Skip to main content

Biosynthesis of 16-Membered Macrolide Antibiotics

  • Chapter
Biosynthesis

Part of the book series: Antibiotics ((ANTIBIOTICS,volume 4))

Abstract

To date 57 components of the structurally known 16-membered macrolide antibiotics have been identified (Ōmura and Nakagawa, 1975; Morin and Gorman, 1967; Celmer, 1971; Mallams, 1978). Some of the macrolide antibiotics, including leucomycin, spiramycin, and acetylspiramycin have clinical applications and/or are used as supplements in animal feeds. The currently known macrolides can be classified biosynthetically into four groups, on the basis of the pattern of glycosidation of each sugar to the aglycone moiety, the varieties of constituent sugar, and the carbon skeleton of the aglycones (Ōmura and Takeshima, 1977) (Fig. 1). The first group is represented by the clinically important antibiotics magnamycin and leucomycin. The characteristic features of the antibiotics belonging to this group are the acyl group at the 3-position on the lactone ring, the acyl group at the 4″-position of the mycarose moiety, the structure of the 9–13 positions in the lactone ring, and their combinations.The total number of such macrolides has reached 36.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Achenbach H, Grisebach H (1964) Zur Biogenese der Makrolide, XL Weitere Untersuchungen zur Biogenese des Magnamycins. Z Naturforsch 19b (7): 561

    Google Scholar 

  • Achenbach H, Karl W (1975) Untersuchungen an Stoffwechselprodukten von Mikroorganisme, VIII. Aldgamycin F, ein neues Antibiotikum aus Streptomyces lavendulae. Chem Ber 108:772

    Article  CAS  Google Scholar 

  • Birch AJ, Djerassi C, Dutcher JD, Majer J, Perlan D, Pride E, Rickards RW, Thomson PJ (1964) Studies in relation to biosynthesis part XXXV. Macrolide antibiotics part XII. Methymycin. J Chem Soc 5274

    Google Scholar 

  • Cantoni GL (1963) S-Adenosylmethionine, a new intermediate formed enzymatically from L-methionine and adenosine triphosphate. J Biol Chem 204:403

    Google Scholar 

  • Celmer WD (1971) Stereochemical problems in macrolide antibiotics. Pure Appl Chem 28:413

    Article  PubMed  CAS  Google Scholar 

  • Corcoran JW (1961) Actonomycete antibiotics, II. Participation of the methionine methyl group in the biogenesis of L-cladinose, a branched chain monosaccharide. J Biol Chem 236:27

    Google Scholar 

  • Corcoran JW (1975) S-Adenosylmethionine: Erythromycin C O-methyltransferase. In: Hash JH (ed) Methods in enzymology, vol XLIII, Antibiotics, pp 487–497. Academic Press, London New

    Google Scholar 

  • Corcoran JW, Chick M (1966) Biochemistry of the macrolide antibiotics. In: Snell JF (ed) Biosynthesis of antibiotics, pp 149–201. Academic Press, London New Y

    Google Scholar 

  • Day LE, Chamberlin JW, Gordee EZ, Chen S, Gorman M, Hamill RL, Ness T, Weeks RW, Stroshan R (1973) Biosynthesis of monensin. Antimicrob Agents Chemother 4:410

    PubMed  CAS  Google Scholar 

  • Delić V, Pigac J (1969) Detection and study of co-synthesis tetracycline antibiotics by an agar method. J Gen Microbiol 55:103

    PubMed  Google Scholar 

  • Demain AL, Inamine E (1970) Biochemistry and regulation of streptomycin and mannosidostreptomycinase (α-D-mannosidase) formation. Bacteriol Rev 34:1

    PubMed  CAS  Google Scholar 

  • Feldman LI, Dill IK, Holmlund CE, Whaley HA, Patterson EL, Bohonos N (1964) Microbiological transformations of macrolide antibiotics. Antimicrob Agents Chemother 1963:54

    Google Scholar 

  • Friedman SM, Kaneda T, Corcoran W (1964) Antibiotic glycosides. V. A comparison of 2-methylmalonate and propionate as precursor of the C21 branched chain lactone in erythromycin. J Biol Chem 239:2386

    PubMed  CAS  Google Scholar 

  • Furumai T, Suzuki M (1975a) Studies on the biosynthesis of basic 16-membered macrolide antibiotic, platenomycins. I. Selection of and cosynthesis by nonplatenomycin-producing mutants. J Antibiot 28:770

    PubMed  CAS  Google Scholar 

  • Furumai T, Suzuki M (1975b) Studies on the biosynthesis of basic 16-membered macrolide antibiotics platenomycins. II. Production, isolation and structure of 3-O-propionyl-5-O-mycaminosyl platenolides I and II, 9-dehydro demycarosyl platenomycin. J Antibiot 28:775

    PubMed  CAS  Google Scholar 

  • Furumai T, Suzuki M (1975c) Studies on the biosynthesis of basic 16-membered macrolide antibiotics, platenomycins. III. Production, isolation and structures of platenolides I and II. J Antibiot 28:783

    PubMed  CAS  Google Scholar 

  • Furumai T, Seki Y, Takeda K, Kinumaki A, Suzuki M (1973) An approach to the biosynthesis of macrolide antibiotic platenomycin. J Antibiot 26:708

    PubMed  CAS  Google Scholar 

  • Furumai T, Takeda K, Suzuki M (1975) Studies on the biosynthesis of basic 16-membered macrolide antibiotics, platenomycins. IV. Biosynthesis of platenomycins. J Antibiot 28:789

    PubMed  CAS  Google Scholar 

  • Furumai T, Maezawa I, Matsuzawa N, Yano S, Yamaguchi T, Takeda K, Okuda T (1977) Macrolide antibiotics M-4365 produced by micromonospora. I. Taxonomy, production, isolation, characterization and properties. J Antibiot 30:443

    PubMed  CAS  Google Scholar 

  • Ganguly AK, Lee BK, Brambilla R, Condon R, Sarre O (1976) Biosynthesis of rosamicin. J Antibiot 29:976

    PubMed  CAS  Google Scholar 

  • Gersch D, Bocker H, Thrum H (1977) Biosynthetic studies on the macrolide antibiotic turimycin using 14C-labeled precursors. J Antibiot 30:448

    Google Scholar 

  • Greenspan MD, Macknow RC, Ōmura S (1977) The effect of cerulenin on sterol biosynthesis in Saccharomyces cerevisiae. Lipid 12:729

    Article  CAS  Google Scholar 

  • Grisebach H, Achenbach H (1962a) Biogenesis of macrolide origin of the aldehyde group of magnamycin. Tetrahedron Lett 569

    Google Scholar 

  • Grisebach H, Achenbach H (1962b) Zur Biogenese der Makrolide. III. Über den Einbau von Propionsaure-(l-14C-3-T) und (2-14C-3-T) in Magnamycin. Z Naturforsch 17b:6

    Google Scholar 

  • Grisebach H, Achenbach H (1963) Über die Herkunft der Isovaleriansaure in Magnamycin. Experientia 19:6

    Article  PubMed  CAS  Google Scholar 

  • Grisebach H, Weber-Schilling CA (1968) Zur Biosyntheses der Makrolide. XVI. Über den Einbau von Bernsteinsaure in Magnamycin. Z Naturforsch 23b: 655

    Google Scholar 

  • Grisebach H, Achenbach H, Hofheinz W (1961) Biogenesis of macrolides. Origin of the branched methyl groups in cladinose and mycarose. Tetrahedron Lett 234

    Google Scholar 

  • Haber H, Johnson RD, Rinehart KL Jr (1977) Biosynthetic origin of the C2 units of geldanamycin and distribution of label from D-[6-13C]glucose. J Am Chem Soc 99:3541

    Article  PubMed  CAS  Google Scholar 

  • Hamill RL, Stark WM (1964) Macrocin, a new antibiotic and lactenocin, an active degradation product. J Antibiot 17:133

    PubMed  CAS  Google Scholar 

  • Hata T, Sano Y, Ohki N, Yokoyama Y, Matsumae A, Ito S (1953) Leucomycin, a new antibiotic. J Antibiot 6:87

    PubMed  CAS  Google Scholar 

  • Hatano KE, Higashide, Shibata M (1976) Studies on juvenimicin, a new antibiotic I. Taxonomy, fermentation and antimicrobia properties. J Antibiot 29:1163

    PubMed  CAS  Google Scholar 

  • Hinnen A, Nüesch J (1976) Enzymatic hydrolysis of cephalosporin C by an extracellular acetylhydrolase of Cephalosporium acremonium. Antimicrob Agents Chemother 9:824

    PubMed  CAS  Google Scholar 

  • Huber G, Wallaheusser KH, Fries L, Steigler A, Weidenmueller UH (1962) Niddamycin, ein neues Makrolid-Antibioticum. Arzneim Forsch 12:1191

    CAS  Google Scholar 

  • Hung PP, Marks CL, Tardrew PL (1965) The biosynthesis and metabolism of erythromycins by Streptomyces erythreus. J Biol Chem 240:1322

    PubMed  CAS  Google Scholar 

  • Inouye S, Tsuruoka T, Shomura T, Omoto S, Niida T (1971) Studies on antibiotic, SF-837, a new antibiotic. II. Chemical structure of antibiotic, SF-837. J Antibiot 24:460

    PubMed  CAS  Google Scholar 

  • Iwai Y, Kumano K, Ōmuramura S (1978) Biosynthetic studies of microbial alkaloid pyrindicin using C-l3 labeled precursors. Chem Pharm Bull 26:736

    CAS  Google Scholar 

  • Jensen AL, Darken MA, Schultz JS, Shay AJ (1964) Relomycin, flask and tank fermentation studies. Antimicrob Agents Chemother 1963:49

    Google Scholar 

  • Kaneda T, Butte C, Taubman SB, Corcoran JW (1962) Actinomycete antibiotics. III. The biogenesis of erythronolide, the C21 branched chain lactone in erythromycin. J Biol Chem 237:322

    PubMed  CAS  Google Scholar 

  • Kinumaki A, Suzuki M (1972) Proposed structure of angolamycin (shinocomycin A) by mass spectrometry. J Antibiot 25:480

    PubMed  CAS  Google Scholar 

  • Kinumaki A, Harada K, Suzuki T, Suzuki M, Okuda T (1977) Macrolide antibiotics M-4365 produced by micromonospora. II. Chemical structures. J Antibiot 30:450

    PubMed  CAS  Google Scholar 

  • Kishi T, Harada S, Yamana H, Miyake A (1976) Studies on juvenimicin, a new antibiotic. II. Isolation, chemical characterization and structures. J Antibiot 29:1171

    Google Scholar 

  • Koshiyama H, Okanishi M, Ohmori T, Miyaki T, Tsukiura H, Matsuzaki M, Kawaguchi H (1963) Cirramycin, a new antibiotic. J Antibiot 16:59

    PubMed  CAS  Google Scholar 

  • Kuehne ME, Benson BW (1965) The structures of the spiramycins and magnamycin. J Am Chem Soc 87:4660

    Article  PubMed  CAS  Google Scholar 

  • Kunstman MP, Mitscher LA, Patterson EL (1964) Aldgamycin E, a new neutral macrolide antibiotic. Antimicrob Agents Chemother 1963:87

    Google Scholar 

  • Lee BK, Condon RG, Patel M, Marquee JA, Wagman GH (1976) A method for the biosynthetic preparation of [methyl-1-14C]rosamicin. J Appl Bacteriol 40:217

    Article  PubMed  CAS  Google Scholar 

  • Lefemine DV, Barbatschi E, Dann M, Thomas SO, Kunstman MP, Mitscher LA, Bohonos N (1964) Neutramycin, a new neutral macrolide antibiotic. Antimicrob Agents Chemother 1963:41

    Google Scholar 

  • LeMahieu RA, Ax HA, Blount JF, Carson M, Despreaux CW, Pruess DL, Scannell JP, Weiss F, Kierstead RW (1976) A new semisynthetic macrolide antibiotic 3-O-oleandrosyl-5-O-desosaminyl erythronolide A oxime. J Antibiot 29:728

    CAS  Google Scholar 

  • Machida I, Shiozu S, Yokota K, Makino S, Kawaguchi T, Honda K (1972) Process for a new antibiotic. Japan Kokai Patent 47-25384

    Google Scholar 

  • Maezawa I, Hori T, Kinumaki A, Suzuki M (1973) Biological conversion of narbonolide to picromycin. J Antibiot 26:708

    Google Scholar 

  • Maezawa I, Kinumaki A, Suzuki M (1976) Biological glycosidation of macrolide aglycones. I. Isolation and characterization of 5-O-mycaminosyl narbonolide and 9-dihydro-5-O-mycaminosyl narbonolide. J Antibiot 29:1203

    PubMed  CAS  Google Scholar 

  • Maezawa I, Kinumaki A, Suzuki M (1978) Biological glycosidation of macrolide aglycones. IL Isolation and characterization of desosaminyl-platenolide I. J Antibiot 31:303

    Google Scholar 

  • Majer J, Püza M, Doleziloa L, Vanek Z (1961) Methylation stages in the biosynthesis of erythromycin sugars. Chem Ind 669

    Google Scholar 

  • Majer J, Martin JR, Egan RS, Corcoran JW (1977) Antibiotic glycosides VIII. Erythromycin D. A new macrolide antibiotic. J Am Chem Soc 99:1620–1622

    Article  PubMed  CAS  Google Scholar 

  • Mallams AK (1978) In Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley and Sons: New York 2nd ed. 2:937

    Google Scholar 

  • Martin JR, Egan RS (1970) 5,6-Dioxy-5-oxoerythronolide B, a shunt metabolite of erythromycin biosynthesis. Biochemistry 9:3439

    Article  PubMed  CAS  Google Scholar 

  • Martin JR, Goldstein AW (1970) Final steps in erythromycin biosynthesis. Proc 6th Int Congr Chemother, vol II, p 112. University of Tokyo Press, Tokyo

    Google Scholar 

  • Martin JR, Perun TJ (1968) Studies on the biosynthesis of the erythromycins. III. Isolation and structure of 5-deoxy-5-oxo-erythronolide B, a shunt metabolite of erythromycin biosynthesis. Biochemistry 7:1728

    Article  PubMed  CAS  Google Scholar 

  • Martin JR, Perun TJ, Grirolami RL (1966) Studies on the biosynthesis of the erythromycins. I. Isolation and structure of intermediate glycoside, 3-α-L-mycarosyl erythronolide B. Biochemistry 5:2852

    Article  PubMed  CAS  Google Scholar 

  • Martin JR, Perun TJ, Egan RS (1972) (8S)-8-hydroxy-5,6-dideoxy-5-oxo-erythronolide B, a shunt metabolite of erythromycin biosynthesis-V. Studies on the biosynthesis of the erythromycins-V. Conformation of macrolide antibiotics-V. Tetrahedron 28:2937

    Article  CAS  Google Scholar 

  • McCormick JRD (1960) Cosynthesis of tetracyclines by pairs of Streptomyces aureofaciens mutants. J Am Chem Soc 82:5006

    Article  CAS  Google Scholar 

  • McGuire JM, Boniece WS, Higgens CE, Hoehn MM, Stark WM, Westhead J, Wolfe RN (1961) Tylosin, a new antibiotic. I. Microbiological studies. Antibiot Chemother 11:320

    CAS  Google Scholar 

  • Mitscher LA, Kunstman MP (1969) The structure of neutramycin. Experientia 15:12

    Article  Google Scholar 

  • Morin R, Gorman M (1968) In Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley and Sons: New York 2nd ed. 12:632

    Google Scholar 

  • Morin RB, Gorman M, Hamill RL, DeMarco PV (1970) The structure of tylosin. Tetrahedron Lett 1970:4737

    Article  Google Scholar 

  • Muroi M, Izawa M, Ono H, Higashide E, Kishi T (1972a) Isolation of maridomycins and structure of maridomycin II. Experientia 28:878

    Article  PubMed  CAS  Google Scholar 

  • Muroi M, Izawa M, Kishi T (1972b) Structure of maridomycins. I, III, IV, V and VI, macrolide antibiotics. Experientia 28:129

    Article  PubMed  CAS  Google Scholar 

  • Niida T, Tsuruoka T, Ezaki N, Shomura T, Akita E, Inouye S (1973) A new antibiotics, SF-837. J Antibiot 24:319

    Google Scholar 

  • Nomura S, Horiuchi T, Hata T, Omura S (1972) Inhibition of sterol and fatty acid biosynthesis by cerulenin in cell-free systems of yeast. J Antibiot 25:365

    PubMed  CAS  Google Scholar 

  • Ohno H, Harada S, Kishi T (1974) Maridomycin, a new macrolide antibiotic. VII. Incorporation of labeled precursors into maridomycin and preparation of 14C-labeled 9-propionyl maridomycin. J Antibiot 27:442

    Google Scholar 

  • Ohno H, Ohno T, Awaya J, Ōmura S (1975) Inhibition of 6-methylsalicylic acid synthesis by the antibiotics cerulenin. J Biochem 78:1149

    PubMed  CAS  Google Scholar 

  • Ōmura S (1976) The antibiotic cerulenin, a novel tool for biochemistry as an inhibitor of fatty acid synthesis. Bacteriol Rev 40:681

    PubMed  Google Scholar 

  • Ōmura S, Nakagawa A (1975) Chemical and biological studies on 16-membered macrolide antibiotics. J Antibiotics(Tokyo) 28:401

    Google Scholar 

  • Ōmura S, Takeshima H (1974) Inhibition of the biosynthesis of leucomycin, a macrolide antibiotic, by cerulenin. J Biochem 75:193

    PubMed  Google Scholar 

  • Ōmura S, Takeshima H (1977) Kagaku to Seibutsu (Tokyo) 15:309

    Article  Google Scholar 

  • Ōmura S, Katagiri M, Hata T (1967) The structure of leucomycin A4, A5, A6, A7, A8 and A9. J Antibiotics (Tokyo) 20:234

    Google Scholar 

  • Ōmura S, Nakagawa A, Otani M, Hata T, Ogura H, Furuhata K (1969) The structure of the spiramycins (foromacidines) and their relationship with the leucomycins and carbomycins (Magnamycins). J Am Chem Soc 91:3401

    Article  PubMed  Google Scholar 

  • Ōmura S, Nakagawa A, Neszmelyi A, Gero SD, Sepulchre AM, Piriou F, Lukacs G (1975a) Carbon-13 nuclear magnetic resonance spectral analysis of 16-membered macrolide antibiotics. J Am Chem Soc 97:4001

    Article  PubMed  Google Scholar 

  • Ōmura S, Nakagawa A, Takeshima H, Atsumi K, Miyazawa J, Piriou F, Lukacs G (1975b) Biosynthetic studies using 13C enriched precursors on the 16-membered macrolide antibiotic leucomycin A3. J Am Chem Soc 97:6600

    Article  PubMed  Google Scholar 

  • Ōmura S, Nakagawa A, Takeshima H, Miyazawa J, Kitao C (1975c) A 13C-nuclear magnetic study of the biosynthesis of the 16-membered macrolide antibiotic tylosin. Tetrahedron Lett 50:4503

    Google Scholar 

  • Ōmura S, Takeshima H, Nakagawa A, Kanemoto N, Lukacs G (1976a) Studies on carboxylic acid metabolism in a macrolide producing microorganism using carbon-13 magnetic resonance. Bioorg Chem 5:451

    Article  Google Scholar 

  • Ōmura S, Miyazawa J, Takeshima H, Kitao C, Atsumi K, Aizawa M (1976b) Biocon version of leucomycins and its regulation by butyrate in a producing strain. J Antibiot 29:1131

    PubMed  Google Scholar 

  • Ōmura S, Takeshima H, Nakagawa A, Miyazawa J, Piriou T, Lukacs G (1977a) Studies on the biosynthesis of 16-membered macrolide antibiotics using carbon-13 nuclear magnetic resonance spectroscopy. Biochemistry 16:2860

    Article  PubMed  Google Scholar 

  • Ōmura S, Miyazawa J, Takeshima H, Kitao C (1977b) Induction of the bioconversion of leucomycins by glucose in a producing strain. J Antibiot 30:192

    PubMed  Google Scholar 

  • Ōmura S, Kitao C, Miyazawa J, Imai H, Takeshima H (1978b) Bioconversion and biosynthesis of 16-membered macrolide antibiotic, tylosin using enzyme inhibitor, cerulenin. J Antibiot 31:254

    PubMed  Google Scholar 

  • Ōmura S, Kitao C, Hamada H, Ikeda H (1978c) Bioconversion and biosynthesis of 16-membered macrolide antibiotics. X. Final steps in the biosynthesis of spiramycin using enzyme inhibitor, cerulenin. Chem Pharm Bull in press

    Google Scholar 

  • Pape H, Brillinger GU (1973) Stoffwechselprodukt von Microorganismen. 113. Mitteilung. Biosynthese von Thymidin diphospho-mycarose durch ein zellfreies System aus Streptomyces rimosus. Arch Microbiol 88:25

    Article  CAS  Google Scholar 

  • Pinnert-Sindico S, Ninet L, Preud’Homme J, Cosar C (1954) A new antibiotic, spiramycin. Antibiot Ann 55:724

    Google Scholar 

  • Reiman H, Jaret RS (1972) Structure of rosamicin, a new macrolide from Micromonospora rosaria. Chem Commun 1972:1270

    Google Scholar 

  • Reuter G, Flutter R (1976) Valin und Leucin als mögliche Vorstufen von Isobuttersäure rest. Isovaleriansäure in Turimycin. Biochem Physiol Pflanz 169:1

    CAS  Google Scholar 

  • Sasaki K, Rinehart KL Jr, Slomp G, Grostic MF, Olson EC (1970) Geldanamycin. I. Structure assignment. J Am Chem Soc 92:7591

    Article  PubMed  CAS  Google Scholar 

  • Seno ET, Pieper RL, Huber FM (1977) Terminal stages in the biosynthesis of tylosin. Antimicrob Agents Chemother 455

    Google Scholar 

  • Shimauchi Y, Kubo K, Ōsumi K, Okamura K, Fukugawa Y, Ishikura T, Lein J (1978) Deltamycins, new macrolide antibiotics. II. Isolation and physicochemical properties. J Antibiot 31:270

    PubMed  CAS  Google Scholar 

  • Srinivasan D, Srinivasan PR (1967) Study on the biosynthesis of magnamycin. Biochemistry 6:3111

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T (1970) The structure of an antibiotic, B-58941. Bull Chem Soc Jpn 43:292

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Takamori I, Kinumaki A, Sugawara Y, Okuda T (1971a) The structures of antibiotic, YL-704 C1, C2 and W1. J Antibiot 24:904

    PubMed  CAS  Google Scholar 

  • Suzuki M, Takamori I, Kinumaki A, Sugawara Y, Okuda T (1971b) The structures of antibiotics. YL-704 A and B. Tetrahedron Lett 435

    Google Scholar 

  • Suzuki M, Takamaki T, Miyagawa K, Ono H, Higashide E, Uchida M (1977) Interconversion among leucomycin A3, carbomycin A, carbomycin B and maridomycin II. Agric Biol Chem 41:419

    Article  CAS  Google Scholar 

  • Takeshima H, Kitao C, Ōmura S (1977) Inhibition of the biosynthesis of leucomycin, a macrolide antibiotics, by cerulenin. J Biochem 81:1127

    PubMed  CAS  Google Scholar 

  • Tanner FW, English AR, Lees TM, Routien JB (1952) Some properties of magnamycin, a new antibiotic. Antibiot Chemother 2:441

    CAS  Google Scholar 

  • Tardrew PL, Nyman MA (1964) Hypocholesterolemic agent M-850. US Patent 3.127,315

    Google Scholar 

  • Tsukiura H, Konishi M, Saka M, Naito T, Kawaguchi H (1969) Studies on cirramycin A1. III. Structure of cirramycin A1. J Antibiot 22

    Google Scholar 

  • Tsuruoka T, Inouye S, Shomura T, Ezaki N, Niida T (1971) Studies on antibiotic, SF-837, a new antibiotic. IV. Structure of antibiotic SF-837 A2, A3 and A4. J Antibiot 24:526

    PubMed  CAS  Google Scholar 

  • Vance D, Gordberg I, Mitsuhashi O, Bloch K, Ōmura S, Nomura S (1972) Inhibition of fatty acid synthetase by the antibiotic cerulenin. Biochem Biophys Res Commun 48:649

    Article  PubMed  CAS  Google Scholar 

  • Wagman GH, Waitz JA, Marquez J, Murawski A, Oden EM, Testa RT, Weinstein MJ (1972) A new micromonospora-produced macrolide antibiotic, rosamicin. J Antibiot 25:641

    PubMed  CAS  Google Scholar 

  • Westley JW, Evans RH Jr, Pruess DL, Stempel A (1970) Biosynthesis of antibiotic X-537 A. Chem Commun 1970:1467

    Google Scholar 

  • Westley JW, Pruess DL, Pitcher RG (1972) Incorporation of [1-13C]butyrate into antibiotic X-537 A. Chem Commun 1972:161

    Google Scholar 

  • Westley JW, Evans RH Jr, Harvey G, Pitcher RG, Pruess DL, Stempel A, Berger J (1974) Biosynthesis of lasalocid. I. Incorporation of 13C and 14C labeled substrates into sasalocid A. J Antibiot 27:288

    PubMed  CAS  Google Scholar 

  • Whaley HA, Patterson EL, Dornbush AC, Backus EJ, Bohonos N (1964) Isolation and characterization of relomycin, a new antibiotic. Antimicrob Agents Chemother 1963:45

    Google Scholar 

  • Woo PWK, Dion HW, Bartz QR (1964) The structure of Chalcomycin. Chem Commun 86:2726

    CAS  Google Scholar 

  • Woodward RB (1957) Struktur und Biogenese der Makrolide. Eine neue Klasse von Naturstoffen. Angew Chem 69:50

    Article  CAS  Google Scholar 

  • Woodward RB, Wiler LS, Dutta PC (1965) The structure of magnamycin. J Am Chem Soc 87:4662

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Ōmura, S., Nakagawa, A. (1981). Biosynthesis of 16-Membered Macrolide Antibiotics. In: Corcoran, J.W. (eds) Biosynthesis. Antibiotics, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67724-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67724-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67726-7

  • Online ISBN: 978-3-642-67724-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics