Skip to main content

Dynamic Combinatorial Chemistry: Evolutionary Formation and Screening of Molecular Libraries

  • Chapter
Combinatorial Chemistry in Biology

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 243))

Abstract

The recent rapid development of new approaches to in vitro artificial evolution of biopolymers has occurred simultaneously with the explosive growth of combinatorial chemistry of small synthetic molecules. This trend can hardly be a mere coincidence; rather, it reflects a growing interest of the chemical and biochemical communities in exploring various aspects of molecular diversity generation and screening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Balkenhohl F, von dem Bussche-Hünnefeld C, Lansky A, Zechel C (1996) Combinatorial synthesis of small organic molecules. Angew Chem Int Ed Engl 35: 2288–2337

    Article  CAS  Google Scholar 

  • Brady PA, Sanders JKM (1997a) Thermodynamically-controlled cyclization and interconversion of oligocholates: metal ion templated ‘living’ macrolactonisation. J Chem Soc Perkin Trans 1: 3237–3253

    Article  Google Scholar 

  • Brady PA, Sanders JKM (1997b) Selection approaches to catalytic systems. Chem Soc Rev 26: 327–336

    Article  CAS  Google Scholar 

  • Calama MC, Hulst R, Fokkens R, Nibbering NMM, Timmerman P, Reinhoudt DN (1998) Libraries of non-covalent hydrogen-bonded assemblies; combinatorial synthesis of supramolecular systems. Chem Commun 1021–1022

    Google Scholar 

  • Eliseev AV, Nelen MI (1997) Use of molecular recognition to drive chemical evolution. I. Controlling the composition of an equilibrated mixture of simple arginine receptors. J Am Chem Soc 119: 1147–1148

    Article  CAS  Google Scholar 

  • Eliseev AV, Nelen MI (1998) Use of molecular recognition to drive chemical evolution. 2. Mechanisms of an automated genetic algorithm implementation. Chem Eur J 5: 823–832

    Google Scholar 

  • Elliott CM (1980) Isolation of minor equilibrium components by continuous partition applied to substituted tetraphenylporphyrin atropisomers. Anal Chem 52: 666–668

    Article  CAS  Google Scholar 

  • Famulok M, Szostak JW (1992) In vitro selection of specific ligand-binding nucleic acids. Angew Chem Int Ed Engl 31: 979–988

    Article  Google Scholar 

  • Fujita M, Nagao S, Ogura K (1995) Guest-induced organization of a three-dimensional palladium(II) cagelike complex. A prototype for “induced-fit” molecular recognition. J Am Chem Soc 117: 1649–1650

    Article  CAS  Google Scholar 

  • Furka A, Sebestyén F, Asgedom M, Dibô G (1988) Cornucopia of peptides by synthesis. Abstr. 14th Int. Congr. Biochem., Prague, 5:47; Abstr. 10th Int Symp Med Chem, Budapest, 288

    Google Scholar 

  • Furka A, sebestyén F, Asgedom M, Dibô G (1991) General method for rapid synthesis of multicomponent peptide mixtures. Int J Pept Protein Res 37: 487–493

    Article  PubMed  CAS  Google Scholar 

  • Goodwin JT, Lynn DG (1992) Template-directed synthesis:use of a reversible reaction. J Am Chem Soc 114: 9197–9198

    Article  CAS  Google Scholar 

  • Hasenknopf B, Lehn JM, Kneisel BO, Baum G, Fenske D (1996) Self-assembly of a circular double helicate. Angew Chem Int Ed Engl 35: 1838–1840

    Article  CAS  Google Scholar 

  • Hasenknopf B, Lehn JM, Boumediene N, Dupont-Gervais A, Van Dorsselaer A, Kneisel B, Fenske D (1997) Self-assembly of tetra-and hexanuclear circular helicates. J Am Chem Soc 119: 10956–10962

    Article  CAS  Google Scholar 

  • Hill CL, Zhang X (1995) A “smart” catalyst that self-assembles under turnover conditions. Nature 373: 324–326

    Article  CAS  Google Scholar 

  • Hioki H, Still WC (1998) Chemical evolution: a model system that selects and amplifies a receptor for the tripeptide ( D)Pro(L)Val(D)Val. J Org Chem 63: 904–905

    Article  CAS  Google Scholar 

  • Hue I, Lehn JM (1997) Virtual combinatorial libraries: dynamic generation of molecular and supramolecular diversity by self-assembly. Proc Natl Acad Sci USA 94: 2106–2110; 94: 8272

    Google Scholar 

  • Kast P, Hilvert D (1996) Genetic selection strategies for generating and characterizing catalysts. Pure Appl Chem 68: 2017–2024

    Article  CAS  Google Scholar 

  • Klekota B, Hammond MH, Miller BL (1997) Generation of novel DNA-binding compounds by selection and amplification from self-assembled combinatorial libraries. Tetrahedron Lett 38: 8639–8642

    Article  CAS  Google Scholar 

  • Lehn JM (1995) Supramolecular chemistry, concepts and perspectives. VCH, Weinheim New York

    Chapter  Google Scholar 

  • Lindsey J (1980) Increased yield of a desired isomer by equilibria displacement on binding to silica gel, applied to meso-tetrakis(o-aminophenyl)porphyrin. J Org Chem 45: 5215

    Article  CAS  Google Scholar 

  • Linton B, Hamilton AD (1997) Formation of artificial receptors by metal-templated self-assembly. Chem Rev 97: 1669–1680

    Article  PubMed  CAS  Google Scholar 

  • Lorsch JR, Szostak JW (1996) Chance and necessity in the selection of nucleic acid catalysts. Acc Chem Res 29: 103–110

    Article  PubMed  CAS  Google Scholar 

  • Mosbach K, Ramstrom O (1996) The emerging technique of, molecular imprinting and its future impact on biotechnology. Bio-Technology 14: 163–170

    CAS  Google Scholar 

  • Mosbach K, Ramstrom O (1996) The emerging technique of, molecular imprinting and its future impact on biotechnology. Bio-Technology 14: 163–170

    CAS  Google Scholar 

  • Rowan SJ, Sanders JKM (1997) Building thermodynamic combinatorial libraries of quinine macrocycles. Chem Comm 1407–1408

    Google Scholar 

  • Singh J, Ator MA, Jaeger EP, Allen MP, Whipple DA, Soloweij JE, Chowdhari S, Treasurywala AM (1996) Application of genetic algorithms to combinatorial synthesis: a computational approach to lead identification and lead optimization. J Am Chem Soc 1996, 118: 1669–1676

    Article  Google Scholar 

  • Still WC (1996) Discovery of sequence-specific peptide binding by synthetic receptors using encoded combinatorial libraries. Acc Chem Res 29: 155–163

    Article  CAS  Google Scholar 

  • Still WC, Hauck P, Kempf D (1987) Stereochemical studies of lasalocid epimers. Ion-driven epimerizations. Tetrahedron Lett 28: 2817–2820

    Article  CAS  Google Scholar 

  • Swann PG, Casanova RA, Desai A, Frauenhoff MM, Urbancic M, Slomczynska U, Hopfinger AJ, Le Breton GC, Venton DL (1996) Nonspecific protease-catalyzed hydrolysis/synthesis of a mixture of peptides: product diversity and ligand amplification by a molecular trap. Biopolymers 40: 617–625

    Article  PubMed  CAS  Google Scholar 

  • Terrett N (1996) Combinatorial chemistry. Drug Discovery Today 1: 450

    Google Scholar 

  • Venton DL, Hopfinger AJ, Le Breton G (1994), Method for generation and screening of useful peptides. US Pat. 5, 366, 862

    Google Scholar 

  • Weber L, Wallbaum S, Broger C, Gubernator K (1995) Optimization of the biological activity of combinatorial compound libraries by a genetic algorithm. Angew Chem Int Ed Engl 34: 2280–2282.

    Article  CAS  Google Scholar 

  • Woodward RB, Sondheimer F, Taub D, Heusler K, McLamore WM (1952) The total synthesis of steroids. J Am Chem Soc 74: 4223–4251

    Article  Google Scholar 

  • Zhan ZYJ, Lynn DG (1997) Chemical amplification through template-directed synthesis. J Am Chem Soc 119: 12420–12421

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eliseev, A.V., Lehn, J.M. (1999). Dynamic Combinatorial Chemistry: Evolutionary Formation and Screening of Molecular Libraries. In: Famulok, M., Winnacker, EL., Wong, CH. (eds) Combinatorial Chemistry in Biology. Current Topics in Microbiology and Immunology, vol 243. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60142-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60142-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64274-6

  • Online ISBN: 978-3-642-60142-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics