Skip to main content

Multiphoton Dissociation of Molecules with Low Power CW Infrared Lasers

  • Conference paper

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 3))

Abstract

The multiphoton excitation of molecules by infrared radiation offers a new form of molecular activation which has captured the imagination of a sizeable audience of physicists and chemists. Many intriguing possibilities for chemical applications result from the selectivity which can be achieved using intense, narrow band lasers to excite specific molecular species, including isotopic variants. The ability to create a hot molecule in a cool environment brings chemists close to the realization of a tame Maxwell’s Demon.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. J. Coggiola, P. A. Schulz, Y. T. Lee and Y. R. Shen, Phys. Rev. Lett. 38, 17 (1977).

    Article  ADS  Google Scholar 

  2. E. R. Grant, P. A. Schulz, Aa. S. Sudbo, M. J. Coggiola, Y. R. Shen and Y. T. Lee, Proceedings International Conference on Multiphoton Processes, Rochester, New York (1977) to be published.

    Google Scholar 

  3. E. R. Grant, P. A. Schulz, Aa. S. Sudbo, Y. R. Shen and Y. T. Lee Phys. Rev. Lett. 40, 115 (1978).

    Article  ADS  Google Scholar 

  4. G. A. Hill, E. Grunwald and P. Keehn, J. Am. Chem. Soc. 99, 6521 (1977).

    Article  Google Scholar 

  5. V. S. Letokhov in Aux Frontieres de la Spectroseopie Laser: Frontiers in Laser Spectroscopy, R. Balian, ed., North Holland, Vol. 2 (1977).

    Google Scholar 

  6. C. P. Quigley, “Collisional Effects in Multiple Photon IR Absorption” in Advances in Laser Chemistry. A. H. Zewail, ed., Springer Series in Chemical Physics (Springer, Berlin, Heidelberg, New York, 1978).

    Google Scholar 

  7. P. Kolodner, C. Winterfeld and E. Yablonovitch, Optics Com. 20, 119 (1977).

    Article  Google Scholar 

  8. T. A. Lehman and M. M. Bursey, Ion Cyclotron Resonance Spectrometry, Wiley-Interscience, New York (1976).

    Google Scholar 

  9. J. L. Beauchamp, Ann. Rev. Phys. Chem. 22, 527 (1971).

    Article  ADS  Google Scholar 

  10. T. B. McMahonand, J. L. Beauchamp, Rev. Sci. Inst. 43, 509 (1972).

    Article  ADS  Google Scholar 

  11. For a full discussion of the ion-molecule chemistry of perfluoro-propylene see B. S. Freiser and J. L. Beauchamp, J. Am. Chem. Soc. 96, 6260 (1974).

    Article  Google Scholar 

  12. B. S. Freiser and J. L. Beauchamp, Chem. Phys. Lett. 35, 35 (1975).

    Article  ADS  Google Scholar 

  13. B. S. Freiser and J. L. Beauchamp, J. Am. Chem. Soc. 98, 3136 (1976).

    Article  Google Scholar 

  14. B. S. Freiser and J. L. Beauchamp, J. Am. Chem. Soc. 98, 265 (1976).

    Article  Google Scholar 

  15. B. S. Freiser, R. H. Staley and J. L. Beauchamp, Chem. Phys. Lett. 39, 49 (1976).

    Article  ADS  Google Scholar 

  16. T. E. Orlows M, B. S. Freiser and J. L. Beauchamp, Chem. Phys. 16, 439 (1976).

    Article  Google Scholar 

  17. B. S. Freiser and J. L. Beauchamp, J. Am. Chem. Soc. 99, 3214 (1977).

    Article  Google Scholar 

  18. T. E. Sharp, J. R. Eyler and E. Li, Int. J. Mass Spec. Ion Phys. 9 421 (1972).

    Article  Google Scholar 

  19. J. L. Beauchamp, Ph.D. Thesis, Harvard University, 1967. The major fragment ions formed by electron impact ionization of diethyl ether (C2H3 +, C2H5 +, CHO+, CH2OH+, C2H3O+, CH3CHOH+) proton transfer to (C2H5)2O forming (C2H5)2OH+, which is also formed by a fast reaction of the molecular ion. C3H5+ and C3H7O+ undergo hydride abstraction reactions with (C2H5)2O to produce CH3CHOC2H5+.

    Google Scholar 

  20. The kinetics of reaction 1 have not been investigated in detail. Observation of appreciable amounts of proton bound dimer only after several collisions have taken place (pressures > 5 x 10-7 torr and trapping times > 0.5 sec) suggests that reaction 1 is termolecular. However, bimolecular association reactions are known [M. K. Murphy and J. L. Beauchamp, J. Am. Chem. Soc. 98, 5781 (1976)]

    Article  Google Scholar 

  21. The estimated enthalpy change for reaction 1 is based on measured enthalpy changes for analogous reactions of H3O+, CH3OH2 + and (CH3)2OH+; P. Kebarle Ann. Rev. Phys. Chem. 28, 445 (1977).

    Article  ADS  Google Scholar 

  22. H. Wieser, W. G. Laidlaw, P. J. Krueger and H. Fuhrer, Spectrochim. Acta 24A, 1055(1968).

    Google Scholar 

  23. T. B. McMahon, P. G. Miasek and J. L. Beauchamp, Int. J. Mass Spectrom. Ion Phys. 21, 163 (1976).

    Article  Google Scholar 

  24. Since reaction 1 may initially impart up to 31 kcal/mol of internal energy to [(C2H5)2O]2H+ the possibility of photolyzing vibrationally excited species requires consideration. Experiments in which the laser was turned on 500 msec after ejection of (C2H5)2OH+ produced the same multiphoton dissociation rates as when the laser was turned on coincident with ejection of (C2H5)2OH+. Since allowing additional collisions (approximately 35 at 2 × 10–6 torr) did not alter the photodissociation rate, [(C2H5)2O]2H+ must have been thermalized prior to photolyses.

    Google Scholar 

  25. The CH3CHOC2H5 + ion is also observed to photodissociate at ~8 W cm-2. Loss of ethylene to give CH3CHOH+ is the lowest energy pathway; this could not be confirmed due to the complexity of competing reactions. The cross section was not measured but is estimated to be less than 2 × 10-21 cm2.

    Google Scholar 

  26. J. R. Nielsen, H. H. Claassen and D. C. Smith, J. Chem. Phys. 20, 1916 (1952).

    Article  ADS  Google Scholar 

  27. M. Tamir and R. D. Levine, Chem. Phys. Lett. 46, 208 (1977).

    Article  ADS  Google Scholar 

  28. D. W. Berman, D. S. Bomse and J. L. Beauchamp, unpublished photoionization studies.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bomse, D.S., Woodin, R.L., Beauchamp, J.L. (1978). Multiphoton Dissociation of Molecules with Low Power CW Infrared Lasers. In: Zewail, A.H. (eds) Advances in Laser Chemistry. Springer Series in Chemical Physics, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67054-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67054-1_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67056-5

  • Online ISBN: 978-3-642-67054-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics