Skip to main content

Quasiconvexity at the Boundary, Positivity of the Second Variation and Elastic Stability

  • Conference paper
The Breadth and Depth of Continuum Mechanics
  • 436 Accesses

Abstract

For one dimensional problems of the calculus of variations, there is a well developed theory relating the positivity of the second variation at a critical point (i.e. ‘linearized stability’) to strong relative minima. These results, largely due to WEIERSTRASS, are usually proved by the method of ‘fields of extremals’ as is described in Bolza [1904] and Morrey [1966] or by an argument involving a careful use of Taylor series, as in Hestenes [1966, Chapter 3, § 14].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • V. I. Arnold [ 1969 ]. On an a priori estimate in the theory of hydrodynamic stability, Am. Math. Soc. Transl 79, 267–269.

    Google Scholar 

  • J.M. Ball [ 1977a ]. Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63, 337–403.

    Article  MATH  Google Scholar 

  • J, M. Ball [ 1977 b]. Constitutive inequalities and existence theorems in elasticity, in Nonlinear Analysis and Mechanics, Vol. I, R. J. KNOPS (ed), Pitman.

    Google Scholar 

  • J. M. Ball [ 1981 ]. Global invertibility of Sobolev functions and the interpenetration of matter. Proc. Roy. Soc. Edinburgh 88A, 315–328.

    MATH  Google Scholar 

  • J. M. Ball [ 1982 ]. Discontinuous equilibrium solutions and cavitation in non-linear elasticity, Phil. Trans. R. Soc. London A 306, 557–611.

    Article  ADS  MATH  Google Scholar 

  • J. M. Ball [ 1984 ]. Differentiability properties of symmetric and isotropic functions, Duke Math. J., to appear.

    Google Scholar 

  • J. M. Ball, J. C. Currie & P. J. Olver [ 1981 ]. Null Lagrangians, weak continuity and variational problems of arbitrary order, J. Functional Anal. 41, 135–174.

    Article  MathSciNet  MATH  Google Scholar 

  • J. M. Ball & F. Murat [1984]. W1,p-quasiconvexity and variational problems for multiple integrals J. Functional Anal., to appear.

    Google Scholar 

  • J. M. Ball, R. J. Knops & J. E. Marsden [ 1978 ]. Two examples in nonlinear elasticity, Springer Lecture Notes in Mathematics, No. 466, 41–49.

    Article  MathSciNet  Google Scholar 

  • O. Bolza [1904]. Lectures on the Calculus of Variations, Reprinted by Chelsea, N.Y., [ 1973 ].

    MATH  Google Scholar 

  • R. C. Browne [ 1978 ]. Dynamic stability of one dimensional nonlinearly viscoelastic bodies, Arch. Rational Mech. Anal. 68, 257–282.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • H. J. Buchner, J. Marsden & S. Schecter [ 1983 ]. Examples for the infinite dimensional Morse Lemma, SIAM J. Math. An. 14, 1045–1055.

    Article  MathSciNet  MATH  Google Scholar 

  • H. Busemann & G. C. Shephard [ 1965 ]. Convexity on nonconvex sets, Proc. Coll. on Convexity, Copenhagen, Univ. Math. Inst., Copenhagen, 20–33.

    Google Scholar 

  • P. G. Ciarlet & G. Geymonat [ 1982 ]. Sur les lois de comportement en élasticité non- linéaire compressible, C. R. Acad. Sc. Paris, 295, 423–426.

    MathSciNet  MATH  Google Scholar 

  • R. J. Diperna [ 1983 ]. Convergence of approximate solutions to conservation laws, Arch. Rational Mech. Anal. 82, 27–70.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • J. L. Ericksen [ 1966a ]. Thermoelastic stability, Proc. Fifth U.S. Cong, on Appl. Mech. 187–193.

    Google Scholar 

  • J. L. ERICKSEN [1966 b]. A thermokinetic view of elastic stability theory, Int. Journal Solids Structures, 2, 573 - 580.

    Google Scholar 

  • J. L. Ericksen [ 1975 ]. Equilibrium of bars, J. of Elasticity 5, 191–201.

    Article  MathSciNet  MATH  Google Scholar 

  • J. L. Ericksen [ 1980 ]. Some phase transitions in crystals, Arch. Rational Mech. Anal. 73, 99–124.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • M. Golubitsky & J. Marsden [ 1982 ]. The Morse Lemma in infinite dimensions via singularity theory, SIAM J. Math. An. 14, 1037 - 1044.

    Article  MathSciNet  Google Scholar 

  • L. M. Graves [ 1939 ]. The Weierstrass condition for multiple integral variation problems, Duke Math. J. 5, 656–660.

    Article  MathSciNet  Google Scholar 

  • M. E. Gurtin [ 1975 ]. Thermodynamics and stability, Arch. Rational Mech. Anal. 59, 63–96.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • M. E. Gurtin [ 1983 ]. Two-phase deformations of elastic solids, (preprint).

    Google Scholar 

  • J. Hadamard [ 1902 ]. Sur une question de calcul des variations, Bull. Soc. Math. France 30, 253–256.

    MATH  Google Scholar 

  • P. Hartman [ 1964 ]. Ordinary Differential Equations. New York: John Wiley & Sons, Inc., reprinted by Birkhauser, Boston, 1982.

    MATH  Google Scholar 

  • M. R. Hestenes [1966]. Calculus of variations and optimal control theory, Wiley.

    Google Scholar 

  • D. D. Holm, J. E. Marsden, T. Ratiu & A. Weinstein [ 1983 ]. Nonlinear stability conditions and a priori estimates for barotropic hydrodynamics, Physics Letters 98 A, 15–21.

    MathSciNet  ADS  Google Scholar 

  • T. Hughes, T. Kato & J. Marsden [ 1977 ]. Well-posed quasi-linear hyperbolic systems with applications to nonlinear elastodynamics and general relativity, Arch. Rational Mech. Anal. 63, 273–294.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • R. D. James [ 1979 ]. Co-existent phases in the one-dimensional static theory of elastic bars, Arch. Rational Mech. Anal. 72, 99–140.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • R. D. James [ 1980 ]. The propagation of phase boundaries in elastic bars, Arch. Rational Mech. Anal. 73, 125–158.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • R. D. James [ 1981 ]. Finite deformation by mechanical twinning, Arch. Rational Mech. Anal. 77, 143–176.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • W. T. Koiter [1945]. On the stability of elastic equilibrium, Dissertation. Delft, Holland (English translation: NASA Tech. Trans. F10, 833 (1967)).

    Google Scholar 

  • W. T. Koiter [ 1976 ]. A basic open problem in the theory of elastic stability, Springer Lecture Notes in Math. 503, 366–373.

    Article  MathSciNet  Google Scholar 

  • W. T. Koiter [ 1981 ]. Elastic stability, buckling and post-buckling behaviour, in Proc. IUTAM Symp. on Finite Elasticity, pp. 13–24, D. E. CARLSON and R. T. SHIELD, (eds.), Martinus Nijhoff Publishers.

    Google Scholar 

  • R. J. Knops & L. E. Payne [ 1978 ]. On potential wells and stability in nonlinear elasticity, Math. Proc. Camb. Phil. Soc. 84, 177–190.

    Article  MathSciNet  MATH  Google Scholar 

  • R. J. Knops & E. W. Wilkes [ 1973 ]. Theory of elastic stability, in Handbuch der Physik VI a/3, C. TRUESDELL, ed., Springer.

    Google Scholar 

  • J. E. Marsden & T. J. R. Hughes [1983]. Mathematical Foundations of Elasticity, Prentice-Hall.

    MATH  Google Scholar 

  • R. Martini [ 1979 ]. On the Fréchet differentiability of certain energy functionals, Proc. Kon Ned. Akad. Wet. B 82: 42–45.

    Google Scholar 

  • N. G. Meyers [ 1965 ]. Quasi-convexity and lower semicontinuity of multiple variational integrals of any order, Trans. Amer. Math. Soc. 119, 225–249.

    Article  MathSciNet  Google Scholar 

  • C. B. Morrey [ 1952 ]. Quasi-convexity and the lower semicontinuity of multiple integrals, Pacific J. Math. 2, 25–53.

    MathSciNet  MATH  Google Scholar 

  • C. B. Morrey [1966]. Multiple Integrals in the Calculus of Variations, Springer.

    MATH  Google Scholar 

  • M. Potier-Ferry [ 1982 ]. On the mathematical foundations of elastic stability theory. I., Arch. Rational Mech. Anal. 78, 55–72.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • H. Rund [ 1963 ]. On the Weierstrass excess function of parameter-invariant multiple integrals in the calculus of variations. Tydskr. Natuurwetensk 3, 168–179.

    Google Scholar 

  • H. Rund [ 1974 ]. Integral formulae associated with the Euler-Lagrange operators of multiple integral problems in the Calculus of Variations, Aeq. Math. 11, 212–229.

    Article  MathSciNet  MATH  Google Scholar 

  • D. H. Sattinger [ 1969 ]. On global solutions of nonlinear hyperbolic equations, Arch. Rational Mech. Anal. 30, 148–172.

    MathSciNet  ADS  Google Scholar 

  • R. T. Shield & A. E. Green [ 1963 ]. On certain methods in the stability theory of continuous systems, Arch. Rational Mech. Anal. 12, 354–360.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • T. Valent [ 1981 ]. Local theorems of existence and uniqueness in finite elastostatics, in Proc. IUTAM Symp. on Finite Elasticity, pp. 401–421, D. T. Carlson & R. T. Shield (eds.), Martinus Nijhoff Publishers.

    Google Scholar 

  • L. Van Hove [ 1949 ]. Sur le signe de la variation seconde des intégrales multiples à plusieurs fonctions inconnues, Koninkl. Belg. Acad., Klasse der Wetenschappen, Ver- handelingen, Vol. 24.

    Google Scholar 

  • Y. H. Wan, J. E. Marsden, T. Ratiu & A. Weinstein [ 1983 ]. Nonlinear stability of circular vortex patches (to appear).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Jerry Ericksen

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ball, J.M., Marsden, J.E. (1986). Quasiconvexity at the Boundary, Positivity of the Second Variation and Elastic Stability. In: The Breadth and Depth of Continuum Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61634-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61634-1_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16219-3

  • Online ISBN: 978-3-642-61634-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics