Skip to main content

Functional Properties of the Heart

  • Chapter
Comprehensive Human Physiology

Abstract

In the preceding chapter the overall behavior of the heart has been considered as it is reflected in the periodical alternation of diastole and systole and of filling and ejection of the atria and ventricles. This description of the cardiac cycle included the accompanying changes in pressure and volume of the cardiac chambers. However, a deeper comprehension of cardiac function has to take into account some specific properties of the myocardial tissue as opposed to other types of muscle, mainly skeletal muscle, and the transformation of wall tension into pressure by the hollow muscular organ. Moreover, the compensatory changes in the heart in response to different degrees of filling (preload) or of resistance against ejection (afterload) are also discussed in this chapter, as are regulatory influences on myocardial contractility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbot BC, Mommaerts WFHM (1959) A study of inotropic mechanisms in the papillary muscle preparation. J Gen Physiol 42:533–541

    Google Scholar 

  2. Allen DG, Kentish JC (1985) The cellular basis of the length-tension relation in cardiac muscle. J Mol Cell Cardiol 17:821–840

    PubMed  CAS  Google Scholar 

  3. Allen DG, Nichols CG, Smith GL (1988) The effect of changes in muscle length during diastole on the calcium transient in ferret ventricular muscle. J Physiol (Lond) 406:359–370

    CAS  Google Scholar 

  4. Antoni, H (1989) Function of the heart. In: Schmidt RF, Thews G (eds) Human physiology. Springer, Berlin Heidelberg New York, pp 439–479

    Google Scholar 

  5. Antoni H, Jacob R, Kaufmann R (1969) Mechanische Reaktionen des Frosch- und Säugetiermyokards bei Veränderung der Aktionspotentialdauer durch konstante Gleichstromimpulse. Pflugers Arch 306:33–57

    PubMed  CAS  Google Scholar 

  6. Armour JA, Pace JB, Randall WC (1970) Interrelationship of architecture and function of the right ventricle. Am J Physiol 218:174–179

    PubMed  CAS  Google Scholar 

  7. Arnold G, Kosche F, Miessner E, Neitzert A, Lochner W (1968) The importance of the perfusion pressure in the coronary arteries for the contractility and the oxygen consumption of the heart. Pflugers Arch 299:339–356

    CAS  Google Scholar 

  8. Ashley CC, Ridgway EB (1970) Simultaneous recordings of membrane potential, calcium transient, and tension in single muscle fibres. Nature 219:1168–1169

    Google Scholar 

  9. Ballard FB, Danford WH, Neagle S, Bing RJ (1960) Myocardial metabolism of fatty acids. J Clin Invest 39:717–723

    PubMed  CAS  Google Scholar 

  10. Baller D, Bretschneider HJ, Hellige G (1981) A critical look at currently used indirect indices of myocardial oxygen consumption. Basic Res Cardiol 76:163–181

    PubMed  CAS  Google Scholar 

  11. Bardenheuer H, Schrader J (1983) Relationship between myocardial oxygen consumption, coronary flow, and adenosine release in an improved isolated working heart preparation of guinea pigs. Circ Res 51:263–271

    Google Scholar 

  12. Bassenge E (1989) Mechanik des intakten Herzens. In: Roskamm H, Reindell H (eds) Herzkrankheiten. Springer, Berlin Heidelberg New York, pp 66–87

    Google Scholar 

  13. Bassenge E, Heusch G (1990) Endothelial and neurohumoral control of coronary blood flow in health and disease. Rev Physiol Biochem Pharmacol 116:77–165

    PubMed  CAS  Google Scholar 

  14. Berne RM (1963) Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Am J Physiol 204:317–322

    PubMed  CAS  Google Scholar 

  15. Bianchi CP, Frank GB (eds) (1982) Excitation-contraction coupling in skeletal, cardiac, and smooth muscle. Can J Physiol Pharmacol 60:415–588

    Google Scholar 

  16. Bing RJ (1955) The metabolism of the heart. Harvey Lect 50:27–70

    CAS  Google Scholar 

  17. Blinks R (1986) Intracellular Ca2+ measurements. In: Fozzard HA, Haber E, Jennings RB, Katz AM, Morgan HE (eds) The heart and cardiovascular system. Raven, New York, pp 671–701

    Google Scholar 

  18. Blinks JR, Wier WG, Hess P, Prendergast FG (1982) Measurement of Ca concentrations in living cells. Prog Biophys Mol Biol 40:1–114

    PubMed  CAS  Google Scholar 

  19. Brady A (1966) Onset of contractility in cardiac muscle. J Physiol (Lond) 184:560–580

    CAS  Google Scholar 

  20. Brady A (1979) Mechanical properties of cardiac fibres. In: Berne RM, Sperelakis N, Geiger SR (eds) Handbook of physiology, section 2: the cardiovascular system. American Physiological Society, Bethesda, Maryland, pp 461–474

    Google Scholar 

  21. Brady AJ (1991) Length dependence of passive stiffness in single cardiac myocytes. Am J Physiol 260:1062–1071

    Google Scholar 

  22. Brenner B (1988) Effect of Ca2+ on cross-bridge turnover kinetics in skinned single rabbit psoas fibres. Proc Natl Acad Sci USA 85:3265–3269

    PubMed  CAS  Google Scholar 

  23. Brutsaert DL (1993) Endocardial and coronary endothelial control of cardiac performance. News Physiol Sci 8:82–86

    Google Scholar 

  24. Brutsaert DL, Housmans PR, Goethals MA (1980) Dual control of relaxation. Its role in the ventricular function in the mammalian heart. Circ Res 47:637–652

    PubMed  CAS  Google Scholar 

  25. Brutsaert DL, Sys SU (1988) Relaxation and diastole of the heart. Physiol Rev 69:1228–1315

    Google Scholar 

  26. Bünger R, Sommer O, Walter G, Stiegler H, Gerlach E (1979) Functional and metabolic features of an isolated perfused guinea pig heart, performing pressure-volume work. Pflugers Arch 380:259–266

    PubMed  Google Scholar 

  27. Daut J, Maier-Rudolph W, van Beckerath N, Mehrke G, Günther K, Goedel-Meinen L (1990) Hypoxic dilation of coronary arteries is mediated by ATP-sensitive potassium channels. Science 247:1341–1344

    PubMed  CAS  Google Scholar 

  28. De Bold AJ, Borenstein HB, Veress AT, Sonnenberg H (1980) A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci 28:89–94

    Google Scholar 

  29. De Mey JG, Vanhoutte PM (1983) Anoxia and endothelium-dependent reactivity of the canine femoral artery. J Physiol (Lond) 335:65–74

    Google Scholar 

  30. Dinerman JL, Lowenstein CJ, Snyder SH (1993) Molecular mechanisms of nitric oxide regulation. Circ Res 73:217–222

    PubMed  CAS  Google Scholar 

  31. Drake A, Haines JR, Noble MIM (1980) Preferential uptake of lactate by the normal myocardium in dogs. Cardiovasc Res 14:65–72

    PubMed  CAS  Google Scholar 

  32. Fenn WO, Marsh BS (1935) Muscular force at different speed of shortening. J Physiol (Lond) 85:277–297

    CAS  Google Scholar 

  33. Fleckenstein A (1983) Calcium antagonism in heart and smooth muscle. Wiley, New York

    Google Scholar 

  34. Fleckenstein A, Nakayama K, Fleckenstein-Grün G, Byon YK (1975) Interaction of vasoactive ions and drugs with Ca-dependent excitation-contraction coupling of vascular smooth muscle. In: Carfoli E, Clementi F, Drabikowski W, Magreth A (eds) Calcium transport in contraction and secretion. North Holland, Amsterdam, pp 555–566

    Google Scholar 

  35. Förstermann U, Nakane M, Tracey WR, Pollock JS (1994) Isoforms of nitric oxide synthase: functions in the cardiovascular system. Eur Heart J 14:10–15

    Google Scholar 

  36. Ford LE (1991) Mechanical manifestation of activation in cardiac muscle. Circ Res 68:621–637

    PubMed  CAS  Google Scholar 

  37. Fozzard HA, Haber E, Jennings RB, Katz AM, Morgan HE (eds) (1992) The heart and cardiovascular system, 2nd edn. Raven, New York

    Google Scholar 

  38. Frank O (1895) Zur Dynamik des Herzmuskels. Z Biol 32:370–447

    Google Scholar 

  39. Furchgott RF, Zawadski JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    PubMed  CAS  Google Scholar 

  40. Gaasch WH, Apstein CS, Levine HJ (1985) Diastolic properties of the left ventricle. In: Levine HJ, Gaasch WH (eds) The ventricle: basis and clinical aspects. Nijhoff, Boston, pp 143–170

    Google Scholar 

  41. Gauer OH (1972) Kreislauf des Blutes. In: Gauer OH, Kramer K, Jung R (eds) Physiologie des Menschen, vol 3. Wban and Schwarzenberg, Munich, pp 81–88

    Google Scholar 

  42. Gerlach E, Deuticke B, Dreisbach RH (1963) Der Nucleotidabbau im Herzmuskel bei Sauerstoffmangel und seine mögliche Bedeutung für die Coronardurchblutung. Naturwissenschaften 6:228–229

    Google Scholar 

  43. Gollwitzer-Meier K, Kramer K, Krüger E (1936) Der Gaswechsel des suffizienten und insuffizienten Warmblüterherzens. Pflugers Arch 237:68–92

    CAS  Google Scholar 

  44. Gollwitzer-Meier K, Kroetz K (1939) Klin Wochenschr 18:869–882

    CAS  Google Scholar 

  45. Gülch RW (1980) Alterations in excitation of mammalian myocardium as a function of chronic loading and their implications in the mechanical events. Basic Res Cardiol 75:73–80

    PubMed  Google Scholar 

  46. Hammond HK, White FC, Bhargava V, Shabetai R (1992) Heart size and maximal cardiac output are limited by pericardium. Am J Physiol 263:1675–1681

    Google Scholar 

  47. Hawthorne EW (1966) Dynamic geometry of the left ventricle. Am J Cardiol 18:566–573

    PubMed  CAS  Google Scholar 

  48. Hellige G (1981) Koronardurchblutung. In: Krayenbühl HP, Kübler W (eds) Kardiologie in Klinik und Praxis. Thieme, Stuttgart, pp 8.1–8.12

    Google Scholar 

  49. Henderson HA, Lewis MJ, Shah AM, Smith JA (1992) Endothelium, endocardium, and cardiac contraction. Cardiovasc Res 26:305–308

    PubMed  CAS  Google Scholar 

  50. Henry JP, Gauer O, Reeves IL (1956) Evidence of the atrial location of receptors influencing urine flow. Circ Res 4:85–90

    PubMed  CAS  Google Scholar 

  51. Hill AV (1938) The heat od shortening and the dynamic constants of muscle. Proc R Soc Lond [Biol] 126:136–195

    Google Scholar 

  52. Hill AV (1949) The abrupt transition from rest to activity in muscle. Proc R Soc Lond [Biol] 136:399–420

    CAS  Google Scholar 

  53. Hilton R, Eichholtz F (1925) The influence of chemical factors on the coronary circulation. J Physiol (Lond) 59:413–425

    CAS  Google Scholar 

  54. Hoffman JIE (1987) A critical view of coronary reserve. Circulation 75 [Suppl I]: 1–6

    Google Scholar 

  55. Holtz J, Münzel T, Bassenge E (1987) Das natriuretische Vorhofhormon im Menschen.. Kardiol 76:655–670

    CAS  Google Scholar 

  56. Hort W (1977) Myocardial hypertrophy. Light microscopic findings on the myocardium. Blood supply, ventricular dilatation and heart failure. Basic Res Cardiol 72:203–208

    PubMed  CAS  Google Scholar 

  57. Housmans PR, Lee NK, Blinks JR (1983) Active shortening retards the decline of the intracellular calcium transient in mammalian heart muscle. Science 221:159–161

    PubMed  CAS  Google Scholar 

  58. Huang CL, Lewicki J, Johnson LK, Cogan MG (1985) Renal mechanism of action of rat atrial natriuretic factor. J Clin Invest 75:769–773

    PubMed  CAS  Google Scholar 

  59. Huxley HE, Hanson J (1954) Changes in the cross-striation of muscle during contraction and stretch and their structural interpretation. Nature (Lond) 173:973–976

    CAS  Google Scholar 

  60. Huxley HE, Hanson J (1960) The molecular basis of contraction in cross-striated muscle. In: Bourne GH (ed) The structure and function of muscle, vol I. Academic, New York, pp 183–227

    Google Scholar 

  61. Ignarro LJ (1988) Biological actions and properties of endothelium-derived nitric oxide formed and released from artery and vein. Circ Res 65:1–20

    Google Scholar 

  62. Ignarro LJ, Byrns RE, Buga GM, Wood KS (1987) Endothelium-derived relaxing factor from pulmonary artery and vein possesses pharmacologic and chemical properties identical to those of nitric oxide radical. Circ Res 61:866–879

    PubMed  CAS  Google Scholar 

  63. Jacob R, Brändie M, Dierberger B, Ross C (1990) Conception and methodological basis for the evaluation of ventricular and myocardial mechanics. In: Jacob R (ed) Evaluation of cardiac contractility. Fischer, Stuttgart

    Google Scholar 

  64. Jacob R, Dierberger B, Gülch RW, Rupp H, Voelker W (1990) Factors contributing to the transition from cardiac hypertrophy to hear failure. Cardiol Angiol Bull 27:1–9

    Google Scholar 

  65. Jacob R, Gülch RW (1985) Kontraktion. In: Heublein B (ed) Handbuch der Inneren Erkrankungen, vol 1. Fischer, Stuttgart

    Google Scholar 

  66. Jacob R, Weigand KH (1966) The end-systolic pressure-volume relations as a basis for evaluation of left ventricular contractility in situ. Pflugers Arch 289:37–49

    CAS  Google Scholar 

  67. Jewell BR (1977) A re-examination of the influence of muscle length on myocardial performance. Circ Res 40:321–330

    Google Scholar 

  68. Kammermeier H (1987) High energy phosphate of the myocardium: concentration versus free energy change. Basic Res Cardiol 82 [Suppl 2]:31–36

    PubMed  CAS  Google Scholar 

  69. Kass DA, Maughan WL (1988) From Emax to pressure-volume relations: a broader view. Circulation 77:1203–1212

    PubMed  CAS  Google Scholar 

  70. Kass DA, Yamazaki T, Burkhoff D, Maughan WL, Sagawa K (1986) Determination of left ventricular end-systolic pressure-volume relationships by the conductance (volume) catheter technique. Circulation 73:586–595

    PubMed  CAS  Google Scholar 

  71. Katz AM (1977) Series elasticity, active state, length-tension relationship, and cardiac mechanics. In: Katz AM (ed) Physiology of the heart. Raven, New York, pp 119–136

    Google Scholar 

  72. Kent RL, Hoober K, Cooper G (1989) Load responsiveness of protein synthesis in adult mammalian myocardium: role of cardiac deformation linked to sodium influx. Circ Res 4:74–85

    Google Scholar 

  73. Keul J, Doll E, Steim H, Homburger H, Kern H, Reindell H (1965) Über den Stoffwechsel des menschlichen Herzens. I. Die Substratversorgung des gesunden menschlichen Herzens in Ruhe, während und nach körperlicher Arbeit. Pflugers Arch 282:1–27

    CAS  Google Scholar 

  74. Keung E (1989) Calcium current is increased in isolated adult myocytes from hypertrophied rat myocardium. Circ Res 64:753–763

    PubMed  CAS  Google Scholar 

  75. Kisch B (1956) Electron microscopy of the atrium of the heart. Exp Med Surg 14:99

    PubMed  CAS  Google Scholar 

  76. Kuhn HJ, Bletz C, Rüegg JC (1990) Stretch-induced increase in the Ca sensitivity of myofibrillar ATPase activity in skinned fibres from pig ventricles. Pflugers Arch 415:741–746

    PubMed  CAS  Google Scholar 

  77. Lakatta EG (1992) Length modulation of muscle performance. Frank-Starling Law of the heart. In: Fozzard HA, Haber E, Jennings RB, Katz AM, Morgan HE (eds) The heart and cardiovascular system. Raven, New York, pp 1325–1351

    Google Scholar 

  78. Laplace PS (1806) Théorie de l’action capillaire. Cited in [117]

    Google Scholar 

  79. Loiselle DS (1987) Cardiac basal and activation metabolism. Basic Res Cardiol 82 [Suppl 2]:37–50

    PubMed  Google Scholar 

  80. Marcus ML, Wright C, Doty D, Eastham C, Laughlin D, Krumm P, Fastenow C, Brody M (1981) Measurement od coronary velocity and relative hyperemia in the coronary circulation of humans. Circ Res 49:877–891

    PubMed  CAS  Google Scholar 

  81. Masaki T (1989) The discovery, the present state, and the future prospects of endothelin. J Cardiovasc Pharmacol 13 [Suppl 5]:1–4

    Google Scholar 

  82. McClellan G, Weisberg A, Rode D, Winegrad S (1994) Endothelial cell storage and release of endothelin as a cardioregulatory mechanism. Circ Res 75:85–96

    PubMed  CAS  Google Scholar 

  83. McNutt NS, Fawcett DW (1974) Myocardial ultrastructure. In: Langer GA, Brady AJ (eds) The mammalian myocardium. Wiley, New York, pp 1–49

    Google Scholar 

  84. Mirsky I (1979) Elastic properties of the myocardium: a quantitative approach with physiological and clinical applications. In: Berne RM, Sperelakis N, Geiger, SR (eds) Handbook of physiology, section 2: the cardiovascular system, vol I: the heart. American Physiological Society, Bethesda, pp 497–532

    Google Scholar 

  85. Motz W, Klepzig M, Strauer BE (1987) Regression of cardiac hypertrophy. Experimental and clinical results. J Cardiovasc Pharmacol 10 [Suppl 6]:148–152

    Google Scholar 

  86. Murray PA, Belloni FL, Sparks HV (1979) The role of potassium in the metabolic control of coronary vascular resistance of the dog. Circ Res 44:767–780

    PubMed  CAS  Google Scholar 

  87. Neely JR, Liebermeister H, Batterby EJ, Morgan HE (1967) Effect of pressure development on oxygen consumption of isolated rat heart. Am J Physiol 212:804–814

    PubMed  CAS  Google Scholar 

  88. Oikawa S, Imai M, Veno A (1984) Cloning and sequence analysis of CDNA encoding a precursor for human atrial natriuretic polypeptide. Nature 309:724–726

    PubMed  CAS  Google Scholar 

  89. Oparil S, Wyss MJ (1993) Atrial natriurtic factor in central cardiovascular control. News Physiol Sci 8:223–228

    CAS  Google Scholar 

  90. Opie LH (1991) The heart. Physiology and metabolism. Raven, New York

    Google Scholar 

  91. Opie LH (1991) Ventricular hypertrophy and its molecular biology. In: Opie LH (ed) The heart. Physiology and metabolism. Raven, New York, pp 369–395

    Google Scholar 

  92. Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    PubMed  CAS  Google Scholar 

  93. Parmley WW, Chuck L, Sonnenblick EH (1972) Relation of vmax to different models of cardiac work. Circ Res 30:34–43

    PubMed  CAS  Google Scholar 

  94. Pohl U, Busse R (1989) Hypoxia stimulates release of endothelium-derived relaxant factor. Am J Physiol 256:H1595–H1600

    PubMed  CAS  Google Scholar 

  95. Pohl U, Holtz J, Busse R, Bassenge E (1986) Crucial role of endothelium in the vasodilator response to increased flow in vivo. Hypertension 8:37–44

    PubMed  CAS  Google Scholar 

  96. Pollack GH (1970) Maximum velocity as an index of contractility in cardiac muscle — a critical evaluation. Circ Res 26:111–127

    PubMed  CAS  Google Scholar 

  97. Reindell H (1940) Größe, Form und Bewegungsbild des Sportherzens. Arch Kreisl Forsch 7:117

    Google Scholar 

  98. Roskamm H, Reindell H, Müller M (1966) Herzgröße und ergometrisch getestete Ausdauerleistungsfähigkeit bei Hochleistungssportlern aus 9 deutschen Nationalmannschaften. Z Kreisl Forsch 55:2–14

    CAS  Google Scholar 

  99. Rüegg JC (1986) Calcium in muscle activation. Springer, Berlin Heidelberg New York

    Google Scholar 

  100. Rupp H (1989) Differential effect of physical exercise routines on ventricular myosin and peripheral catecholamine stores in normotensive and spontaneously hypertensive rats. Circ Res 65:370–377

    PubMed  CAS  Google Scholar 

  101. Ruskoaho H, Vuolteenaho O (1993) Regulation of atrial natriuretic peptide secretion. News Physiol Sci 8:261–266

    CAS  Google Scholar 

  102. Sagawa K (1978) The ventricular pressure-volume diagram revisited. Circ Res 43:677–687

    PubMed  CAS  Google Scholar 

  103. Sagawa K (1981) The end-systolic pressure-volume relations of the ventricle: definition, modification and clinical use. Circulation 63:1223–1227

    PubMed  CAS  Google Scholar 

  104. Sagawa K, Suga H, Shoukas AA, Bakalar KM (1979) End-systolic pressure-volume ratio: a new index of contractility. Am J Cardiol 40:748–753

    Google Scholar 

  105. Schrader J, Baumann G, Gerlach E (1977) Antiadrenergic action of adenosine in the heart: possible physiological significance. Pflugers Arch 372:29–35

    PubMed  CAS  Google Scholar 

  106. Simmons RM, Jewell BR (1974) Mechanics and models of muscular contraction. Rec Adv Physiol 9:87–147

    Google Scholar 

  107. Smith VE, Zile R (1992) Relaxation and diastolic properties of the heart. In: Fozzard HA, Haber E, Jennings RB, Katz AM, Morgan HE (eds) The heart and cardiovascular system. Raven, New York, pp 1353–1367

    Google Scholar 

  108. Sommer JR, Jennings RB (1992) Ultrastructure of cardiac muscle. In: Fozzard HA, Haber E, Jennings RB, Katz AM, Morgan HE (eds) The heart and cardiovascular system. Raven, New York, pp 3–50

    Google Scholar 

  109. Sonnenberg H (1989) Intrarenal mechanisms of action of atrial natriuretic factor. In: Kaufmann W, Wambach G (eds) Endocrinology of the heart. Springer, Berlin Heidelberg New York

    Google Scholar 

  110. Sonnenblick EH (1962) Force-velocity relations in mammalian heart muscle. Am J Physiol 202:931–939

    PubMed  CAS  Google Scholar 

  111. Starling EH (1918) The Linacre lecture on the law of the heart. Longmans and Green, London

    Google Scholar 

  112. Stephenson DG, Wendt IR (1984) Length dependence of changes in sarcoplasmic calcium concentration and myofibrillar calcium sensitivity in striated muscle fibres. J Muscle Res Cell Motil 5:243–272

    PubMed  CAS  Google Scholar 

  113. Strauer BE (1992) The concept of coronary flow reserve. J Cardiovasc Pharmacol 19 [Suppl 5]:67–80

    Google Scholar 

  114. Streeter DD (1979) Gross morphology and fibre geometry of the heart. In: Berne RM, Sperelakis N, Geiger SR (eds) Handbook of physiology, section 2: the cardiovascular system, vol I: the heart. American Physiological Society, Bethesda, pp 61–112

    Google Scholar 

  115. Taegtmeyer H (1986) Myocardial metabolism. In: Phelps M, Mazziotta J, Schelbert H (eds) Positron emission tomography and autoradiography. Raven, New York, pp 149–195

    Google Scholar 

  116. Taegtmeyer H, Hems R, Krebs HA (1980) Utilization of energy-providing substrates in the isolated working rat heart. BiochemJ 186:701–711

    CAS  Google Scholar 

  117. Tenney SM (1993) A tangled web: Young, Laplace, and the surface tension law. News Physiol Sci 8:179–183

    Google Scholar 

  118. Tritthart H, Fleckenstein A, Kaufmann R (1968) Die spezifische Beschleunigung des Erschlaffungsprozesses durch sympathische Überträgerstoffe und die Hemmung dieses Effektes durch β-Rezeptoren-Blockade. Pflugers Arch 303:350–365

    PubMed  CAS  Google Scholar 

  119. Von Harsdorf R, Lang RE, Fullerton M, Woodcock EA (1989) Myocardial stretch stimulates phosphatidylinositol turnover. Circ Res 65:494–501

    Google Scholar 

  120. Weitzberg E (1993) Circulatory responses to endothelin-1 and nitric oxide with special reference to endotoxin shock and nitric oxide inhalation. Acta Physiol Scand [Suppl.] 611:4–14

    Google Scholar 

  121. Wier WG (1990) Cytoplasmic Ca2+ in mammalian ventricle — dynamic control by cellular processes. Annu Rev Physiol 52:467–485

    PubMed  CAS  Google Scholar 

  122. Wiggers CJ (1927) Studies on the cardiodynamic action of drug II: the mechanism of cardiac stimulation by epinephrine. J Pharmacol Exp Ther 30:233

    Google Scholar 

  123. Xenophontos XP, Watson PA, Chua BHL (1989) Increased cyclic AMP content accelerates protein synthesis in rat heart. Circ Res 65:647–656

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Antoni, H. (1996). Functional Properties of the Heart. In: Greger, R., Windhorst, U. (eds) Comprehensive Human Physiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60946-6_91

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60946-6_91

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64619-5

  • Online ISBN: 978-3-642-60946-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics