberellic acid on flowering and cytokinin levels in bougainvillea. S Afr J Sci 77: 327

    Google Scholar 

  • Van Staden J, Dimalla GG (1977) A comparison of the endogenous cytokinins in roots and xylem exudate of nematode resistant and susceptible tomato cultivars. J Exp Bot 28: 1351–1356

    Article  Google Scholar 

  • Van Staden J, Dimalla GG (1981) The production and utilization of cytokinins in rootless, dormant almond shoots maintained at low temperature. Z Pflanzenphysiol 103: 121–129

    Google Scholar 

  • Van Staden J, Wareing PF (1972) The effect of light on endogenous cytokinin levels in seeds of Rumex obtusifolius. Planta 104: 126–133

    Article  Google Scholar 

  • Varner JE, Ho DT (1976) Hormones. In: Bonner J, Varner JE (eds) Plant biochemistry. Academic Press, London New York, pp 713–770

    Google Scholar 

  • Vegis A (1964) Dormancy in higher plants. Annu Rev Plant Physiol 15: 185–224

    Article  CAS  Google Scholar 

  • Vesper MJ, Evans ML (1978) Time-dependent changes in the auxin sensitivity of coleop-tile segments. Plant Physiol 61: 204–208

    Article  PubMed  CAS  Google Scholar 

  • Vezina PE, Boulter DWK (1966) The spectral composition of near UV and visible radiation beneath forest canopies. Can J Bot 44: 1267–1284

    Article  Google Scholar 

  • Victor TS, Vanderhoef LN (1975) Mechanical inhibition of hypocotyl elongation induces radial enlargement. Plant Physiol 56: 845–846

    Article  PubMed  CAS  Google Scholar 

  • Vierstra RD, Poff KL (1981) Role of carotenoids in the phototropic response of corn seedlings. Plant Physiol 68: 798–801

    Article  PubMed  CAS  Google Scholar 

  • Vince-Prue D (1975) Photoperiodism in plants. McGraw-Hill, New York Volkmann D, Sievers A (1979) Graviperception in multicellular organs. In: Haupt W, Feinleib ME (eds) Encyclopedia of Plant Physiology, new ser Vol 7. Springer, Berlin Heidelberg New York, pp 573–600

    Google Scholar 

  • Volkova RI, Drozdov SN, Sycheya ZF, Balagurova NI (1981) On the regulatory function of auxins in actively vegetating plants subjected to temperature influence. Sov Plant Physiol 28: 446–451

    Google Scholar 

  • Wainwright CM (1977) Sun-tracking and related leaf movements in a desert lupin (Lupin-us arizonicus). Am J Bot 64: 1032–1041

    Article  Google Scholar 

  • Waldman M, Rikin A, Dourat A, Richmond AE (1975) Hormonal regulation of morphogenesis and cold resistance. II. Effect of cold-acclimation and of exogenous abscisic acid on gibberellic acid and abscisic acid activities in alfalfa ( Medicago sativa L.) seedlings. J Exp Bot 26: 853–859

    Google Scholar 

  • Walker MA, Dumbroff EB (1981) Effects of salt stress on abscisic acid and cytokinin levels in tomato. Z Pflanzenphysiol 101: 461–470

    CAS  Google Scholar 

  • Walser RH, Walker DR, Seeley SD (1981) Effect of temperature, fall defoliation, and gibberellic acid on the rest period of peach leaf buds. J Am Soc Hortic Sci 106: 91–94

    CAS  Google Scholar 

  • Walton DC (1980) Biochemistry and physiology of abscisic acid. Annu Rev Plant Physiol 31: 453–489

    Article  CAS  Google Scholar 

  • Walton JD, Ray PM (1981) Evidence for receptor function of auxin-binding sites in maize. Red light inhibition of mesocotyl elongation and auxin binding. Plant Physiol 68: 1334–1338

    Google Scholar 

  • Wample RL, Bewley JD (1975) Proline accumulation in flooded and wilted sunflower and the effects on benzyladenine and abscisic acid. Can J Bot 53: 2893–2896

    Article  Google Scholar 

  • Wang CY, Adams DO (1982) Chilling-induced ethylene production in cucumbers (Cucumis sativus L.) Plant Physiol 69: 424–427

    PubMed  CAS  Google Scholar 

  • Wardrop AB (1956) The nature of reaction wood. V. The distribution and formation of tension wood in some species of Eucalyptus. Aust J Bot 4: 152–166

    Article  Google Scholar 

  • Wareing PF, Saunders PF (1971) Hormones and dormancy. Annu Rev Plant Physiol 22: 261–288

    Article  CAS  Google Scholar 

  • Watanabe S, Sibaoka T (1983) Light-and auxin-induced leaflet opening in detached pinnae of Mimosa pudica. Plant Cell Physiol 24: 641–647

    CAS  Google Scholar 

  • Webber JE, Laver ML, Zaerr JB, Lavender DP (1979) Seasonal variation of abscisic acid in the dormant shoots of Douglas-fir. Can J Bot 57: 534–538

    Article  CAS  Google Scholar 

  • Weiser CJ (1970) Cold resistance and injury in woody plants. Science 169: 1269–1278

    Article  PubMed  CAS  Google Scholar 

  • Wellensiek SJ (1962) Dividing cells as the locus for vernalization. Nature 195: 307–308

    Article  Google Scholar 

  • Wellensiek SJ (1968) Identity of floral hormones in Xanthium strumarium L., and Silene armeria L. Acta Bot Neerl 17: 197–198

    Google Scholar 

  • Went F (1957) The experimental control of plant growth. Chron Bot Waltham, Mass Wershing HF, Bailey IW (1942) Seedlings as experimental material in the study of redwood in conifers. J For 40: 411–414

    Google Scholar 

  • Wheeler RM, Salisbury FB (1978) Water spray as a convenient means of imparting mechanical stimulation to plants. Hort Science 14: 270–271

    Google Scholar 

  • Wheeler RM, Salisbury FB (1980) Gravitropism in plant stems may require ethylene. Science 299: 1126–1127

    Article  Google Scholar 

  • Wheeler RM, Salisbury FB (1981) Gravitropism in higher plant shoots. I. A role for ethylene. Plant Physiol 67: 686–690

    Google Scholar 

  • Whitaker RH, Feeny PP (1971) Allelochemics: chemical interaction between species. Science 171: 757–770

    Article  Google Scholar 

  • Wilkins MB (1979) Growth-control mechanisms in gravitropism. In: Haupt W, Feinleib ME (eds) Encycl of Plant Physiol. Springer, Berlin Heidelberg New York, Vol 7, pp 601–626

    Google Scholar 

  • Williams EA, Morgan PW (1979) Floral initiation in sorghum hastened by gibberellic acid and far-red light. Planta 145: 269–272

    Article  CAS  Google Scholar 

  • Wilson BF, Archer RR (1977) Reaction wood: induction and mechanical action. Annu Rev Plant Physiol 28: 23–43

    Article  Google Scholar 

  • Wodzicki TJ, Wodzicki AB (1980) Seasonal abscisic acid accumulation in stem cambial region of Pinus silvestris, and its contribution to the hypothesis of a late-wood control system in conifers. Physiol Plant 48: 443–447

    Article  CAS  Google Scholar 

  • Woolley DJ, Wareing PF (1972) The interaction between growth promoters in apical dominance. II. Environmental effects on endogenous cytokinin and gibberellin levels in Solanum andigena. New Phytol 71: 1015–1025

    Google Scholar 

  • Woolley JT, Stoller EW (1978) Light penetration and light-induced seed germination in soil. Plant Physiol 61: 597–600

    Article  PubMed  CAS  Google Scholar 

  • Wright LZ, Rayle DL (1983) Evidence for a relationship between H+ excretion and auxin in shoot gravitropism. Plant Physiol 72: 99–104

    Article  PubMed  CAS  Google Scholar 

  • Wright STC (1969) An increase in the “inhibitor-beta” content of detached leaves following a period of wilting. Planta 86: 10–20

    Article  CAS  Google Scholar 

  • Wright STC (1975) Seasonal changes in the levels of free and bound abscisic acid in blackcurrant (Ribes nigrum) buds and beech (Fagus sylvatica) buds. J Exp Bot 26: 161–174

    Article  CAS  Google Scholar 

  • Wright STC (1981) The effect of light and dark periods on the production of ethylene from water-stressed wheat leaves. Planta 153: 172–180

    Article  CAS  Google Scholar 

  • Zeevaart J AD (1976) Physiology of flower formation. Annu Rev Plant Physiol 27: 321–348

    Article  CAS  Google Scholar 

  • Zimmermann MH, Wandrop AB, Tomlinson PB (1968) Tension wood in aerial roots of Ficus benjamina. Wood Sei Tech 2: 95–104

    Article  Google Scholar 

  • Ziv M, Halevy AH, Ashri A (1973) Phytohormones and light regulation of the growth habit in peanuts ( Arachis hypogaea L. ). Plant Cell Physiol 14: 727–735

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Salisbury, F.B., Marinos, N.G. (1985). The Ecological Role of Plant Growth Substances. In: Pharis, R.P., Reid, D.M. (eds) Hormonal Regulation of Development III. Encyclopedia of Plant Physiology, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67734-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67734-2_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67736-6

  • Online ISBN: 978-3-642-67734-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics