Skip to main content

Phase Transitions, Protein Aggregation and a New Method for Modulating Membrane Fluidity

  • Conference paper
Biochemistry of Membrane Transport

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

It is well known that hydrated phospholipids can undergo a thermotropic phase transition in which the hydrocarbon chains change from a relatively rigid and ordered arrangement to a phase in which they are fluid and disordered. In the rigid, so-called crystal phase, the lateral diffusion of lipids in the bilayer is restricted compared with diffusion rates in the fluid, liquid-crystal conformation. The temperature (Tc) at which lipids undergo a phase change and the dependence of this temperature on hydrocarbon chain length, unsaturation, polar group, and metal ion interactions have been documented for many lipid systems (Chapman, 1975). In mixed lipid dispersions the phase transition may involve a cocrystallisation of the constituent lipids or conversely their segregation within the lamellar plane giving rise to broad melting endotherms or a number of individual, relatively narrow endotherms, respectively. The phase diagrams of several mixed lipid systems have been established (Ladbrooke and Chapman, 1969; Phillips et al., 1970; Shimshick and McConnell, 1973), particularly those of binary phospholipid-cholesterol mixtures (Ladbrooke et al., 1968).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blok, M.C., van Deenen, L.L.M., De Gier, J.: Effect of the gel to liquid crystalline phase transition on the osmotic behaviour of phosphatidylcholine liposomes. Biochim. Biophys. Acta 433, 1–12 (1976)

    CAS  Google Scholar 

  • Blok, M.C., Van Der Neut-Kok, E.C.M., van Deenen, L.L.M., De Gier, J.: The effect of chain length and lipid phase transitions on the selective permeability properties of liposomes. Biochim. Biophys. Acta 406, 187–196 (1975)

    Article  PubMed  CAS  Google Scholar 

  • Bose, H.R., Brundige, M.A.: Selective association of sindus virion proteins with different membrane fractions of infected cells. J. Virol. 9, 785–791 (1972)

    PubMed  CAS  Google Scholar 

  • Chapman, D.: Liquid crystals and cell membranes. Ann. N.Y. Acad. Sci. 137, 745–754 (1966)

    Article  PubMed  CAS  Google Scholar 

  • Chapman, D.: Phase transitions and fluidity characteristics of lipids and cell membranes. Quart. Rev. Biophys. 8, 185–2 35 (1975)

    Article  CAS  Google Scholar 

  • Chapman, D., Cornell, B.A.: Phase transitions, protein aggregation and membrane fluidity. Nobel Symposium 34. New York -London: Plenum Press 1976, pp.

    Google Scholar 

  • Chapman, D., Quinn, P.J.: The control of cell membrane fluidity by biochemical and catalytic hydrogenation processes. Chem. Phys. Lipids 16, (1976)

    Google Scholar 

  • Chapman, D., Urbina, J.: Phase transitions and bilayer structure of Mycoplasma Laidlawii B. FEBS Lett. 12, 169–172 (1971)

    Article  PubMed  CAS  Google Scholar 

  • Cherry, R.J.: Protein and lipid mobility in biological and model membranes. In: Biomembranes, Vol. 3. Chapman, D., Wallach, D.F.H. (eds.). London: Academic Press, 1976, pp. 48–97

    Google Scholar 

  • Coenen, J.W.E.: Hydrogenation of oils and fats. In: Die Margarine heute. Leiden: E.J. Brill 1970, pp. 62–91

    Google Scholar 

  • Cornell, B.A., Chapman, D., Eliasz, A.W.: The interactions of helical polypeptide segments which span lipid bilayers. J. Mol. Biol, (submitted for publication)

    Google Scholar 

  • Cronan, J.E., Gelmann, E.P.: Physical properties of membrane lipids: biological relevance and regulation. Bacteriol. Rev. 39, 232–356 (1975)

    PubMed  CAS  Google Scholar 

  • Deenen, L.L.M., van: Phospholipids and biomembranes. In: Progress in the Chemistry of Fats and Other Lipids. Vol. VIII, Part 1. Holman, R.T. (ed.). Oxford: Pergamon Press 1965, pp. 1–127

    Google Scholar 

  • Esfahani, M., Limbrick, A.R., Knutton, S., Oka, S., Wakil, S.J.: The molecular organisation of lipids in the membrane of Escherichia coli: phase transitions. Proc. Natl. Acad. Sci. U.S. 68, 3180–3184 (1971)

    Article  CAS  Google Scholar 

  • Esser, A.F., Lanyi, J.K.: Structure of the lipid phase in cell envelope vesicles from Halobacterium cutirubrum. Biochemistry 12, 1933–1939 (1973)

    Article  PubMed  CAS  Google Scholar 

  • Fourcans, B., Jain, M.K.: Role of phospholipids in transport and enzymic reactions. Adv. Lipid Res. 12, 147–226 (1974)

    PubMed  CAS  Google Scholar 

  • Furcht, L.T., Scott, R.E.: Modulation of the distribution of plasma membrane intramembranous particles in contact inhibited and transformed cells. Biochim. Biophys. Acta 401, 213–220 (1975)

    Article  PubMed  CAS  Google Scholar 

  • Gier, J., de, Mandersloot, J.G., van Deenen, L.L.M.: The role of cholesterol in lipid membranes. Biochim. Biophys. Acta 173, 143–145 (1969)

    Article  PubMed  Google Scholar 

  • Hackenbrock, C.R.: Molecular organization and the fluid nature of the mitochondrial energy transducing membrane. Nobel Symposium 34. New York-London: Plenum Press 1976, pp.

    Google Scholar 

  • Haest, C.W.M., Verkleij, A.J., De Gier, J., Scheek, R., Ververgaert, P.H.J., van Deenen, L.L.M.: The effect of lipid phase transitions on the architecture of bacterial membranes. Biochim. Biophys. Acta 356, 17–26 (1974)

    Article  PubMed  CAS  Google Scholar 

  • Hong, K., Hubbell, W.L.: Lipid requirements for rhodopsin regenerability, Biochemistry 12, 4517–4523 (1973)

    Article  PubMed  CAS  Google Scholar 

  • Kleemann, W., Grant, C.W.M., McConnell, H.M.: Lipid phase separations and protein distribution in membranes. J. Supramol. Struct. 2, 609–616 (1974)

    Article  PubMed  CAS  Google Scholar 

  • Kleemann, W., McConnell, H.M.: Interactions of proteins and cholesterol with lipids in bilayer membranes. Biochim. Biophys. Acta 419, 206–222 (1976)

    Article  PubMed  CAS  Google Scholar 

  • Krasne, S., Eisenman, G., Szabo, G.: Freezing and melting of lipid bilayers and the mode of action of nonactin, valinomycin and gramicidin. Science 174, 412–415 (1971)

    Article  PubMed  CAS  Google Scholar 

  • Ladbrooke, B.D., Chapman, D.: Thermal analysis of lipids, proteins and biological membranes. Chem. Phys. Lipids 3, 304–367 (1969)

    Article  PubMed  CAS  Google Scholar 

  • Ladbrooke, B.D., Williams, R.M., Chapman, D.: Studies on lecithin-cholesterol-water interactions by differential scanning calorimetry and X-ray diffraction. Biochim. Biophys. Acta 150, 333–340 (1968)

    Article  PubMed  CAS  Google Scholar 

  • Linden, CD., Wright, K.L., McConnell, H.M., Fox, C.F.: Lateral phase separations in membrane lipids and the mechanism of sugar transport in Escherichia coli. Proc. Natl. Acad. Sci. U.S. 70, 2270–2275 (1973)

    Article  Google Scholar 

  • Lucy, J.A.: The membrane of the hen erythrocyte as a model for studies on membrane fusion. Nobel Symposium 34. New York-London: Plenum Press 1976, pp.

    Google Scholar 

  • Lyons, J.M.: Phase transitions and control of cellular metabolism at low temperatures. Cryobiology 9, 341–350 (1972)

    Article  PubMed  CAS  Google Scholar 

  • McDonough, J., Lilien, J.: Inhibition of mobility of cell surface receptors by factors which mediate specific cell-cell interactions. Nature (London) 256, 416–417 (1975)

    Article  CAS  Google Scholar 

  • Orci, L., Perrelet, A.: Membrane-associated particles: Increase at sites of pinocytosis demonstrated by freeze-etching: Science 181, 868–869 (1973)

    Article  PubMed  CAS  Google Scholar 

  • Papahadjopoulos, D., Nir, S., Ohki, S.: Permeability properties of phospholipid membranes: effect of cholesterol and temperature. Biochim. Biophys. Acta 266, 561–583 (1971)

    Article  Google Scholar 

  • Petris, S., de, Raff, M.C.: Distribution of immunoglobulin on the surface of mouse lymphoid cells as determined by immunoferritin electron microscopy. Antibody-induced, temperature dependent redistribution and its implications for membrane structure. Europ. J. Immunol. 2, 523–535 (1972)

    Article  Google Scholar 

  • Phillips, M.C., Ladbrooke, B.D., Chapman, D.: Molecular interactions in mixed lecithin systems. Biochim. Biophys. Acta 196, 35–44 (1970)

    Article  PubMed  CAS  Google Scholar 

  • Raison, J.K.: The influence of temperature-induced phase changes on the kinetics of respiratory and other membrane-associated enzyme systems. Bioenergetics 4, 285–309 (1973)

    Article  CAS  Google Scholar 

  • Rottem, S., Yashouv, J., Ne’eman, Z., Razin, S.: Cholesterol in mycoplasma membranes. Composition, ultrastructure and biological properties of membranes from Mycoplasma mycoides var. capri cells adapted to grow with low cholesterol concentrations. Biochim. Biophys. Acta 323, 495–508 (1973)

    Article  PubMed  CAS  Google Scholar 

  • Scott, R.E., Carter, R.L., Kidwell, W.R.: Structural changes in membranes of synchronized cells demonstrated by freeze-cleavage. Nature (New Biol.) 233, 219–220 (1971)

    Google Scholar 

  • Shechter, E., Letellier, L., Gulik-Krzywicki, T.: Relations between structure and function in cytoplasmic membrane vesicles isolated from an Escherichia coli fatty acid auxotroph. High-angle X-ray diffraction, freeze-etch electron microscopy and transport studies. Europ. J. Biochem. 49, 61–76 (1974)

    Article  PubMed  CAS  Google Scholar 

  • Shimshick, E.J., McConnell, H.M.: Lateral phase separation in phospholipid membranes. Biochemistry 12, 2351–2360 (1973)

    Article  PubMed  CAS  Google Scholar 

  • Silbert, D.F.: Genetic modification of membrane lipid. Ann. Rev. Biochem. 44, 315–339 (1975)

    Article  PubMed  CAS  Google Scholar 

  • Tsong, T.Y.: Effect of phase transition on the kinetics of dye transport in phospholipid bilayer structures. Biochemistry 14, 5409–5414 (1975)

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chapman, D., Cornell, B.A., Quinn, P.J. (1977). Phase Transitions, Protein Aggregation and a New Method for Modulating Membrane Fluidity. In: Semenza, G., Carafoli, E. (eds) Biochemistry of Membrane Transport. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66564-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66564-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-66566-0

  • Online ISBN: 978-3-642-66564-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics