Skip to main content

Some Deterministic Models for the Spread of Genetic and Other Alterations

  • Conference paper
Biological Growth and Spread

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 38))

Abstract

Because there are several recent surveys of aspects of the theory of growth and spread of mutant genes, populations, and epidemics, including at least six by participants in this symposium [5, 11, 13, 19, 38, 39, 51], I will only present some ideas on these subjects and illustrate them with some mathematical results which have been of interest to me. In particular, I will only be concerned with homogeneous habitats, and will not discuss clines or the effects of boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. G. Aronson. The asymptotic speed of propagation of a simple epidemic. Nonlinear Diffusion, ed. W. E. Fitzgibbon and H. F. Walker. Research Notes in Mathematics 14, Pitman, London, 1977, pp. 1–23.

    Google Scholar 

  2. D. G. Aronson and H. F. Weinberger. Nonlinear diffusion in population genetics, combustion, and nerve propagation. Partial Differential Equations and Related Topics, ed. J. Goldstein, Lecture Notes in Mathematics, vol. 446, Springer, 1975, PP. 5–49.

    Chapter  Google Scholar 

  3. D.G Aronson and H.F. Weinberger. Multidimensional nonlinear diffusion arising in population genetics. Adv. in Math. 30 (1978), pp. 33–76.

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Atkinson and G. E. H. Reuter. Deterministic epidemic waves. Cambridge Phil. Soc, Math Proc. 80 (1976), pp. 315–330.

    Article  MathSciNet  MATH  Google Scholar 

  5. N.T.J. Bailey. The Mathematical Theory of Epidemics. Griffin, London, 1957.

    Google Scholar 

  6. M. Bramson. Maximal displacement of branching Brownian motion. Comm. in Pure and Appl. Math. 31 (1978), pp. 531–581.

    Article  MathSciNet  MATH  Google Scholar 

  7. K. J. Brown and J. Carr. Deterministic epidemic waves of critical velocity. Math. Proc. of the Cambridge Phil. Soc. 8l (1977), pp. 431–435.

    Article  MathSciNet  Google Scholar 

  8. O. Diekmann. Thresholds and travelling waves for the geographical spread of infection. J. of Math. Biol. 6 (1978), pp. 109–130.

    Article  MathSciNet  MATH  Google Scholar 

  9. O. Diekmann. Run for your life. A note on the asymptotic speed of propagation of an epidemic. Mathematical Centre, Amsterdam, Report TW 176/78, 1978.

    Google Scholar 

  10. O. Diekmann and H.G. Kaper. On the bounded solutions of a nonlinear convolution equation. J. Nonlin. Analysis-Theory, Methods, and Applic. (in print).

    Google Scholar 

  11. O. Diekmann and N.M. Temme. Nonlinear Diffusion Problems. Mathematisch Centrum, Amsterdam, 1976.

    MATH  Google Scholar 

  12. L.R. Elveback, E. Ackerman, L. Gatewood, et. al. Stochastic two-agent epidemic simulation models for a community of families. Amer. J. of Epidem. 93 (1971), pp. 267–280.

    Google Scholar 

  13. P.C. Fife. Mathematical Aspects of Reacting and Diffusing Systems. Lecture Notes in Biomath. 28, Springer, New York, 1979.

    MATH  Google Scholar 

  14. P. C. Fife and J. B. McLeod. The approach of solutions of nonlinear diffusion equations to travelling wave solutions. A.M.S. Bull. 8l (1975), pp. 1076–1078

    Article  MathSciNet  Google Scholar 

  15. P. C. Fife and J. B. McLeod. The approach of solutions of nonlinear diffusion equations to travelling wave solutions. Arch, for Rat. Mech. and Anal. 65 (1977), pp. 335–361.

    MathSciNet  MATH  Google Scholar 

  16. R.A. Fisher. The advance of advantageous genes. Ann. of Eugenics 7 (1937), PP. 355–369.

    Article  Google Scholar 

  17. A. Friedman. Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs, N.J., 1964.

    MATH  Google Scholar 

  18. K. P. Hadeler and F. Rothe. Travelling fronts in nonlinear diffusion equations. J. Math. Biol. 2 (1975), pp. 251–263.

    Article  MathSciNet  MATH  Google Scholar 

  19. J.M. Hammersley. Postulates for subadditive processes. Annals of Prob. 2 (1974), pp. 652–680.

    Article  MathSciNet  MATH  Google Scholar 

  20. F. Hoppensteadt. Mathematical Theories of Populations: Demographics, Genetics, and Epidemics. Reg. Conf. Ser. in Appl. Math. 20, SIAM, Philadelphia, 1975.

    MATH  Google Scholar 

  21. Y. Kametaka. On the nonlinear diffusion equations of Kolmogorov-Petrovsky-Piskunov type. Osaka J. Math. 13 (1976), pp. 11–66.

    MathSciNet  MATH  Google Scholar 

  22. Ja. I. Kanel’. Stabilization of solutions of the Cauchy problem for equations encountered in combustion theory. Mat. Sbornik (N.S.) 59 (101) (1962), supplement, pp. 245–288.

    MathSciNet  Google Scholar 

  23. Ja. I. Kanel’. On the stability of solutions of the equations of combustion theory for finite initial functions. Mat. Sbornik (N.S.) 65 (107) (1964), pp. 398–413.

    MathSciNet  Google Scholar 

  24. S. Karlin. Population subdivision and selection migration interaction, in Population Genetics and Ecology (ed. S. Karlin and E. Nevo), Academic Press, New York, 1976, pp. 617–657.

    Google Scholar 

  25. D. G. Kendall. Deterministic and stochastic epidemics in closed populations. Proc. of the Third Berkeley Symposium on Mathematical Statistics and Probability, ed. J. Neyman, IV (1956), pp. 149–165.

    Google Scholar 

  26. D.G. Kendall. Discussion of a paper of M.S. Bartlett. J. of the Royal Statistical Soc, Ser. A, 120 (1957), pp. 64–67.

    MathSciNet  Google Scholar 

  27. D.G. Kendall. Mathematical models of the spread of infection. Mathematics and Computer Science in Biology and Medicine. H.M.S.O., London, 1965, pp. 213–225.

    Google Scholar 

  28. W.D. Kermack and A.G. McKendrick. A contribution to the mathematical theory of epidemics. Proc. Royal Soc. A 115 (1927), pp. 700–721.

    Article  MATH  Google Scholar 

  29. H. Kesten. Random processes in random environments. In this volume.

    Google Scholar 

  30. M. Kimura and G. Weiss. Genetics 49 (1964), pp. 561–576.

    Google Scholar 

  31. A. Kolmogoroff, I. Petrovsky, and N. Piscounoff. Étude de l’équations de la diffusion avec croissance de la quantité de matière et son application a un problème biologique. Bull. Univ. Moscow, Ser. Internat., Sec. A, 1 (1937) #6, pp. 1–25.

    Google Scholar 

  32. T. G. Kurtz, Relationships between stochastic and deterministic population models. In this volume.

    Google Scholar 

  33. T.M. Liggett. Interacting Markov processes. In this volume.

    Google Scholar 

  34. G. Malécot. The Mathematics of Heredity. W.I. Freeman, San Francisco, 1969.

    Google Scholar 

  35. T. R. Malthus. An essay on the Principle of Population. Printed for J.Johnson in St. Paul’s Churchyard, London. First edition 1798, third edition 1806.

    Google Scholar 

  36. A. G. McKendrick. Applications of mathematics to medical problems. Proc. of the Edinburgh Math. Soc. 44 (1925–26), pp. 98–130.

    Article  Google Scholar 

  37. D. Mollison. Possible velocities for a simple epidemic. Adv. in Appl. Prob. 4 (1972), pp. 233–257.

    Article  MathSciNet  MATH  Google Scholar 

  38. D. Mollison. The rate of spatial propagation of simple epidemics. Proc. Sixth Berkeley Symp. on Math., Stat., and Prob. 3 (1972), pp. 579–614.

    MathSciNet  Google Scholar 

  39. D. Mollison. Spatial contact models for ecological and epidemiological spread. J. Royal Stat. Soc. B 39 (1977), pp. 283–326.

    MathSciNet  MATH  Google Scholar 

  40. T. Nagylaki. Selection in One- and Two-locus Systems. Lecture Notes in Biomathematics 15, Springer, New York, 1977.

    MATH  Google Scholar 

  41. M. H. Protter and H. F. Weinberger. Maximum Principles in Differential Equations. Prentice-Hall, Englewood Cliffs, N.J., 1967.

    Google Scholar 

  42. W. E. Ricker. Stock and recruitment. J. Fish. Res. Bd. Can. 11 (1954), pp. 559–623.

    Article  Google Scholar 

  43. A. Robertson. Embryogenesis through cellular interactions. In this volume.

    Google Scholar 

  44. F. Rothe. Convergence to pushed fronts. In this volume.

    Google Scholar 

  45. F. R. Sharpe and A. J. Lotka. A problem in age distribution. Phil. Mag. 21 (1911), pp. 435–438.

    Google Scholar 

  46. H.R. Thieme. A model for the spatial spread of an epidemic. J. Math. Biol. 4 (1977), pp. 337–351.

    Article  MathSciNet  MATH  Google Scholar 

  47. H. R. Thieme. A symptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations. J. für die reine und angew. Math. 306 (1979), pp. 94–121.

    Article  MathSciNet  MATH  Google Scholar 

  48. H. R. Thieme. Density-dependent regulation of spatially distributed populations and their asymptotic speeds of spread. J. of Math. Biol, (in print).

    Google Scholar 

  49. K. Uchiyama. The behavior of solutions of the equation of Kolmogorov-Petrovsky-Piskunov. Proc. Japan. Acad. Ser. A, 53 (1977), pp. 225–228.

    Article  MathSciNet  Google Scholar 

  50. K. Uchiyama. The behavior of solutions of some non-linear diffusion equations for large time. J. of Math, of Kyoto Univ. l8 (1978), pp. 453–508.

    MathSciNet  Google Scholar 

  51. P. F. Verhulst. Notice sur la loi que la population suit dans son accroissement. Correspondence Mathématique et Physique Publiée par A. Quételet 10 (1838), pp. 113–121. English translation in D. Smith and N. Keyfitz, Mathematical Demography, Springer, New York, 1977, pp. 333–337.

    Google Scholar 

  52. P. Waltman. Deterministic Threshold Models in the theory of Epidemics. Lecture Notes in Biomathematics 1, Springer, New York, 1974.

    MATH  Google Scholar 

  53. H. F. Weinberger. Asymptotic behavior of a model in population genetics. Nonlinear Partial Differential Equations and Applications, ed. J. Chadam. Lecture Notes in Math 648, Springer, New York, 1978, pp. 47–98.

    Chapter  Google Scholar 

  54. H.F. Weinberger. Asymptotic behavior of a class of discrete-time models in population genetics, in Applied Nonlinear Analysis, ed. V. Lakshmikantham. Academic Press 1979, pp. 407–422.

    Google Scholar 

  55. H.F. Weinberger. Genetic wave propagation, convex sets, and semi-infinite programming in Constructive Approaches to Mathematical Models, ed. C.V. Coffman and G.J. Fix. Academic Press, New York, 1979, pp. 293–317.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weinberger, H.F. (1980). Some Deterministic Models for the Spread of Genetic and Other Alterations. In: Jäger, W., Rost, H., Tautu, P. (eds) Biological Growth and Spread. Lecture Notes in Biomathematics, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61850-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61850-5_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-10257-1

  • Online ISBN: 978-3-642-61850-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics