Skip to main content

Gravitational and Hyper- and Hypobaric Stress

  • Chapter
Comprehensive Human Physiology

Abstract

The respiratory system is challenged by exposure to high or low ambient pressures and gravitational forces. These have effects on a range of respiratory functions, such as the mechanics of breathing, the exchange of respiratory gases at the lungs, and the control of pulmonary ventilation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agostoni E (1965) Limitation to depths of diving mechanics of chest wall. In: Rahn H, Yokoyama T (eds) Physiology of breath-hold diving and the Ama of Japan. Washington DC, pp 139–145 (National Academy of Sciences National Research Council publication 1341)

    Google Scholar 

  2. Agostoni E, Gurtner G, Torri G, Rahn H (1966) Respiratory mechanics during submersion and negative-pressure breathing. J Appl Physiol 21:251–258

    PubMed  CAS  Google Scholar 

  3. Agostoni E, Mead J (1964) Statics of the respiratory system. In: Fenn WO, Rahn H (eds) Handbook of physiology, section 3, vol 1: respiration. American Physiological Society, Bethesda, pp 387–409

    Google Scholar 

  4. Anthonisen NR, Bradley ME, Vorosmarti J, Linaweaver PG (1971) Mechanics of breathing with helium-oxygen and neon-oxygen mixtures in deep saturation diving. In: Lambertsen CJ (ed) Underwater physiology: proceedings of the 4th symposium on underwater physiology. New York, Academic, pp 339–345

    Google Scholar 

  5. Anthonisen NR, Utz G, Kruger MH, Urbanetti JS (1976) Exercise tolerance at 4 and 6 ATA. Undersea Biomed Res 3:95–102

    PubMed  CAS  Google Scholar 

  6. Arborelius M Jr, Balldin UI, Lilja B, Lundgren CEG (1972) Hemodynamic changes in man during immersion with the head above water. Aerospace Med 43:592–598

    PubMed  Google Scholar 

  7. Arborelius M Jr, Balldin UI, Lilja B, Lundgren CEG (1972) Regional lung function in man during immersion with the head above water. Aerospace Med 43:701–707

    PubMed  Google Scholar 

  8. Arias-Stella J, Valcārcel J (1976) Chief cell hyperplasia in the human carotid body at high altitudes: physiologic and pathologic significance. Hum Pathol 7:361–373

    PubMed  CAS  Google Scholar 

  9. Åstrand PO (1954) The respiratory activity in man exposed to prolonged hypoxia. Acta Physiol Scand 30:343–368.

    PubMed  Google Scholar 

  10. Baer R, Dahlbäck GO, Balldin UI (1987) Pulmonary mechanics and atelectasis dring immersion in oxygen breathing subjects. Undersea Biomed Res 14:229–240

    PubMed  CAS  Google Scholar 

  11. Balldin UI, Dahlbäck GO, Lundgren CEG (1971) Changes in vital capcity produced by oxygen breathing during immersion with the head above water. Aerospace Med 42:384–387

    PubMed  CAS  Google Scholar 

  12. Barcroft J, Binger CA, Bock AV, Doggart JH, Forbes HS, Harrop G, Meakins JC, Redfield AC (1923) Observations upon the effect of high altitude on the physiological processes of the human body, carried out in the Peruvian Andes, chiefly at Cerro de Pasco. Philos Trans R Soc [B] 211:351–480

    Google Scholar 

  13. Barnard P, Andronikou S, Pokorski M, Smatresk N, Mokashi A, Lahiri S (1987) Time-dependent effect of hypoxia on carotid body chemosensory function. J Appl Physiol 63:65–691.

    Google Scholar 

  14. Barr PO (1963) Pulmonary gas exchange in man, as affected by prolonged gravitational stress. Acta Physiol Scand 28 [Suppl 207]:1–46

    Google Scholar 

  15. Bennett PB, Elliott DH (eds) (1982) The physiology and medicine of diving. Best, San Pedro, California

    Google Scholar 

  16. Bert P (1878) Barometric pressure: researches in experimental physiology (translated by MA Hitchcock and FA Hitchcock). College Book, Columbus, Ohio

    Google Scholar 

  17. Bjurstedt H, Rosenhamer G, Wigertz O (1968) High-G environment and responses to graded exercise. J Appl Physiol 25:713–719

    PubMed  CAS  Google Scholar 

  18. Blomqvist CG, Stone HL (1983) Cardiovascular adjustments to gravitational stress. In: Shepherd JT, Abboud FM (eds) Handbook of physiology. The cardiovascular system III. Peripheral circulation, part 2. American Physiological Society, Washington DC, pp 1025–1063

    Google Scholar 

  19. Boutellier U, Arieli R, Farhi LE (1985) Ventilation and CO2 reponse during +Gz acceleration. Respir Physiol 62:141–151

    PubMed  CAS  Google Scholar 

  20. Boycott AE, Damant GCC, Haldane JB (1908) The prevention of compressed-air illness. J Hyg (Camb) 8:342–347

    CAS  Google Scholar 

  21. Brody SB, Lahiri S, Simpser M, Motoyama EK, Velasquez T (1977) Lung elasticity and airway dynamics in Peruvian natives to high altitude. J Appl Physiol 42:245–251

    PubMed  CAS  Google Scholar 

  22. Bryan AC, MacNamarra, Simpson J, Wager HN (1965) Effect of acceleration on the distribution of pulmonary blood flow. J Appl Physiol 20:1129–1132

    Google Scholar 

  23. Bryan AC, Milic-Emili J, Pengelly D (1966) Effect of gravity on the distribution of pulmonary ventilation. J Appl Physiol 21:778–784

    PubMed  CAS  Google Scholar 

  24. Burton RR, Leverett SD, Michaelson ED (1974) Man at high, sustained +Gz acceleration: a review. Aerospace Med 45:1115–1136

    PubMed  CAS  Google Scholar 

  25. Carey CR, Schaefer KE, Alvis H (1956) Effect of skin diving on lung volumes. J Appl Physiol 8:519–523

    PubMed  CAS  Google Scholar 

  26. Chiodi H (1957) Respiratory adaptations to chronic high altitude. J Appl Physiol 10:81–87

    PubMed  CAS  Google Scholar 

  27. Christensen EH, Krogh A (1936) Fliegerunterschungen; die Wirkung niedriger O2-Spannung auf Höhenflieger. Scand Arch Physiol 73:145–154

    CAS  Google Scholar 

  28. Chronos N, Adams L, Guz A (1988) Effect of hyperoxia and hypoxia on exercise-induced breathlessness in normal subjects. Clin Sci 74:531–537

    PubMed  CAS  Google Scholar 

  29. Clark JM, Lambertsen CJ (1971) Pulmonary oxygen toxicity: a review. Pharmacol Rev 23:37–133

    PubMed  CAS  Google Scholar 

  30. Coates G, Gray G, Mansell A, Nahaamias C, Powles A, Sutton J, Webber C (1979) Changes in lung volume, lung density, and distribution of ventilation during hypobaric decompression. J Appl Physiol 46:752–755

    PubMed  CAS  Google Scholar 

  31. Convertino VA (1990) Physiological adaptations to weightlessness: effects of exercise and work performance. Exere Sports Sci Rev 18:119–166

    CAS  Google Scholar 

  32. Craig AB Jr (1968) Depth limits of breath-hold diving (an example of fennology) Respir Physiol 5:14–22.

    PubMed  Google Scholar 

  33. Crapo JD (1986) Morphologic changes in pulmonary oxygen toxicity. Annu Rev Physiol 48:721–731

    PubMed  CAS  Google Scholar 

  34. Cruz JC (1973) Mechanics of breathing in high altitude and sea level subjects. Respir Physiol 17:146–161

    PubMed  CAS  Google Scholar 

  35. Cruz JC, Reeves JT, Grover RF, Maher JT, McCullough RE, Cymerman A, Denniston JC (1973) Ventilatory acclimatization to high altitude is prevented by CO2 breathing. Respiration 39:121–130

    Google Scholar 

  36. D’Aoust BG (1984) Inert gas exchange and counter diffusion in decompression sickness and diving medicine. In: Bachrach AJ, Matzen MM (eds) Proceedings of the 8th symposium on underwater physiol. Undersea Medical Society, Bethesda, Maryland, pp 159–170

    Google Scholar 

  37. Dahlbäck GO, Balldin UI (1983) Positive-pressure oxygen breathing and pulmonary atelectasis during immersion. Undersea Biomed Res 10:39–44

    PubMed  Google Scholar 

  38. Davidson JT, Whipp BJ, Wasserman K, Royal SN, Lugliani R (1974) Role in the carotid bodies in the sensation of breathlessness during breath-holding. N Engl J Med 290:819–822

    PubMed  CAS  Google Scholar 

  39. Dawson A (1972) Regional lung function during early acclimatization to 3100 m altitude. J Appl Physiol 33:218–223

    PubMed  CAS  Google Scholar 

  40. de Acosta J (1590) Historia natural y moral de las indias, en que le tratan las cosas notables del cielo, y elementos, metales, plantas, y animales dellas: y los ritas, y ceremonias, leyes, y gouierno, y guerras de los indios. de Leon, Seville

    Google Scholar 

  41. Dempsey JA, Forster HV (1982) Mediation of ventilatory adaptations. Physiol Rev 62:262–346

    PubMed  CAS  Google Scholar 

  42. Dempsey JA, Reddan WG, Birnbaum ML, Forster HV, Thoden JS, Grover RF, Rankin J (1971) Effects of acute through life-long hypoxic exposure on exercise pulmonary gas exchange. Respir Physiol 13:62–89

    PubMed  CAS  Google Scholar 

  43. Denison D (1982) The effect of pressure on the lungs. In: Bonsignore G, Cumming G (eds) The lung in its environment. Plenum, New York, pp 343–351

    Google Scholar 

  44. Dill DB, Myhre LG, Phillips EE Jr, Brown DK (1966) Work capacity in acute exposures to altitude. J Appl Physiol 21:1168–1176

    PubMed  CAS  Google Scholar 

  45. Elliott PR, Atterbom HA (1978) Comparison of exercise responses of males and females during acute exposure to hypobaria. Aviat Space Environ Med 49:415–418

    PubMed  CAS  Google Scholar 

  46. Engel LA (1991) Effect of microgravity on the respiratory system. J Appl Physiol 70:1907–1911

    PubMed  CAS  Google Scholar 

  47. Engel LA, Grassino A, Anthonisen NR (1975) Demonstration of airway closure in man. J Appl Physiol 38:1117–1125

    PubMed  CAS  Google Scholar 

  48. Fagreus L (1974) Cardiorespiratory and metabolic functions during exercise in the hyperbaric environment. Acta Physiol Scand [Suppl] 414:1–40

    Google Scholar 

  49. Fagreus L, Karlsson J, Linnarsson D, Saltin B (1973) Oxygen uptake during maximal exercise at lowered and raised ambient air pressures. Acta Physiol Scand 87:411–421

    Google Scholar 

  50. Farhi LE (1984) Physiological shunts: effects of posture and gravity. In: Johansen K, Burgren W (eds) Cardiovascular shunts. Munksgaard, Copenhagen, pp 322–333

    Google Scholar 

  51. Fenn WO (1954) The pressure volume diagram of the breathing mechanism. In: Boothby WM (ed) Handbook of respiratory physiology. USAF School of Aviation Medicine, Randolph Field, pp 99–124

    Google Scholar 

  52. Gale GE, Torre-Bueno JR, Moon RE, Saltzman HA, Wagner PD (1985) Ventilation-perfusion inequality in normal humans during exercise at sea level and simulated altitude. J Appl Physiol 58:978–988

    PubMed  CAS  Google Scholar 

  53. Gelfand R, Lambertsen CJ, Peterson R (1980) Human respiratory control at high ambient pressures and inspired gas densities. J Appl Physiol 48:528–539

    PubMed  CAS  Google Scholar 

  54. Gillingham KK, Krutz RW (1974) Effects of the abnormal acceleratory environment of flight. Aeromedical Review no 20–74. USAFSAM, Brooks AFB, TX

    Google Scholar 

  55. Glaister DH (1977) Effect of acceleration. In: West JB (ed) Regional differences in the lung. Academic, New York, pp 323–379

    Google Scholar 

  56. Groves BM, Reeves JT, Sutton JR, Wagner PD, Cymerman A, Malconian MK, Rock PB, Young PM (1987) Operation Everest II: elevated high-altitude pulmonary resistance unresponsive to oxygen. J Appl Physiol 63:521–530

    PubMed  CAS  Google Scholar 

  57. Guy HJB, Prisk GK, Elliott AR, Deutschman RA, West JB (1994) Inhomogeneity of pulmonary ventilation during sustained microgravity as determined by single-breath washouts. J Appl Physiol 76:1719–1729

    PubMed  CAS  Google Scholar 

  58. Haab P, Held DR, Ernst H, Farhi LE (1969) Ventilation perfusion relationships during high altitude adaptation. J Appl Physiol 26:77–81

    PubMed  CAS  Google Scholar 

  59. Hackett PH, Reeves JT, Grover RF, Weil JV (1984) Ventilation in human populations native to high altitudes. In: West JB, Lahiri S (eds) High altitude and man. American Physiological Society, Bethesda, pp 179–191

    Google Scholar 

  60. Haldane JB, Priestley JG (1905) The regulation of human respiration. J Physiol (Lond) 32:225–266

    CAS  Google Scholar 

  61. Hansen JE, Hartley LH, Hogan RP III (1972) Arterial oxygen increase by high-carbohydrate diet at altitude. J Appl Physiol 33:441–445

    PubMed  CAS  Google Scholar 

  62. Hansen JE, Vogel JA, Stelter GP, Consolazio CF (1967) Oxygen uptake in man during exhaustive work and sea level and high altitude. J Appl Physiol 23:511–522

    PubMed  CAS  Google Scholar 

  63. Heath D, Williams DR (1989) High-altitude medicine and pathology. Butterworths. London

    Google Scholar 

  64. Hesser CM (1965) Breath holding under high pressure. In: Rahn H, Yokoyama T (eds) Physiology of breath-hold diving and the Ama of Japan. Washington DC, pp 165–181 (National Academy of Sciences National Research Council publication 1341)

    Google Scholar 

  65. Hesser CV, Lind F, Faijerson B (1979) Effects of exercise and raised air pressures on maximal voluntary ventilation. In: Grimstad J (ed) Proceedings of the European Underwater Biomedical Society 5th annual meeting. European Undersea Biomedical Society, Bergen, Norway, pp 203–212

    Google Scholar 

  66. Hesser CM, Linnarsson D, Fagreus L (1981) Pulmonary mechanics and work of breathing at maximal ventilation and raised air pressure. J Appl Physiol 50:747–753

    PubMed  CAS  Google Scholar 

  67. Hong SK, Cerretelli P, Cruz JC, Rahn H (1969) Mechanics of respiration during submersion in water. J Appl Physiol 27:535–538

    PubMed  CAS  Google Scholar 

  68. Hoon RS, Balasubramanion V, Tiwari BC, Mathew OP, Behl A, Sharma SC, Chadha KS (1977) Changes in transthoracic electrical impedance at high altitude. Br Heart J 39:61–66

    PubMed  CAS  Google Scholar 

  69. Houston CS, Riley RL (1949) Respiratory and circulatory changes during acclimatization to high altitude. Am J Physiol 149:565–588

    Google Scholar 

  70. Howard P (1965) High and low gravitational force. In: Edholm OG, Bacharach AL (eds) The physiology of human survival. Academic, London, pp 183–206

    Google Scholar 

  71. Huang SY, Alexander JK, Grover RF, Maher JT, McCullough RE, McCullough RG, Moore LG, Samoson JB, Weil JV, Reeves JT (1984) Hypocapnia and sustained hypoxia blunt ventilation on arrival at high altitude. J Appl Physiol 56:602–607

    PubMed  CAS  Google Scholar 

  72. Hurtado A (1932) Respiratory adaptations in the Indian natives. Am J Phy Anthropol 17:137–161

    Google Scholar 

  73. Jaeger JJ, Sylvester JT, Cymerman A, Berberich JJ, Denniston JC, Maher JT (1979) Evidence for increased intrathoracic fluid volume in man at high altitude. J Appl Physiol 47:670–676

    PubMed  CAS  Google Scholar 

  74. Johnson RS, Dietlin LF (eds) (1977) Biomedical results from skylab NASA SP-377. NASA, Washington DC

    Google Scholar 

  75. Kaneko K, Milic-Emili J, Dolovich MB, Dawson A, Bates DV (1966) Regional distribution of ventilation and perfusion as a function of body position. J Appl Physiol 21:767–777

    PubMed  CAS  Google Scholar 

  76. Kasyan II, Makarov GF (1984) External respiration, gas exchange and energy expenditures in man during weightlessness. Kosm Biol Aviakosm Med 18(6):4–9

    Google Scholar 

  77. Kellogg RH (1963) Effect of altitude on respiratory regulation. Ann N Y Acad Sci 109:815–828

    PubMed  CAS  Google Scholar 

  78. Lahiri S (1984) Respiratory control in Andean and Himalayan high-altitude natives. In: West JB, Lahiri S (eds) High altitude and man. American Physiological Society, Bethesda, pp 147–162

    Google Scholar 

  79. Lambertsen CJ, Gelfand R, Peterson R, Strauss R, Wright WB, Dickson JG Jr, Puglia C, Hamilton RW Jr (1977) Human tolerance to He, Ne, and N2 at respiratory gas densities equivalent to He-O2 breathing at depths to 1200, 2000, 3000, 4000, and 5000 feet of sea water (predictive studies III). Aviat Space Environ Med 48:843–855

    PubMed  CAS  Google Scholar 

  80. Lanphier EH, Camporesi EM (1982) Respiration and exercise. In: Bennett PB, Elliott DH (eds) Physiology and medicine of diving. Best, San Pedro, California, pp 99–156

    Google Scholar 

  81. Lanphier EH, Rahn H (1963) Alveolar gas exchange during breath-hold diving. J Appl Physiol 18:471–477

    Google Scholar 

  82. Lanphier EH, Rahn H (1963) Alveolar gas exchange during breath-holding with air. J Appl Physiol 18:478–482

    Google Scholar 

  83. Lenfant C, Torrance JD, Reynafarje C (1971) Shift in the O2-Hb dissociation curve at altitude: mechanism and effect. J Appl Physiol 30:625–631

    PubMed  CAS  Google Scholar 

  84. Lin YC (1982) Breath-hold diving in terrestrial mammals. In: Terjung RL (ed) Exercise and sport sciences reviews, vol 10. Franklin Institute, Philadelphia, pp 270–307

    Google Scholar 

  85. Lin YC, Hong SK (1984) Physiology of water immersion. Undersea Biomed Res 11:109–111

    PubMed  CAS  Google Scholar 

  86. Linnarsson D, Hesser CM (1978) Dissociated ventilatory and central respiratory response to CO2 and raied N2 pressure. J Appl Physiol 45:756–761

    PubMed  CAS  Google Scholar 

  87. Lundgren C (1991) Diving. In: Crystal RG, West JB (eds) The lung: scientific foundations. Raven, New York, pp 2109–2122

    Google Scholar 

  88. Lundgren C, Warkander D (1989) Physiological and human engineering aspects of underwater breathing apparatus. In: Lundgren C, Warkander D (eds) Proceedings of the Undersea Hyperbaric Medical Society workshop. Undersea and Hyperbaric Medical Society, Bethesda, p 270

    Google Scholar 

  89. Maio DA, Farhi LE (1967) Effect of gas density on mechanics of breathing. J Appl Physiol 23:687–693

    PubMed  CAS  Google Scholar 

  90. Mansell A, Poules A, Sutton JR (1980) Changes in pulmonary PV characterisitcs of human subjects at an altitude of 5366 m. J Appl Physiol 49:79–83

    PubMed  CAS  Google Scholar 

  91. Michel EL, Rummel JA, Sawin CF, Buderer MC, Lern JD (1977) Results of Skylab medical experiment M 171 — metabolic acitivity. In: Johnston RS, Dietlin LF (eds) Biomedical results from skylab NASA SP-377. NASA, Washington DC, pp 372–387

    Google Scholar 

  92. Michels DB, West JB (1978) Distribution of pulmonary ventilation and perfusion during short periods of weightlessness. J Appl Physiol 45:987–998

    PubMed  CAS  Google Scholar 

  93. Michels DB, Friedman PJ, West JB (1979) Radiographic comparison of human lung shape during normal gravity weightlessness. J Appl Physiol 47:851–857

    PubMed  CAS  Google Scholar 

  94. Milic-Emili J (1982) Effect of acceleration and weightlessness on lung mechanics. In: Bonsignore G, Cumming G (eds) The lung in its environment. Plenum, New York, pp 343–351

    Google Scholar 

  95. Milic-Emili, J, Mead J, Turner JM (1964) Topography of esophageal pressure as a function of posture in man. J Appl Physiol 19:212–216

    PubMed  CAS  Google Scholar 

  96. Miller JW (ed) (1979) NOAA diving manual. U S Department of Commerce, U S Government Printing Office, Washington DC

    Google Scholar 

  97. Mithoefer JC (1965). Breath-holding. In: Fenn WO, Rahn H (eds) Handbook of physiology, respiration, vol II. American Physiological Society, Washington DC, pp 1011–1025

    Google Scholar 

  98. Monge C, León-Velarde F (1991) Physiological adaptations to high altitude: oxygen transport in mammals and birds. Physiol Rev 71:1135–1172

    PubMed  CAS  Google Scholar 

  99. Monge MC (1928) La enfermedad de los Andes. Sindromes eritremicos. Ann Fac Med Univ S Marcos (Lima) 11:1–316

    Google Scholar 

  100. Muza SR (1986) Hyperbaric physiology and human performance. In: Pandolph KB, Sawka MN, Gonzalez RR (eds) Human performance physiology and environmental medicine at terrestrial extremes. Brown and Benchmark, Dubuque, pp 565–589

    Google Scholar 

  101. Nadel JA, Widdicombe JG (1962) Effect of changes in blood gas tensions and carotid sinus pressure on tracheal volume and total lung resistance to air flow. J Physiol (Lond) 163:13–33

    CAS  Google Scholar 

  102. Nunneley SA (1976) Gas exchange in man during combined +Gz acceleration and exercise. J Appl Physiol 40:491–495

    PubMed  CAS  Google Scholar 

  103. Nunneley SA, Shindell DS (1975) Cardiopulmonary effects of combined exercise and +Gz acceleration. Aviat Space Environ Med 46:878–882

    PubMed  CAS  Google Scholar 

  104. Olszowka AJ, Rahn H (1987) Breath hold diving. In: Sutton JR, Houston CS, Coates G (eds) Hypoxia and cold. Praeger, New York, pp 417–428

    Google Scholar 

  105. Paiva M, Estenne M, Engel LA (1989) Lung volumes, chest wall configuration and pattern of breathing in microgravity. J Appl Physiol 67:1542–1550

    PubMed  CAS  Google Scholar 

  106. Piiper J, Scheid P (1980) Blood-gas equilibration in lungs. In: West JB (ed) Pulmonary gas exchange, vol 1: ventilation, blood flow and diffusion. Academic, New York, pp 131–171

    Google Scholar 

  107. Prefaut C, Dubois F, Roussos C, Amaral-Marques R, Macklem PT, Ruff F (1979) Influence of immersion to the neck in water on airway closure and distribution of perfusion in man. Respir Physiol 37:313–323

    PubMed  CAS  Google Scholar 

  108. Prefaut C, Ramonatxo M, Boyer R, Chardon G (1978) Human gas exchange during water immersion. Respir Physiol 37:307–323

    Google Scholar 

  109. Prisk GK, Guy HJB, Elliott AR, Deutschcman RA, West JB (1993) Pulmonary diffusing capacity and cardiac output during sustained microgravity. J Appl Physiol 75:15–26

    PubMed  CAS  Google Scholar 

  110. Prisk GK, Guy HJB, Elliott AR, West JB (1994) Inhomogeneity of pulmonary perfusion during sustained microgravity on SLS-1. J Appl Physiol 76:1730–1738

    PubMed  CAS  Google Scholar 

  111. Pugh LGCE (1964) Cardiac output in muscular exercise at 5800 m (19 000 ft). J Appl Physiol 19:441–447

    Google Scholar 

  112. Pugh LGCE, Gill MB, Lahiri S, Milledge JS, Ward MP, West JB (1964) Muscular exercise at great altitudes. J Appl Physiol 19:431–440

    PubMed  CAS  Google Scholar 

  113. Rahn H (1965) The physiological stresses of the Ama. In: Rahn H, Yokoyama T (eds) Physiology of breath-hold diving and the Ama of Japan. Washington DC, pp 113–137 (National Academy of Sciences National Research Council publication 1341)

    Google Scholar 

  114. Rahn H, Otis A (1949) Man’s respiratory response during and after acclimatization to high altitude. Am J Physiol 157:445–559

    PubMed  CAS  Google Scholar 

  115. Remmers JE, Mithoefer JC (1969) The carbon monoxide diffusing capacity in permanent residents at high altitudes. Respir Physiol 6:233–244

    PubMed  CAS  Google Scholar 

  116. Reynafarje C (1958) The influence of high altitude on erythropoietic activity. Brookhaven Symp Biol 10:132–146

    Google Scholar 

  117. Rørth M, Nygard SF, Parving HH (1972) Red cell metabolism and oxygen affinity of healthy individuals during exposure to high altitude. Adv Exp Med Biol 28:361–372

    PubMed  Google Scholar 

  118. Rotta A, Canepa A, Hurtado A, Velasquez T, Chavez R (1956) Pulmonary circulation at sea level and at high altitude. J Appl Physiol 9:328–336

    PubMed  Google Scholar 

  119. Salzano JV, Camporesi EM, Stolp BW, Moon RE (1984) Physiological responses to exercise at 47 and 66 ATA. J Appl Physiol 57:1055–1068

    PubMed  CAS  Google Scholar 

  120. Schaefer KE (1965) Adaptation to breath-hold diving. In: Rahn H, Yokoyama T (eds) Physiology of breath-hold diving and the Ama of Japan. Washington DC, pp 237–252 (National Academy of Sciences National Research Council Publication 1341)

    Google Scholar 

  121. Schaefer KE, Allison RD, Dougherty JH Jr, Carey CR, Walker R, Yost F, Parker D (1968) Pulmonary and circulatory adjustments determining the limits of depth in breath-hold diving. Sciemce 162:1020–1023

    CAS  Google Scholar 

  122. Schillaci RF (1979) Dysbaric pulmonary physiology. Clin Notes Respir Dis 18(2):3–10

    PubMed  CAS  Google Scholar 

  123. Schilling CW, Carlston CB, Mathias RA (1984) The physician’s guide to diving medicine. Plenum, New York

    Google Scholar 

  124. Schoene RB (1984) Hypoxic ventilatory response and exercise ventilation at sea level and high altitude. In: West JB, Lahiri S (eds) Man at high altitude. American Physiological Society, Bethesda, pp 19–30

    Google Scholar 

  125. Schoene RB, Hackett PH, Hornbein TF (1994) High altitude. In: Murray JF, Nadel JA (eds) Textbook of respiratory medicine. Saunders, Philadelphia, pp 2062–2098

    Google Scholar 

  126. Segadahl K, Gulsvik A, Nicolaysen G (1990) Respiratory changes with deep diving. Eur Respir J 3:101–108

    Google Scholar 

  127. Severinghaus JW, Mitchell RA, Richardson BW, Singer MM (1963) Respiratory control at high altitude suggesting active transport regulation of CSF pH. J Appl Physiol 18:1155–1166

    PubMed  CAS  Google Scholar 

  128. Sherman D, Eilender E, Shefer A, Kerem D (1980) Ventilatory and occlusion pressure responses to hypercapnia in divers and non-divers. Undersea Biomed Res 7:61–74

    PubMed  CAS  Google Scholar 

  129. Song SH, Kang DH, Kang BS, Hong SK (1963) Lung volumes and ventilatory responses to high CO2 and low O2 in the Ama. J Appl Physiol 18:466–470

    Google Scholar 

  130. Sørensen SC, Severinghaus JW (1968) Irreversible respiratory insensitivity to acute hypoxia in men born at high altitude. J Appl Physiol 25:217–220

    PubMed  Google Scholar 

  131. Spaur WH, Raymond LW, Knott MM, Crothers JC, Braithwaite WR, Thalmann ED, Uddin DF (1977) Dyspnea in divers at 49.5 ATA: mechanical, not chemical in origin. Undersea Biomed Res 4:183–198

    PubMed  CAS  Google Scholar 

  132. Stone HL, Warren BH, Wagner H (1965) The distribution of pulmonary blood flow in human subjects during zero-G. NATO, Neuilly-sur-Seine, France, pp 141–148 (Advisory Group Aerospace Res Dev CP no 2)

    Google Scholar 

  133. Strauss RH (1979) Diving medicine. Am Rev Respir Dis 119:1001–1023

    PubMed  CAS  Google Scholar 

  134. Taylor NAS, Morrison JB (1988) Effect of breathing gas pressure on respiratory statics and dynamics of immersed man. In: Pasche A, Ilmarinen R (eds) Proceedings of the 3rd intermational conference on environmental ergonomics. Institute of Occupational Health, Helsinki, p 52

    Google Scholar 

  135. Taylor NAS, Morrison JB (1990) Effects of breathing-gas pressure on pulmonary function and work capacity during immersion. Undersea Biomed Res 17:413–428

    PubMed  CAS  Google Scholar 

  136. Thalmann ED, Sponholtz DK, Lundgren CEG (1979) Effects of immersion and static lung loading on submerged exercise at depth. Undersea Biomed Res 6:259–290

    PubMed  CAS  Google Scholar 

  137. Thoden JS, Dempsey JA, Reddan WG, Birnbaum ML, Forster HV, Grover RF, Rankin J (1969) Ventilatory work during steady state response to exercise. Fed Proc 28:1316–1321

    PubMed  CAS  Google Scholar 

  138. Torre-Bueno JR, Wagner PD, Saltzman HA, Gale GE, Moon RE (1985) Diffusion limitation in normal humans during exercise at sea level and simulated altitude. J Appl Physiol 58:989–995

    PubMed  CAS  Google Scholar 

  139. US Navy (1973) Diving manual. Dept Navy, Washington DC

    Google Scholar 

  140. Van Liew HD (1983) Mechanical and physical factors in lung function during work in dense environments. Undersea Biomed Res 10:255–264

    PubMed  Google Scholar 

  141. Vann RD (1982) Decompression theory and application. In: Bennett PB, Elliott DH (eds) The physiology and medicine of diving. Best, San Pedro, California, pp 352–382

    Google Scholar 

  142. Von Basch S (1887) Über eine Funktion des Capillar Druckes in den Lungenalveolan. Wien Med Blatt 15:465–467

    Google Scholar 

  143. Von Nieding G, Krekeler H, Koppenhagen K, Ruff S (1973) Effect of acceleration on distribution of lung perfusion and respiratory gas exchange. Pflugers Arch 342:159–176

    Google Scholar 

  144. Wagner PD, Gale GE, Moon RE, Torre-Bueno JR, Stolp BW, Saltzman HA (1986) Pulmonary gas exchange in humans exercising at sea level and altitude. J Appl Physiol 61:260–270

    PubMed  CAS  Google Scholar 

  145. Wagner PD, Sutton JR, Reeves JT, Cymerman A, Groves BM, Malconian MK (1987) Operation Everest II. Pulmonary gas exchange throughout a simulated ascent of Mt Everest. J Appl Physiol 63:2348–2359

    PubMed  CAS  Google Scholar 

  146. Ward SA, Whipp BJ (1989) Effects of peripheral and central chemoreflex activation on the isopnoeic rating of breathing in exercising humans. J Physiol (Lond) 411:27–43

    CAS  Google Scholar 

  147. Weil JV (1991) Control of ventilation in chronic hypoxia. In: Lahiri S, Cherniack NS, Fitzgerald RS (eds) Responses and adaptation to high altitude. American Physiological Society, Bethesda, pp 122–132

    Google Scholar 

  148. Weil JV, Byrne-Quinn E, Sodal IE, Filley GF, Grover RF (1971) Acquired attentuation of chemoreceptor function in chronically hypoxic man at high altitude. J Clin Invest 50:186–195

    PubMed  CAS  Google Scholar 

  149. West JB (196) Regional differences in the lung. Academic, New York

    Google Scholar 

  150. West JB (1990) Respiratory physiology — the essentials. Williams and Wilkins, Baltimore

    Google Scholar 

  151. West JB (1991) High altitude. In: Crystal RG, West JB (eds) The lung: scientific foundations. Raven, New York, pp 2093–2107

    Google Scholar 

  152. West JB (1991) Space. In: Crystal RG, West JB (eds) The lung: scientific foundations. Raven, New York, pp 2133–2141

    Google Scholar 

  153. West JB, Boyer SJ, Graber DJ, Hackett PH, Maret KH, Milledge JS, Peters RM Jr, Pizzo CJ, Samaja M, Sarnquist FH, Schoene RB, Winslow RM (1983) Maximal exercise at extreme altitudes on Mount Everest. J Appl Physiol 55:688–702

    PubMed  CAS  Google Scholar 

  154. West JB, Lahiri S, Gill MB, Milledge JS, Pugh LGCE, Ward MP (1962) Arterial oxygen saturation during exercise at high altitude. J Appl Physiol 17:617–621

    PubMed  CAS  Google Scholar 

  155. West JB, Hackett PH, Maret KH, Milledge JS, Peters RM Jr, Pizzo CJ, Winslow RM (1983) Pulmonary gas exchange on the summit of Mt Everest. J Appl Physiol 55:678–687

    PubMed  CAS  Google Scholar 

  156. West JB, Wagner PD (1980) Predicted gas exchange on the summit of Mt Everest. Respir Physiol 42:1–16

    PubMed  CAS  Google Scholar 

  157. Wood EH, Nolan AC, Donald DE, Cronin L (1963) Influence of acceleration on pulmonary physiology. J Appl Physiol 22:1024–1034

    CAS  Google Scholar 

  158. Wood LDH, Bryan AC (1978). Exercise ventilatory mechanics at increased ambient pressure. J Appl Physiol 44:231–237

    PubMed  CAS  Google Scholar 

  159. Young AJ, Young PM (1986) Human acclimatization to high terrestrial altitude. In: Pandolph KB, Sawka MN, Gonzalez RR (eds) Human performance physiology and environ mental medicine at terrestrial extremes. Brown and Bench mark, Dubuque, pp 497–543

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ward, S.A. (1996). Gravitational and Hyper- and Hypobaric Stress. In: Greger, R., Windhorst, U. (eds) Comprehensive Human Physiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60946-6_110

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60946-6_110

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64619-5

  • Online ISBN: 978-3-642-60946-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics