Skip to main content

Cochlear Mechanics

  • Chapter
Auditory System

Part of the book series: Handbook of Sensory Physiology ((1534,volume 5 / 3))

Abstract

Three successively more elaborate physical models for the fluid-elastic interaction in the cochlea are analyzed by asymptotic methods, with which an a priori assumption of “long” or “short” wavelengths is not necessary. Appropriate stiffnesses are estimated from Békésy’s static point and pressure load measurements. Most calculations are for a “two-mode” model which admits an independent motion of the arches of Corti and the pectinate zone of the basilar membrane. The phase, location of maximum response, and arrival times correlate well with recent measurements of basilar membrane response, electrical and neural activity. The model cannot reproduce with any reasonable change in stiffness or fluid viscosity, the sharpness of decay observed at a fixed point for high frequency, nor the severe post-mortem changes in amplitude. This indicates that the organ of Corti has a significant mechanical function not taken into consideration by the present models. The “three-mode” model, which includes the flexibility of the bony shelf tip, is briefly considered. The results indicate that for frequencies over 1 kHz no “long” wavelengths occur in the human cochlea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramowitz, M., Stegun, L. A. (Eds.): Handbook of mathematical functions. National Bureau of Standards, Appl. Math. Series 55 (1966).

    Google Scholar 

  • Anderson, D.J., Rose, J.E., Hind, J.E., Brugge, J.F.: Temporal position of discharges in single auditory nerve fibers within the cycle of a sine-wave stimulus: frequency and intensity effects. J. acoust. Soc. Amer. 49, 1131–1139 (1971).

    Article  Google Scholar 

  • Békésy, G. von: Experiments in hearing. New York: McGraw-Hill 1960.

    Google Scholar 

  • Békésy, G. von: Traveling waves as frequency analysers in the cochlea. Nature (Lond.) 225, 1207–1209 (1970).

    Article  Google Scholar 

  • Dallos, P.: The Auditory Periphery. New York: Academic Press 1973.

    Google Scholar 

  • Dallos, P., Cheatham, M.A.: Travel time in the cochlea and its determination from cochlear microphonic data. J. acoust. Soc. Amer. 49, 1140–1143 (1971).

    Article  Google Scholar 

  • Dotson, R.: Cochlear model with transient excitation. Ph. D. Dissertation, Stanford University 1974.

    Google Scholar 

  • Evans, E.F., Wilson, J.P.: The frequency selectivity of the cochlea. In: Moller, A.R.: Basic Mechanisms in Hearing. New York: Academic Press 1973.

    Google Scholar 

  • Fleischer, G.: Studien am Skelett des Gehörorgans der Säugetiere, einschließlich des Menschen. Säugetierkundl. Mitt. 2, 3, 131–239 (1973).

    Google Scholar 

  • Flügge, W. (Ed.): Handbook of engineering mechanics. New York: McGraw-Hill 1962.

    Google Scholar 

  • Hallauer, W.L., Jr.: Nonlinear behavior of the inner ear. Ph. D. Dissertation, Stanford University 1974.

    Google Scholar 

  • Heading, J.: An introduction to phase integral methods. New York: John Wiley 1962.

    Google Scholar 

  • Honrubia, V., Ward, P. H.: Longitudinal distribution of the cochlear microphonics inside the cochlear duct (guinea pig). J. acoust. Soc. Amer. 44, 951–958 (1968).

    Article  CAS  Google Scholar 

  • Honrubia, V., Ward, P. H.: Properties of the summating potential of the guinea pig’s cochlea. J. acoust. Soc. Amer. 45, 1443–1450 (1969).

    Article  CAS  Google Scholar 

  • Huxley, A. F.: Is resonance possible in the cochlea after all? Nature (Lond.) 221, 935–940 (1968).

    Article  Google Scholar 

  • Iurato, S.: Functional implications of the nature and submicroscopic structure of the tectorial and basilar membranes. J. acoust. Soc. Amer., 34, 1386–1395 (1962).

    Article  Google Scholar 

  • Johnstone, B.M., Boyle, A. J. F.: Basilar membrane vibrations examined with the Mössbauer technique. Science 158, 389–390 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Kohllöffel, L.U.E.: Studies of the distribution of cochlear potentials along the basilar membrane. Acta oto-laryng. (Stockh.) Suppl. No. 288 (1971).

    Google Scholar 

  • Kohllöffel, L.U.E.: A study of basilar membrane vibrations II.The vibratory amplitude and phase pattern along the basilar membrane (postmortem). Acustica 27, 66–81 (1972).

    Google Scholar 

  • Kohllöffel, L. U. E.: Observations of the mechanical disturbances along the basilar membrane with laser illumination. In: Moller, A. R. (Ed.): Basic Mechanisms in Hearing, pp. 95–118. New York: Academic Press 1973.

    Google Scholar 

  • Lim, D.J.: Fine morphology of the tectorial membrane. Arch. Otolaryng. 96, 199–215 (1972).

    PubMed  CAS  Google Scholar 

  • Money, K. E., Sokoloff, M., Weaver, R. S.: Specific gravity and viscosity of endolymph and perilymph. (Third Symposium on the Role of the Vestibular Organs in Space Exploration). Washington, D.C.: NASA Special Publication 152, U.S. Gov’t. Printing Office (1966).

    Google Scholar 

  • Pye, J. D.: Hearing in bats. In: De Reuck, A.V. S., Knight, J. (Eds.): Hearing mechanisms in vertebrates. London: J. & A. Churchill 1967.

    Google Scholar 

  • Ranke, O. F.: Theory of operation of the cochlea: a contribution to the hydrodynamics of the cochlea. J. Acoust. Soc. Amer. 22, 772–777 (1950).

    Article  Google Scholar 

  • Rhode, W. S.: Observation of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer effect. J. acoust. Soc. Amer. 49, 1218–1231 (1971).

    Article  Google Scholar 

  • Rhode, W.S.: An investigation of post-morten cochlear mechanics using the Mössbauer effect. In: Moller, A.R. (Ed.): Basic Mechanisms in Hearing. New York: Academic Press 1973.

    Google Scholar 

  • Steele, C.R.: A possibility for subtectorial membrane fluid flow. In: Moller, A.R. (Ed.): Basic Mechanisms in Hearing. New York: Academic Press 1973.

    Google Scholar 

  • Steele, C. R.: Behaviour of the basilar membrane with pure tone excitation. J. acoust. Soc. Amer. 55, 148–162 (1974a).

    Article  CAS  Google Scholar 

  • Steele, C.R.: Stiffness of Reissner’s membrane. J. acoust. Soc. Amer., 55, 1252–1257 (1974b).

    Article  Google Scholar 

  • Stevens, S. S., Davis, H., Lurie, M. H.: The localization of pitch perception on the basilar membrane. J. gen. Psychol. 13, 297–315 (1935).

    Article  Google Scholar 

  • Tidemann, H.: A new approach to the theory of hearing. Acta oto-laryng. (Stockh.) Suppl. 277 (1970).

    Google Scholar 

  • Tonndorf, J.: Cochlear mechanics and hydrodynamics. In: Tobias, J. V. (Ed.): Foundations of Modern Auditory Theory, Vol. I. New York: Academic Press 1970.

    Google Scholar 

  • Wever, E. G.: Theory of hearing. New York: John Wiley 1949.

    Google Scholar 

  • Wilcox, C.H.(Ed.): Asymptotic solutions of differential equations and their applications. New York: John Wiley 1964.

    Google Scholar 

  • Wilson, J.P., Johnstone, J.R.: Capacitive probe measures of basilar membrane vibration. Symposium on Hearing Theory 1972, IPO Endhoven, Holland, pp. 172–181 (1972).

    Google Scholar 

  • Zwickee, E.: Wissenschaftlicher Jahresbericht, Institut für Elektroakustik, TH München (1973).

    Google Scholar 

  • Zwislocki, J.: Review of recent mathematical theories of cochlear dynamics. J. Acoust. Soc. Amer. 25, 743–751 (1953).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag, Berlin · Heidelberg

About this chapter

Cite this chapter

Steele, C.R. (1976). Cochlear Mechanics. In: Keidel, W.D., Neff, W.D. (eds) Auditory System. Handbook of Sensory Physiology, vol 5 / 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66082-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66082-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-66084-9

  • Online ISBN: 978-3-642-66082-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics