Skip to main content

Rheology of Colloid Systems

  • Chapter
Geochemistry of Colloid Systems
  • 276 Accesses

Abstract

Consider a unit volume of fluid consisting of an infinite number of layers, the lower surface of the bottom layer of which is fixed. This base is indicated in Figure 9.1 as the “reference plane”. A tangential force is applied at the top surface of the unit volume, which results in movement of the top layer in the direction of the applied force. The stacked layers slide one above the other by equal relative amounts to each other. The result is that a velocity gradient D = (dv/dy) is established perpendicular to the plane in which the top layer moves, wherein v is the velocity of the sliding layer and y is the distance of the layer from the “reference plane”. This velocity gradient is called rate of shear (or simply shear), and is measured in reciprocal seconds (m s-1 · m-1 = s-1). The applied tangential force is called shearing stress (or simply stress) and is indicated by τ. The stress is measured in dynes/cm2 or in newtons/m2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boer, R. B. de: On thermodynamics of pressure solution-interaction between chemical and mechanical forces. Geochim. Cosmochim. Acta 41, 249–256 (1977)

    Article  Google Scholar 

  • Bottinga, Y., Weill, D. F.: The viscosity of magmatic silicate liquids: a model for calculation. Am. J. Sci. 272, 438–475 (1972)

    Article  Google Scholar 

  • Brodnyan, J. G.: The concentration dependence of the Newtonian viscosity of prolate ellipsoids. Trans. Soc. Rheol. 3, 61–68 (1959)

    Article  Google Scholar 

  • Brückner, R.: Der Einfluß mechanischer Schwingungen auf das Fließverhalten von Kaolin-Wasser-Mischungen. Ber. Dtsch. Keram. Ges. 43, 709–717 (1966)

    Google Scholar 

  • Chen, Y., Schnitzer, M.: Viscosity measurements on soil humic substances. Soil Sci. Soc. Am. Proc. 40, 866–872 (1976)

    Article  Google Scholar 

  • Einstein, A.: Investigations of the theory of the Brownian movement. New York: Dover Pub. 1956

    Google Scholar 

  • Gabrysh, W. F., Eyring, H., Lin-Sen, P., Gabrysh, A.F.: Rheological factors for bentonite suspensions. J. Am. Ceram. Soc. 46, 523–529 (1963)

    Article  Google Scholar 

  • Goldsmith, H. L., Mason, S. G.: The micro rheology of suspensions. In: Rheology. Eirich, F. R. (ed.). New York: Academic Press, 1967, Vol. 4, pp. 85–250.

    Google Scholar 

  • Goranson, R. W.: A note on the elastic properties of rocks. Wash. Acad. Sci. J. 24, 419–428 (1934)

    Google Scholar 

  • Griggs, D.: Hydrolytic weakening of quartz and other silicates. Geophys. J. 14, 19–31 (1967)

    Google Scholar 

  • Lowry, W. D.: Factors in loss of porosity by quartzose and sandstone of Virginia. Bull. Am. Assoc. Petrol. Geol. 40, 489–500 (1956)

    Google Scholar 

  • Macdonald, G. A.: Volcanoes. Englewood Cliffs, New Jersey: Prentice-Hall, Inc. 1971

    Google Scholar 

  • Michaels, A. S., Bolger, J. C.: Settling rates and sediment volumes of flocculated kaolin suspensions. Ind. Eng. Chem. Fundam. 1, 24–33 (1962a)

    Article  Google Scholar 

  • Michaels, A. S., Bolger, J. C.: The plastic flow behavior of flocculated kaolin suspensions, Ind. Eng. Chem. Fundam. 1, 153–162 (1962b)

    Article  Google Scholar 

  • Minakami, T., Sakuma, S.: Report on volcanic activities and volcanological studies concerning them in Japan during 1948–1951. Bull. Volcanol. (ser. 2) 14, 79–130 (1953)

    Article  Google Scholar 

  • Mooney, M.: The viscosity of a concentrated suspension of spherical particles. J. Colloid Sci. 6, 162–170 (1951)

    Article  Google Scholar 

  • Müller-Vonmoos, M., Jenny, F.: Einfluß der Beschallung auf Körnung. Rheologische Eigenschaften, Sedimentations-Verhalten und Injizierbarkeit wäßriger Opalit-Suspensionen. Schweiz. Mineral. Petrogr. Mitt. 50, 227–243 (1970)

    Google Scholar 

  • Rieke III, H. H., Chilingarian, G. V: Compaction of argillaceous sediments. Amsterdam: Elsevier 1974

    Google Scholar 

  • Scheraga, H. A.: Non-Newtonian viscosity of solutions of ellipsoidal particles. J. Chem. Phys. 23, 1526–1532 (1955)

    Article  Google Scholar 

  • Schmincke, H. U.: Volcanological aspects of peralkaline silicic welded ash-flow tuffs. Bull. Volcanol. 38, 594–636 (1974)

    Article  Google Scholar 

  • Shainberg, I., Otoh, H.: Size and shape of montmorillonite particles saturated with Na/Ca ions (inferred from viscosity and optical measurements). Isr. J. Chem. 6, 251–259 (1968)

    Google Scholar 

  • Shaw, H. R.: Comments on viscosity, crystal settling and convections in granitic magmas. Am. J. Sci. 263, 120–152 (1965)

    Article  Google Scholar 

  • Shaw, H. R.: Viscosities of magmatic silicate liquids: an empirical method of prediction. Am. J. Sci. 272, 870–893 (1972)

    Article  Google Scholar 

  • Sherman, P.: Industrial Rheology. London: Academic Press 1970

    Google Scholar 

  • Simha, R.: The influence of Brownian movements in the viscosity of solutions. J. Phys. Chem. 44, 25–37 (1940)

    Article  Google Scholar 

  • Skempton, W. A.: The consolidation of clays by gravitational compaction. Q. J. Geol. Soc. London 725, 373–411 (1970)

    Google Scholar 

  • Smith, T. L.: Rheological properties of dispersions of particulate solids in liquid media. J. Paint Technol. 44, 71–79 (1972)

    Google Scholar 

  • Swolfs, H. S.: Chemical effects of pore fluids on rock properties. Mem. Am. Assoc. Petrol. Geol. 18, 224–234 (1972)

    Google Scholar 

  • Tanford, C.: Physical chemistry of macromolecules. New York: John Wiley & Sons 1967

    Google Scholar 

  • van Olphen, H.: An introduction to clay colloid chemistry. New York: John Wiley & Sons 1963

    Google Scholar 

  • Weyl, P. K.: Pressure solution and the force of crystallization-a phenomenological theory. J. Geophys. Res. 64, 2001–2025 (1959)

    Article  Google Scholar 

  • Weyl, W. A., Ormsby, W. C.: Atomistic approach to the rheoiogy of sand-water and clay-water mixtures. In: Rheoiogy, theory and applications. Eirich, F. R. (ed.). New York: Academic Press, 1960, Vol. 3, pp. 249–297

    Google Scholar 

  • Weymann, H. D.: On the viscosity of thixotropic suspensions. Proc. 4th Int. Congr. Rheol. 1963. Lee, E. H. (ed.). 1965, Part 2, pp. 573–591

    Google Scholar 

  • Zavaritskii, A. N., Sobolev, V. S.: The physicochemical principles of igneous petrology. Kolodny, J., Am oils, R. (trans.). Jerusalem: Israel Program for Scientific Translations 1964

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yariv, S., Cross, H. (1979). Rheology of Colloid Systems. In: Geochemistry of Colloid Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67041-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67041-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67043-5

  • Online ISBN: 978-3-642-67041-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics