Skip to main content

Abstract

Embedding media for microscopy have no other value than that of a convenient means to achieve a particular end, namely, to enable the object of interest to be cut sufficiently thin for the microscope to develop its full resolution. The embedding does not contribute to the staining of the object nor to the resolving power of the microscope. The best embedding medium permits thin sectioning with the least damage during specimen preparation and gives the least interference during microscopy. This is not to say that embedding is a trivial part of specimen preparation; the cutting of the tissue in the embedding matrix is a mechanochemical event which can be interpreted only in terms of sophisticated concepts of the properties of materials. The most fundamental approach to the problem in the biological literature is that of Wachtel, Gettner and Ornstein (1966). Useful mechanical concepts are developed in various texts, such as Nielsen (1962) or McClintock and Argon (1966) and mechanochemical concepts in the paper by Watson (1961). Despite the advanced state of materials science, it has had little impact in improving our understanding of the mechanism of the cutting of embedded tissue, beyond what is intuitively obvious to biologists. It is clear that the embedding medium “supports and holds together” the tissue, but this phenomenon seldom is encountered in industrial processes where a detailed analysis is sufficiently important to engender research. It is possible that embedding material can be compared usefully to the matrix in composite materials, but that it functions in embedded tissue to produce an effect opposite to that intended for industrial laminates and composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bamford, C. H., Barb, W. G., Jenkins, A. D., Onyon, P. F., The Kinetics of Vinyl Polymerization by Radical Mechanisms. New York: Academic Press 1958.

    Google Scholar 

  • Bawn, C. E. H., The Chemistry of High Polymers. London: Butterworth 1948.

    Google Scholar 

  • Bernhard, W., A new staining precedure for electron microscopical cytology. J. Ultrastruct. Res. 27, 250–265 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Bevington, J. C., Radical Polymerization. New York: Academic Press 1961.

    Google Scholar 

  • Birbeck, M. S. C., Mercer, E. H., Applications of an epoxide embedding medium to electron microscopy. J. roy. micr. Soc. 76, 159–; 161 (1956).

    Google Scholar 

  • Bjorksten, J., Polyesters and Their Applications. New York: Reinhold Publishing Corp. 1956.

    Google Scholar 

  • Borysko, E., Recent developments in methacrylate embedding. I. A study of the polymerization damage phenomenon by phase contrast microscopy. J. biophys. biochem. Cytol. 2 Suppl., 3–14 (1956).

    Google Scholar 

  • Borysko, E., Sapranauskas, P., A new technique for comparative phase-contrast and electron microscope studies of cells grown in tissue culture, with an evaluation of the technique by means of time-lapse cinemicrographs. Bull. Johns Hopk. Hosp. 95, 68 - 79 (1954).

    CAS  Google Scholar 

  • Brewster, J. H., The effect of structure on the fiber properties of linear polymers. I.The orientation of side chains. J. Amer. chem. Soc. 73, 366–; 370 (1951).

    Google Scholar 

  • Bull, H. B., An Introduction to Physical Biochemistry, 2nd ed. Philadelphia: F. A. Davis, Co. 1971.

    Google Scholar 

  • Casley-Smith, J. R., The preservation of lipids for electron microscopy; urea- formal-dehyde as an embedding medium. Med. Res. 1, 59 (1963).

    Google Scholar 

  • Casley-Smith, J. R., Some observations on the electron microscopy of lipids. J. roy. micr. Soc. 87, 463–; 473 (1967).

    Google Scholar 

  • Cope, G. H., Williams, M. A., Quantitative studies on neutral lipid preservation in electron microscopy. J. roy. micr. Soc. 88, 259–; 277 (1968).

    Google Scholar 

  • Cosslett, A., Some applications of the ultraviolet and interference microscopes in electron microscopy. J. roy. micr. Soc. 79, 263–; 271 (1960).

    Google Scholar 

  • Farrant, J. L., Mclean, J. D., Albumins as embedding media for electron microscopy. In Proc. 27th Ann. Mtg. Electron Micr. Soc. Amer. Ed., C. Arceneaux, 422–;423. Baton Rouge, La., Claitor’s Pub. Div. 1969.

    Google Scholar 

  • Fernandez-Moran, H., Finean, J. B., Electron microscope and low-angle X-ray diffraction studies of the nerve myelin sheath. J. biophys. biochem. Cytol. 3, 725–; 748 (1957).

    Google Scholar 

  • Finck, H., Epoxy resins in electron microscopy. J. biophys. biochem. Cytol. 7, 27–; 30 (1960).

    Google Scholar 

  • Finean, J. B., X-ray diffraction studies of the myelin sheath in peripheral and central nerve fibres. Exp. Cell Res. 5 Suppl., 18–; 32 (1958).

    Google Scholar 

  • Gibbons, I. R., An embedding resin miscible with water for electron microscopy. Nature (Lond.) 184, 375–; 376 (1959).

    Google Scholar 

  • Gilev, V. P., The use of gelatin for embedding biological specimens in preparation of ultrathin sections for electron microscopy. J. Ultrastruct. Res. 1, 349–; 358 (1958).

    Google Scholar 

  • Glauert, A. M., Glauert, R. H., Araldite as an embedding medium for electron micro-scopy. J. biophys. biochem. Cytol. 4, 191–; 194 (1958).

    Google Scholar 

  • Glauert, A. M., Rogers, G. E., Glauert, R. H., A new embedding medium for electron microscopy. Nature (Lond.) 178, 803 (1956).

    Article  CAS  Google Scholar 

  • Hayat, M. A., Principles and Techniques of Electron Microscopy: Biological Applications, Vol. 1. New York: Van Nostrand, Reinhold Co. 1970.

    Google Scholar 

  • Hendry, J. A., Homer, R. F., Rose, F. L., Walpole, A. L., Cytotoxic agents: II, bis- epoxides and related compounds. Brit. J. Pharmacol. 6, 235–; 255 (1951).

    Google Scholar 

  • Joy, R. T., Finean, J. B., A comparison of the effects of freezing and of treatment with hypertonic solutions on the structure of nerve myelin. J. Ultrastruct. Res. 8, 264–; 282 (1963).

    Google Scholar 

  • Kellenberger, E., Schwab, W., Ryter, A., L’utilization d’un copolymère du groupe des polyesters comme matériel d’inclusion en ultramicrotomie. Experientia (Basel) 12, 421–; 422 (1956).

    Google Scholar 

  • Kelly, A., Strong Solids. Oxford: Clarendon Press 1966.

    Google Scholar 

  • Kelly, A., The nature of composite materials. Sci. Amer. 217, no. 3, 160–; 176 (1967).

    Google Scholar 

  • Kurtz, S. M., A new method for embedding tissues in Vestopal W. J. Ultrastruct. Res. 5, 468–; 469 (1961).

    Google Scholar 

  • Kushida, H., On an epoxy resin embedding method for ultra-thin sectioning. J. Elec- tronmicroscopy 8, 72–; 75 (1959).

    Google Scholar 

  • Kushida, H., A new polyester embedding method for ultrathin sectioning. J. Electron- microscopy 9, 113–; 116 (1960).

    Google Scholar 

  • Kushida, H., A study of cellular swelling and shrinkage during fixation, dehydration and embedding in various standard media. In Proc. 5th Int. Congr. Electron Micr. 2, P-10. Ed., S. Breese, Jr.. New York: Academic Press 1962.

    Google Scholar 

  • Kushida, H., A new method for embedding with epoxy resin at room temperature. J. Electronmicroscopy 14, 275–; 283 (1965).

    Google Scholar 

  • Lane, B. P., Europa, D. L., Differential staining of ultrathin sections of Epon-embedded tissues for light microscopy. J. Histochem. Cytochem. 13, 579–; 582 (1965).

    Google Scholar 

  • Leduc, E. H., Bernhard, W., Ultrastructural cytochemistry. Enzyme and acid hydrolysis of nucleic acids and proteins. J. biophys. biochem. Cytol. 10, 437–; 455 (1961).

    Google Scholar 

  • Leduc, E. H., Bernhard, W. B., Water-soluble embedding media for ultrastructural cytochemistry. Digestion with nucleases and proteinases. In The Interpretation of Ultrastructure. Ed., R. HARRIS (Symp. Int. Soc. Cell Biol. Vol. 1), 21–;45. New York: Academic Press. 1962.

    Google Scholar 

  • Leduc, E. H., Bernhard, W., Recent modifications of the glycol methacrylate embedding procedure. J. Ultrastruct. Res. 19, 196–; 199 (1967).

    Google Scholar 

  • Leduc, E. H., Holt, S. J., Hydroxypropyl methacrylate, a new water-miscible embedding medium for electron microscopy. J. Cell Biol. 26, 137–; 155 (1965).

    Google Scholar 

  • Lee, B., Microtomist’s Vade-Mecum. 9th Ed. Ed., J. Gatenby and E. Cowdry. Philadelphia: Blakiston 1928.

    Google Scholar 

  • Lee, H., Neville, K., Handbook of Epoxy Resins. New York: McGraw-Hill 1967.

    Google Scholar 

  • Lenard, J., Singer, S. J., Alteration of the conformation of proteins in red blood cell membranes and in solution by fixatives used in electron microscopy. J. Cell Biol. 37, 117–; 121 (1968).

    Google Scholar 

  • Little, K., The action of electrons on high polymers. In Proc. Int. Conf. Electron Micr. London, 1954, 165–;171. London: Roy Micr. Soc. 1956.

    Google Scholar 

  • Low, F. N., Clevenger, M. R., Polyester-methacrylate embedments for electron microscopy. J. Cell Biol. 12, 615–; 621 (1962).

    Google Scholar 

  • Luft, J. H., Improvements in epoxy resin embedding methods. J. biophys. biochem. Cytol. 9, 409–; 414 (1961).

    Google Scholar 

  • Maaloe, O., Birch-Andersen, A., On the organization of the ‘nuclear material’ in Salmonella typhimurium, In Bacterial Anatomy, 6th Symp. Soc. Gen. Microbiol., 261 –278. Ed., E. Spooner and B. Stocker, Cambridge: Cambridge Univ. Press 1956.

    Google Scholar 

  • Mcclintock, F. A., Argon, A. S., Mechanical Behavior of Materials. Reading, Mass., Addison-Wesley 1966.

    Google Scholar 

  • Mclean, J. D., Singer, S. J., Crosslinked polyampholytes. New water-soluble embedding media for electron microscopy. J. Cell Biol. 20, 518–; 521 (1964).

    Google Scholar 

  • Newman, S. B., Borysko, E., Swerdlow, M., New sectioning techniques for light and electron microscopy. Science 110, 66–; 68 (1949a).

    Google Scholar 

  • Newman, S. B., Borysko, E., Swerdlow, M., Ultra-microtomy by a new method. J. Res. Nat. Bur. Standards 43, 183–; 199 (1949b).

    Google Scholar 

  • Nielsen, L. E., Mechanical Properties of Polymers. New York: Reinhold Pub. Corp. 1962.

    Google Scholar 

  • Pease, D. C., Histological Techniques for Electron Microscopy, 2nd ed. New York: Academic Press 1964.

    Google Scholar 

  • Pease, D. C, Baker, R. F., Sectioning techniques for electron microscopy using a con-ventional microtome. Proc. Soc. exp. Biol. (N.Y.) 67, 470–; 474 (1948).

    Google Scholar 

  • Peterson, R. G., Pease, D. C., Features of the fine structure of myelin embedded in water-containing aldehyde resins. In Proc. 7th Int. Congr. Electron Microscopie 1, 409–;410. Ed., P. Favard, Paris: Soc. Française de Microscopie Électronique 1970a.

    Google Scholar 

  • Peterson, R. G., Pease, D. C., Polymerizable glutaraldehyde-urea mixtures as water- soluble embedding media. In Proc. 28th Ann. Mtg. Electron Micr. Soc. Amer. Ed., C. Arceneaux. 334–;335, Baton Rouge, La., Claitor’s Pub. Div. 1970b.

    Google Scholar 

  • Peterson, R. G., Pease, D. C., Polymerizable glutaraldehyde-urea mixtures as water-containing embedding media for electron microscopy. Anat. Ree. 169, 401 (1971).

    Google Scholar 

  • Rabinowicz, E., Friction and Wear of Materials. New York: John Wiley & Sons, Inc. 1965.

    Google Scholar 

  • Reimer, L., Quantitative Untersuchungen zur Massenabnahme von Einbettungsmitteln (Methacrylat, Vestopal und Araldit) unter Elektronenbeschuß. Z. Naturforsch. 14B, 566–; 575 (1959).

    Google Scholar 

  • Reimer, L., Irradiation changes in organic and inorganic objects. Lab. Invest. 14, 1082

    Google Scholar 

  • Riddle, E. H., Monomeric Acrylic Esters. New York: Reinhold Pub. Corp. 1954.

    Google Scholar 

  • Robertson, J. G., Parsons, D. F., A resorcinol-formaldehyde resin as an embedding material for electron microscopy of membranes. In Proc. 27th Ann. Mtg. Electron Micr. Soc. Amer. Ed., C. Arceneaux, 328–;329. Baton Rouge, La., Claitor’s Pub. Div. 1969.

    Google Scholar 

  • Robertson, J. G., Parsons, D. F., Myelin structure and retention of cholesterol in frog sciatic nerve embedded in a resorcinol-formaldehyde resin. Biochim. biophys. Acta (Amst.) 219, 379–; 387 (1970).

    Google Scholar 

  • Rose, F. L., Hendry, J. A., Walpole, A. L., New cytotoxic agents with tumour-inhibitory activity. Nature (Lond.) 165, 993–; 996 (1950).

    Google Scholar 

  • Rosenberg, M., Bartl, P., Lesko, J., Water-soluble methacrylate as an embedding medium for the preparation of ultrathin sections. J. Ultrastruct. Res. 4, 298–; 303 (1960).

    Google Scholar 

  • Ross, W. C. J., Biological Alkylating Agents. London: Butterworth 1962.

    Google Scholar 

  • Rust, J. B., Copolymerization of maleic polyesters. Ind. Eng. Chem. 32, 64–; 67 (1940).

    Google Scholar 

  • Ryter, A., Kellenberger, E., L’inclusion au polyester pour Tultramicrotomie. J. Ultrastruct. Res. 2, 200–; 214 (1958).

    Google Scholar 

  • Saunders, J. H., Frisch, K. C., Polyurethanes. Chemistry and Technology. Part I. Chemistry. New York: Interscience Publishers 1962.

    Google Scholar 

  • Spurlock, B. O., Kattine, V. C., Freeman, J. A., Technical modifications in Maraglas embedding. J. Cell Biol. 17, 203–; 207 (1963).

    Google Scholar 

  • Spurr, A. R., A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26, 31–; 43 (1969).

    Google Scholar 

  • Sterzing, P. R., Scaletti, J. V., Napolitano, L. M., Tissue cholesterol preservation: solubility of cholesterol digitonide in ethanol. Anat. Rec. 168, 569–; 572 (1970).

    Google Scholar 

  • Strangeways, T. S. P., Conti, R. G., The living cell in vitro as shown by dark-ground illumination and the changes induced in such cells by fixing reagents. Quart. J. micr. Sci. 71, 1–; 14 (1927).

    Google Scholar 

  • Sunshine, I., Handbook of Analytical Toxicology. Cleveland: Chem. Rubber Co. 1969.

    Google Scholar 

  • Szubinska, B., Swelling of Amoeba proteus during fixation for electron microscopy. Anat. Rec. 148, 343–; 344 (1964a).

    Google Scholar 

  • Szubinska, B., Electron microscopy of the interaction of ruthenium violet with the cell membrane complex of Amoeba proteus. J. Cell Biol. 23, 92A (1964b).

    Google Scholar 

  • Szubinska, B., “New membrane” formation in Amoeba proteus upon injury of individual cells. J. Cell Biol. 49, 747–; 772 (1971).

    Google Scholar 

  • Szubinska, B., Luft, J. H., Ruthenium red and violet. III. Fine structure of the plasma membrane and extraneous coats in Amoebae (Aproteus and Chaos chaos). Anat. Rec. 171, 417–; 441 (1971).

    Google Scholar 

  • Szubinska, B., Luft, J. H., Osmotic damage to cells from viscous embedding media. J. Ultrastruct. Res. Submitted for publication (1973).

    Google Scholar 

  • Tooze, J., Measurements of some cellular changes during the fixation of amphibian erythrocytes with osmium tetroxide solutions. J. Cell Biol. 22, 551–; 563 (1964).

    Google Scholar 

  • Wachtel, A. W., Gettner, M. E., Ornstein, L., Microtomy. In Physical Techniques in Biological Research, Vol. Ill A. Ed., A. W. Pollister, 173–;250. New York: Academic Press 1966.

    Google Scholar 

  • Watson, M. L., Explosionfree methacrylate embedding. J. appl. Physics. 34, 2507 (1963).

    Article  Google Scholar 

  • Watson, W. A. F., Studies on a recombination-deficient mutant of Drosophila. II. Response to X-rays and alkylating ageiitsl Mutation Res. 14, 299–; 307 (1972).

    Google Scholar 

  • Watson, W. F., Mechanochemistry. New Scientist 9, 548–; 550 (1961).

    Google Scholar 

  • Zelander, T., Ekholm, R., Determination of the thickness of electron microscopy sections. J. Ultrastruct. Res. 4, 413–; 419 (1960).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Luft, J.H. (1973). Embedding Media — Old and New. In: Koehler, J.K. (eds) Advanced Techniques in Biological Electron Microscopy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65492-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65492-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65494-7

  • Online ISBN: 978-3-642-65492-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics