Skip to main content

Carotenoids as Primary Photoreceptors in Blue-Light Responses

  • Conference paper

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

The preponderance of evidence for the identification of the so-called “blue light” photoreceptor (cryptochrome) is clearly in favor of a flavoprotein (Presti and Delbrück 1978). However, there remain some photobiological responses to blue light whose mediation cannot be explained readily by a flavoprotein photoreceptor. Therefore, the organizers of this First International Conference on the Effects of Blue Light in Plants and Microorganisms have requested that I serve as an advocatus diaboli for carotenoids, since their possible function as primary photoreceptors for some responses has not been excluded.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bensasson RV (1975) Spectroscopic and biological properties of carotenoids. In: Colombetti G (ed) Biophysics of photoreceptors and photobehavior of microorganisms, pp 146–163. Proc Int School Badia Fiesolana, Lito Felici, Pisa

    Google Scholar 

  • Bensasson RV, Land EJ, Maudinas B (1976) Triplet states of carotenoids from photosynthetic bacteria studied by nanosecond ultraviolet and electron pulse irradiation. Photochem Photobiol 23: 189–193

    Article  PubMed  CAS  Google Scholar 

  • Briggs WR (1976) The nature of the blue light photoreceptor in higher plants and fungi. In: Smith H (ed) Light and plant development, pp 7–18

    Google Scholar 

  • Butterworths, Boston Bünning E (1937) Phototropismus und Carotinoide. II. Das Carotin der Reizaufnahmezonen von Pilobolus, Phycomyces und Avena. Planta 27: 148–158

    Article  Google Scholar 

  • Cerda-Olmedo E (1977) Behavioral genetics of Phycomyces. Annu Rev Microbiol 31: 535–547

    Article  PubMed  CAS  Google Scholar 

  • Cerdá-Olmedo E, Torres-Martinez S (1979) Genetics and regulation of carotene biosynthesis. Pure Appl Chem 51: 631–637

    Article  Google Scholar 

  • Darwin С (1896) The power of movement in plants, p 592. D Appleton and Company, New York

    Google Scholar 

  • Davies BH (1976) Analysis of carotenoid pigments. In: Goodwin TW (ed) Chemistry and biochemisstry of plant pigments, vol II, p 154. Academic Press, London New York

    Google Scholar 

  • DeFabo EC, Harding RW, Shropshire W Jr (1976) Action spectrum between 260 and 800 nanometers for the photoinduction of carotenoid biosynthesis in Neurospora crassa. Plant Physiol 57: 440–445

    Article  CAS  Google Scholar 

  • Fong F, Schiff JA (1978) Blue-light absorbance changes and phototaxis in Euglena. Plant Physiol 59: 74–405

    Google Scholar 

  • Fong F, Schiff JA (1979) Blue light-induced absorbance changes associated with carotenoids in Euglena. Planta 146: 119–128

    Article  CAS  Google Scholar 

  • Galland P, Russo VEA (1979a) Photoinitiation of sporangiophores in Phycomyces mutants deficient in phototropism and in mutants lacking β-carotene. Photochem Photobiol 29: 1009–1014

    Article  CAS  Google Scholar 

  • Galland P, Russo VEA (1979b) Regulation of sporangiophorogenesis in Phycomyces: joint control by oxygen, retinol and blue light. Planta 146: 257–262

    Article  CAS  Google Scholar 

  • Galston AW (1977) Riboflavin retrospective or deja-vu in blue. Photochem Photobiol 25: 503–504

    Article  CAS  Google Scholar 

  • Harding RW (1974) The effect of temperature on photoinduced carotenoid biosynthesis in Neurospora crassa. Plant Physiol 54: 142–147

    Article  PubMed  CAS  Google Scholar 

  • Harding RW, Shropshire W Jr (1980) Photocontrol of carotenoid biosynthesis. Annu Rev Plant Physiol 31: in press

    Google Scholar 

  • Hartmann KM (1977) Aktionsspektrometrie. In: Hoppe W, Lohmann W, Markl H, Ziegler H (eds) Biophysik, ein Lehrbuch, pp 197–222. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Henderson R (1977) The purple membrane from Halobacterium holobium. Annu Rev Biophys Eng 6: 87–109

    Article  CAS  Google Scholar 

  • Hildebrand E (1977) What does Halobacterium tell us about photoreception? Biophys Struct Mech 3: 69–77

    Article  PubMed  CAS  Google Scholar 

  • Hildebrand E, Dencher N (1975) Two photoreceptors controlling behavioral responses of Halobacterium halobium. Nature (London) 257: 46–48

    Article  PubMed  CAS  Google Scholar 

  • Jabben M, Deitzer GF (1979) Effects of the herbicide san 9789 on photomorphogenic responses. Plant Physiol 63: 481–485

    Article  PubMed  CAS  Google Scholar 

  • Jayaram M, Presti D, Delbrück M (1979) Light-induced carotene synthesis in Phycomyces. Exp Mycol 3: 42–52

    Article  CAS  Google Scholar 

  • Kasha M, Kahn AU (1970) The physics, chemistry and biology of singlet molecular oxygen. Ann NY Acad Sci 171: 5–23

    Article  CAS  Google Scholar 

  • Khan AU (1978) Activated oxygen: Singlet molecular oxygen and superoxide anion. Photochem Photobiol 28: 615–627

    Article  CAS  Google Scholar 

  • Krauhs JM, Sordahl LA, Brown AM (1977) Isolation of pigmented granules involved in extra-retinal photoreception in Aplysia californica neurons. Biochim Biophys Acta 471: 25–31

    Article  PubMed  CAS  Google Scholar 

  • Krinsky NI (1968) The protective function of carotenoid pigments. In: Giese AC (ed) Photophysiology, vol III, pp 123–195. Academic Press, London New York

    Google Scholar 

  • Krinsky NI (1979) Carotenoid protection against oxidation. Pure Appl Chem 51: 649–660

    Article  CAS  Google Scholar 

  • Kumagai T, Oda Y (1969) An action spectrum for photoinduced sporulation in the fungus Trichoderma viride. Plant and Cell Physiol 10: 387–392

    CAS  Google Scholar 

  • Land EJ, Sykes A, Truscott TG (1971) The invitro photochemistry of biological molecules. II. The triplet states of Þ-carotene and lycopene excited by pulse radio lysis. Photochem Photobiol 13: 311–320

    Article  CAS  Google Scholar 

  • Lenci F, Colombetti G (1978) Photobehavior of microorganisms. Annu Rev Biophys Bioeng 7: 341–361

    Article  PubMed  CAS  Google Scholar 

  • Lewis SC, Schiff JA, Epstein HT (1961) Photooxidation of cytochromes by a flavoprotein from Euglena. Biochem Biophys Res Commun 5: 221–225

    Article  PubMed  CAS  Google Scholar 

  • McKellar JF, Phillips GO, Checucci A, Lenci F (1975) Excited states of flavins in photoreception processes. In: Birks JB (ed) Excited states of biological molecules, pp 92–105. Wiley, New York

    Google Scholar 

  • Meissner G, Delbrück M (1968) Carotenes and retinal in Phycomyces mutants. Plant Physiol 43: 1279–1283

    Article  PubMed  CAS  Google Scholar 

  • Nultsch W, Häder D-P (1979) Photomovement of motile microorganisms. Photochem Photobiol 29: 423–437

    Article  CAS  Google Scholar 

  • Nultsch W, Wenderoth K (1973) Phototaktische Untersuchungen an einzelnen Zellen von Navicula peregrina (Ehrenberg) Kützing. Arch Microbiol 90: 47–58

    Article  Google Scholar 

  • Oesterhelt D, Stoeckenius W (1971) Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nature New Biol 233: 149–152

    PubMed  CAS  Google Scholar 

  • Parker GH (1903) The skin and eyes as receptive organs in the reactions of frogs to light. Am J Physiol 10: 27–33

    Google Scholar 

  • Presti D, Delbrück M (1978) Photoreceptors for biosynthesis, energy storage and vision. Plant Cell Environ 1: 81–100

    Article  Google Scholar 

  • Presti D, Hsu W-J, Delbrück (1977) Phototropism in Phycomyces mutants lacking β-carotene. Photochem Photobiol 26: 403–405

    Article  CAS  Google Scholar 

  • Rau W (1976) Photoregulation of carotenoid biosynthesis in plants. Pure Appl Chem 47: 237–243

    Article  CAS  Google Scholar 

  • Rayport S, Wald G (1978) Frog skin photoreceptors. Program Abstr 6th Annu Meet Am Soc Photobiol, June 11–15, pp 94–95

    Google Scholar 

  • Sandmann G, Hilgenberg W (1978) Förderung der β-carotin-synthtese durch Licht beiPhycomyces blakesleeanus Bgff. Biochem Physiol Pflanz 172: 401–407

    CAS  Google Scholar 

  • Schletz K (1975) Phototaxis bei Volvox-Pigmentsysteme der Lichtrichtungsperzeption. Z Pflanzen-physiol 77: 189–211

    Google Scholar 

  • Shah I (1971) The pleasantries of the incredible Mulla Nasrudin, p 71. EP Dutton, New York

    Google Scholar 

  • Shropshire W Jr (1972) Phytochrome, a photochromic sensor. Photophysiology 7: 32–72

    Google Scholar 

  • Shropshire W Jr (1975) Phototropism. In Schenck GO (ed) Progress in photobiology, Proc 6th Int Congr Photobiol Drsch Ges Lichtforsch eV, Frankfurt 1974, Abst 024, pp 1–5. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Shropshire W Jr (1977) Photomorphogenesis. In: Smith KC (ed) The science of photobiology, pp 281–312. Plenum Press, New York London

    Google Scholar 

  • Shropshire W Jr (1978) Photochromic systems, program and abstracts 6th Annu Meet Am Soc Photobiol, June 11–15, p 91

    Google Scholar 

  • Song P-S, Moore TA (1974) On the photoreceptor pigment for phototropism and phototaxis: Is a carotenoid the most likely candidate? Photochem Photobiol 19: 435–441

    Article  PubMed  CAS  Google Scholar 

  • Song P-S, Moore TA, Sun M (1972) Excited states of some plant pigments. In: Chichester CO (ed) The chemistry of plant pigments, pp 33–74. Academic Press, London New York

    Google Scholar 

  • Sordahl LA, Lewis A, Pancurak J, Brown AM, Perreault G (1976) Identification of the photosensitive pigment in the giant neuron of Aplysia californica. Biophys J 16: 146a

    Google Scholar 

  • Takahama U (1978) Suppression of lipid peroxidation by β-carotene in illuminated chloroplast fragments: Evidence for β-carotene as a quencher of singlet molecular oxygen in chloroplasts. Plant Cell Physiol 19: 1565–1569

    CAS  Google Scholar 

  • Tan KK (1978) Light induced fungal development. In: Smith JE, Berry DR (eds) The filamentous fungi, vol III, pp 334–357. John Wiley and Sons, New York

    Google Scholar 

  • Wald G (1968) Molecular basis of visual excitation. Science 162: 230–239

    Article  PubMed  CAS  Google Scholar 

  • Wald G, Rayport S (1974) Skin photoreceptors in the leopard frog. Biol Bull 147: 503

    Google Scholar 

  • Wenderoth K (1975) Untersuchungen der photo-phobotaktischen Reaktionen einzelner Diatomeenzellen, pp 1–72. Inaugural-Dissertation (Dr. rer. nat.) der Phillips Universität Marburg/Lahn. Görich und Weiershäuser, Marburg (Lahn)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shropshire, W. (1980). Carotenoids as Primary Photoreceptors in Blue-Light Responses. In: Senger, H. (eds) The Blue Light Syndrome. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67648-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67648-2_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67650-5

  • Online ISBN: 978-3-642-67648-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics