Skip to main content

The Principles Governing Particle Aggregation in Membranes

  • Conference paper
Electron Microscopy at Molecular Dimensions

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

  • 124 Accesses

Abstract

According to the fluid-mosaic model of Singer and Nicolson (1972) membranes are fluid lipid bilayers in which proteins are swimming. Roughly these proteins can be divided into integral or intrinsic proteins which partly or completely penetrate the bilayer and peripheral or extrinsic proteins which are on the surfaees of the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alphen van L, Verkleij AJ, Leunissen-Bijvelt J, Lugtenberg B (1978) Arehitecture of the outer membrane of Escherichia coli. III. Protein-lipopolysaccharide complexes in intramembraneous particles. J Bacteriol 134: 1089–1098

    Google Scholar 

  • Alphen van L, Alphen van W, Verkleij AJ, Lugtenberg B (1979) Architecture of the outer membrane of Escherichia coli Kl2. IV. Relationship between outer membrane particles and aequeous pores. Biochim Biophys Acta 556: 233–243

    Google Scholar 

  • Branton D (1966) Fracture faces of frozen membranes. Proc Natl Acad Sei USA 55: 1048–1056

    Article  CAS  Google Scholar 

  • Chalcroft JP, Bullivant S (1970) An interpretation of liver cell membrane and junetion structure based on Observation on freeze-fracture replicas on both sides of the fracture. J Cell Biol 47: 49–60

    Article  PubMed  CAS  Google Scholar 

  • Chen YS, Hubbell WL (1973) Temperature and light–dependent structural changes in rhodopsin-lipid membranes. Exp Eye Res 17: 517–532

    Article  PubMed  CAS  Google Scholar 

  • Cullis PR, Grathwohl Ch (1977) Hydrocarbon phase transitions and lipid-protein interactions in the erythrocyte membrane. A 31P NMR and fluorescence study. Biochim Biophys Acta 471: 213–226

    Article  PubMed  CAS  Google Scholar 

  • Edwards HH, Mueller TJ, Morrison M (1979) Distribution of transmembrane polypeptides in freeze-fracture. Science 203: 1343–1346

    Article  PubMed  CAS  Google Scholar 

  • Elgsaeter A, Branton D (1974) Intramembrane partiele aggregation on erythrocyte ghosts I The effect of protein removal. J Cell Biol 63: 1018–1030

    Article  PubMed  CAS  Google Scholar 

  • Elgsaeter A, Shotton D, Branton D (1976) Intramembrane partiele aggregation in erythrocyte ghosts. II. The influence of spectrin aggregation. Biochim Biophys Acta 426: 101–122

    Google Scholar 

  • Gerritsen WJ, Verkleij AJ, Zwaal RFA, Deenen van LLM (1978) Freeze–fracture appearanee and disposition of band 3 protein from the human erythrocyte membrane in lipid vesicles. Eur J Biochem 85: 255–261

    Article  PubMed  CAS  Google Scholar 

  • Gerritsen WJ, Verkleij AJ, Deenen van LLM (1979) The lateral distribution of intramembrane particles in the erythrocyte membrane and recombinant vesicles. Biochim Biophys Acta 555: 26–41

    Article  PubMed  CAS  Google Scholar 

  • Henderson R, Capaldi RA, Leigh JS (1977) Arrangement of cytochrome oxidase molecules in two-dimensional vesicle crystals. J Mol Biol 112: 631–648

    Article  PubMed  CAS  Google Scholar 

  • Kruijff de B, Verkleij AJ, Echteid van CJA, Gerritsen WJ, Mombers C, Noordam PC, de Gier J (1979) The occurrence of lipidie particles in lipid bilayers as seen by 31P NMR and freeze-fracture electron microscopy. Biochim Biophys Acta 555: 200–209

    Google Scholar 

  • Maniloff J, Vanderkooi G, Hayashi H, Capaldi RA (1973) Optical analysis of electron micrographs of cytochrome oxidase membranes. Biochim Biophys Acta 298: 180–183

    Article  PubMed  CAS  Google Scholar 

  • McNutt NS, Weinstein RS (1970) The ultrastructure of the nexus. A correlated thin-section and freeze-cleave study. J Cell Biol 47: 666–688

    Google Scholar 

  • Pinto de Silva P, Branton D (1970) Membrane Splitting in freeze-etching. J Cell Biol 45: 498–605

    Google Scholar 

  • Pinto de Silva P, Moss PS, Fudenberg HH (1973) Anionic sites on the membrane intercalated particles of human erythrocyte ghosts membranes. Freeze-fracture localization. Exp Cell Res 81: 127–138

    Google Scholar 

  • Singer SJ, Nicholson GL (1972) The fluid mosaic model of structure of cell membranes. Science 175: 720–731

    Article  PubMed  CAS  Google Scholar 

  • Staehelin LA, Chlapowski FI, Bonneville MA (1972) J Cell Biol 53: 73–91

    Article  PubMed  CAS  Google Scholar 

  • Sun FF, Prezbindowski KS, Crane FL, Jacobs EE (1968) Physical State of cytochrome oxidase. Relationship between membrane formation and ionic strength. Biochim Biophys Acta 153: 804–818

    Google Scholar 

  • Unwin N, Henderson R (1975) Molecular structure determination by electron microscopy of unstained crystalline speeimens. J Mol Biol 94: 425–440

    Article  PubMed  CAS  Google Scholar 

  • Vanderkooi G, Senior AE, Capaldi RA, Hayashi H (1972) Biological membrane structure III. The lattice structure of membraneous cytochrome oxidase. Biochim Biophys Acta 274: 38–48

    Google Scholar 

  • Verkleij AJ, Ververgaert PHJ (1975) The architecture of biological and artifical membranes as visualized by freeze etching. Annu Rev Phys Chem 26: 101–121

    Article  CAS  Google Scholar 

  • Verkleij AJ, Ververgaert PHJ (1978) Freeze-fracture morphology of biological membranes. Biochim Biophys Acta 515: 303–327

    PubMed  CAS  Google Scholar 

  • Verkleij AJ, Zwaal RFA, Roelofsen B, Comfurius P, Kastelijn D, Deenen van LLM (1973) The asymmetric distribution of phospholipids in the human red cell membranes. A combined study using phospholopases and freeze-fracture microscopy. Biochim Biophys Acta 323: 178–193

    Google Scholar 

  • Verkleij AJ, Alphen van L, Bijvelt J, Lugtenberg B (1977) Architecture of the outer membrane of Escherichia coli Kl 2 II. Freeze-fracture morphology of wild type and mutant strains. Biochim Biophys Acta 466: 269–282

    Google Scholar 

  • Verkleij AJ, Mombers C, Leunissen-Bijvelt J, Ververgaert PHJTh (1979) Lipidic intramembraneous particles. Nature (London) 279: 162–163

    Article  CAS  Google Scholar 

  • Ververgaert PHJTh, Verkleij AJ (1978) A view on intramembraneous particles. Experientia 34: 454–455

    Article  CAS  Google Scholar 

  • Yu J, Branton D (1976) Reconstitution of intramembrane particles in recombinants of erythrocyte protein band 3 and lipid: effects of spectrinactin association. Proc Natl Acad Sei USA 73: 3891

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Verkleij, A.J. (1980). The Principles Governing Particle Aggregation in Membranes. In: Baumeister, W., Vogell, W. (eds) Electron Microscopy at Molecular Dimensions. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67688-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67688-8_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67690-1

  • Online ISBN: 978-3-642-67688-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics