Skip to main content

Development and Substructures of Pollen Grains Wall

  • Chapter
Fertilization in Higher Plants

Abstract

Pollen grains and spores are the male reproductive units of many types of plants. They vary in shape and ornamentation and have a very resistant outer wall called the exine and an inner polysaccharide layer called the intine. There are several terms that have been applied to the layers of the exine. The most common terms are those of Erdtman (1952) and Faegri and Iversen (1975).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Argue CL (1972) Pollen of the Alismataceae and Butomaceae. Development of the nexine in Sagittaria lancifolia L. - Pollen Spores 14: 5 –16

    Google Scholar 

  2. Argue CL (1974) Pollen studies in the Alismataceae. Bot Gaz 135: 338 –344

    Article  Google Scholar 

  3. Argue CL (1976) Pollen studies in the Alismataceae, with special reference to taxonomy. Pollen Spores 18: 161 –201

    Google Scholar 

  4. Atkinson AW, Gunning BES, John PCL (1972) Sporopollenin in the cell wall of Chorella and other algae: Ultrastructure, chemistry, and incorporation of 14C-acetate, studied in synchronous cultures. Planta 107: 1 –32

    Article  CAS  Google Scholar 

  5. Audran JC, Willemse MTM (1982) Wall development and its autofluorescence of sterile and fertile Vicia faba L. Pollen. Protoplasma 110: 106 –111

    Article  Google Scholar 

  6. Beer R (1906) On the development of the pollen grain and anther of some Onagraceae. Beih Bot Zbl (Erste Abt) 19: 286 –313

    Google Scholar 

  7. Benedetti EL, Bertolini B (1963) The use of phosphotungstic acid as a stain for the plasma membrane. J R Microsc Soc London 81: 219 –222

    Google Scholar 

  8. Blackmore S (1990). Sporoderm homologies and morphogenesis in land plants, with a discussion of Echinops sphaerocephala (Compositae). - Pi Syst Evol (Suppl 5 ): 1 –12

    Google Scholar 

  9. Blackmore S, Barnes SH (1990) Pollen wall development in angiosperms. In: Blackmore S, Knox RB (eds) Microspores: Evolution and Ontogeny. Academic Press, London, pp 173 –192

    Google Scholar 

  10. Brooks J, Shaw G (1968) Chemical structure of the exine of pollen walls and a new function for carotenoids in nature. Nature 219: 532 –533

    Article  PubMed  CAS  Google Scholar 

  11. Buchen B, Sievers A(1981) Sporogenesis and pollen grain formation. In: Kiermayer O (ed) Cytomorpho-genesis in Plants. Springer, Wien, pp 349 –376

    Google Scholar 

  12. Bustamante C, Keller D (1995) Scanning Force Microscopy in Biology. - Physics Today 47: 32 –38

    Google Scholar 

  13. Chaloner WG (1976) The evolution of adaptive features in fossil exines. In: Ferguson IK, Muller J (eds) The Evolutionary Significance of the Exine. Academic Press, London, pp 11 –14

    Google Scholar 

  14. Charzynska M, Murgia M, Cresti M (1990) Microspore of Secale cereale as a transfer cell type. Protoplasma 158: 26 –32

    Article  Google Scholar 

  15. Christensen J E, Horner HT (1974) Pollen pore development and its special orientation during microsporogenesis in the grass Sorghum bicolor. Amer J Bot 61: 604 –623

    Article  Google Scholar 

  16. Ciampolini F, Nepi M, Pacini E (1993) Tapetum development in Cucurbita pepo (Cucurbitaceae). In: Hesse M, Pacini E, Willemse M (eds) The tapetum cytology, function, biochemistry and evolution. Plant Syst Evol (Suppl) 7: 13 –22

    Google Scholar 

  17. Dahl AO (1986) Observations on pollen development in Arabidopsis under gravitionally controlled environments. In: Blackmore S, Ferguson IK (eds) Pollen and spores: Form and Function. Academic Press, London, pp 49 –59

    Google Scholar 

  18. Dahl AO, Rowley JR (1974) A glycocalyx embedded within the pollen exine. J Cell Biol 63: 75a

    Google Scholar 

  19. Dickinson HG (1970) Ultrastructural aspects of primexine formation in the microspore tetrad of Lilium longiflorum. Cytobiology 1: 437 – 449

    Google Scholar 

  20. Dickinson HG (1973) The role of plastids in the formation of pollen grain coatings. Cytobios 8: 24 –40

    Google Scholar 

  21. Dickinson HG, Heslop-Harrison J (1971) The mode of growth in the inner layer of the pollen grainexine in Lilium. Cytobios 4:233–243

    PubMed  CAS  Google Scholar 

  22. Dickinson HG, Potter U (1976) The development of patterning in the alveolar sexine of Cosmos bipinnatus. New Phytol 76:543–550

    Article  Google Scholar 

  23. Dickinson HG, Sheldon JM (1984) A radial system of microtubules extending between the nuclear envelope and the plasma membrane during early male haplophase in flowering plants. Planta 161:86–90

    Google Scholar 

  24. Dickinson HG, Sheldon JM (1986) The generation of patterning at the plasma membrane of the young microspore of Lilium. In: Blackmore S, Ferguson IK (eds) Pollen and Spores: Form and Function. Academic Press, London, pp 1–17

    Google Scholar 

  25. Dover GA (1972) The organisation and polarity of pollen mother cells of Triticum aestivum. J Cell Sci 11: 699 – 711

    PubMed  CAS  Google Scholar 

  26. Dunbar A; Rowley JR (1984) Betula pollen development before and after dormancy: exine and intine.Pollen Spores 26:299–338, pi 1–14

    Google Scholar 

  27. Echlin P, Godwin H (1968) The ultrastructure and ontogeny of pollen in Helleborus foetidus. L. II. Pollen grain development through the callose special wall stage. J Cell Sci 3:175–186

    CAS  Google Scholar 

  28. El-Ghazaly G (1982) Ontogeny of pollen wall of Leontodon autumnalis (Hypochoeridinae, Compositae). Grana 21:103–113

    Article  Google Scholar 

  29. El-Ghazaly G, Grafström E (1995) Morphological and histochemical differentiation of the pollen wall of Betula pendula Roth. During dormancy up to anthesis. Protoplasma 187:88–102

    Article  Google Scholar 

  30. El-Ghazaly G, Jensen W (1985) Studies of the development of wheat (Triticum aestivum) pollen: III. Formation of microchannels in the exine. - Pollen Spores 27:5–14

    Google Scholar 

  31. El-Ghazaly G, Jensen W (1986a) Studies of the development of wheat (Triticum aestivum) pollen: I. Formation of the pollen wall and Ubisch bodies. - Grana 25:1–29

    Google Scholar 

  32. El-Ghazaly G, Jensen W (1986b) Studies of the development of wheat (Triticum aestivum) pollen: formation of the pollen aperture. Can J Bot 64:3141–3154

    Article  Google Scholar 

  33. El-Ghazaly G, Jensen W (1987) Development of wheat (Triticum aestivum) pollen. II. Histochemical differentiation of wall and Ubisch bodies during development. - Amer J Bot 74(9): 1396–1418

    Article  Google Scholar 

  34. El-Ghazaly G, Rowley J (1997) Pollen wall of Ephedra foliata. Palynology 22

    Google Scholar 

  35. El-Ghazaly G, Rowley J(in press) Pollen wall and tapetum development of Echinodorus cordifolius. Nord J Bot

    Google Scholar 

  36. El-Ghazaly G, Cresti M, Walles B (1996) Ultrastructure of birch (Betula pendula) microspores and tapetum after rapid freeze fixation and substitution. 14th International Conference on Sexual Reproduction in plants, Melbourne

    Google Scholar 

  37. Erdtman G (1952) Pollen Morphology and Plant Taxonomy. Almqvist & Wiksell, Stockholm

    Google Scholar 

  38. Erdtman G (I960) The acetolysis method. Sv Bot Tidskr 54:561–564

    Google Scholar 

  39. Evans DE, Taylor PE, Singh MB, Knox RB (1992) The interrelationship between the accumulation of lipids, protein and the level of acyl carrier protein during the development of Brassica napus L. Pollen. Planta 186:343–354

    Google Scholar 

  40. Faegri K & Iversen J (1975) Textbook of Pollen Analysis. Munksgaard, Copenhagen

    Google Scholar 

  41. Fritzsche CJ (1837) Uber den pollen. - Hebdm Savant Etrang Acad St Petersbourg 3:649–672

    Google Scholar 

  42. Frova C, Pe ME (1992) Gene Expression during pollen development. In: Cresti M, Tiezzi A (eds) Sexual Plant Reproduction. Springer, Wien, pp 31–40

    Google Scholar 

  43. Gabarayeva N, El-Ghazaly G (1997) Sporoderm development in Nymphaea mexicana (Nymphaeaceae). PlSystEvol 204:1–19

    Google Scholar 

  44. Godwin H, Echlin P, Chapman B (1967) The development of the pollen grain wall in Ipomoea purpurea (L.) Roth. Rev Palaeobot Palynol 3:181–195

    Google Scholar 

  45. Grote M, Fromme HG (1984) Ultrastructural demonstration of a glycoproteinic surface coat in allergenic pollen grains by combined cetylpyridinium chloride precipitation and silver proteinate staining. Histochemistry 81: 171

    Article  PubMed  CAS  Google Scholar 

  46. Guedes M (1982) Exine stratification ectexine structure and angiosperm evolution. Grana 21:16–170

    Article  Google Scholar 

  47. Guilford WJ, Schneider DM, Labovitz J, Opella SJ (1988) High resolution solid state 13C NMR spectroscopy of sporopollenins from different taxa. Plant Physiol 86:134–136

    Article  PubMed  CAS  Google Scholar 

  48. Heslop-Harrison J (1962) Origin of exine. Nature 195:1069–1071

    CAS  Google Scholar 

  49. Heslop-Harrison J (1963) An ultrastructural study of pollen wall ontogeny in Silene pendula. Grana Palynol 4:7–24

    Article  Google Scholar 

  50. Heslop-Harrison J (1968a) Pollen wall development. Science 16:230–237

    Article  Google Scholar 

  51. Heslop-Harrison J (1968b) Wall development within the microspore tetrad of Lilium longiflorum. Can J Bot46:1185–1192

    Article  CAS  Google Scholar 

  52. Heslop-Harrison J (1969) An acetolysis-resistant membrane investing tapetum and sporogenous tissue in the anthers of certain Compositae. Can J Bot 47:541–542

    Article  Google Scholar 

  53. Heslop-Harrison J (1971) Wall pattern formation in angiosperm microsporogenesis. In: Control Mechanisms of Growth and Differentiation. Symp Society Exp Biol 25:277–300

    CAS  Google Scholar 

  54. Heslop-Harrison J (1972) Pattern in plant cell walls: morphogenesis in miniature. Proc R Inst G Britain 45:335–351

    Google Scholar 

  55. Heslop-Harrison J (1979) Aspects of the structure, cytochemistry and germination of the pollen of rye (Secale cereale L.). Ann Bot 44:1–47

    Google Scholar 

  56. Heslop-Harrison J, Dickinson HG (1969) Fine relationship of sporopollenin synthesis associated with tapetum and microspore in Lilium. Planta 84:199–214

    Article  Google Scholar 

  57. Heslop-Harrison J, Heslop-Harrison Y (1991) Structural and functional variation in pollen intines. In: Blackmore S, Barnes SH (eds) Pollen and Spores: Patterns of Diversification. Syst Assoc Sp Vol 44, Oxford Sci Publ, Oxford, pp 331–343

    Google Scholar 

  58. Hesse M, Waha M (1983) The fine structure of the pollen wall in Strelitzia reginae (Musaceae). Plant Syst Evol 141:285–298

    Article  Google Scholar 

  59. Hideux M, Abadie M (1981) The anther of Saxifraga cymbalaria L. ssp. Huetiana (Boiss.). A study by electron microscopy (SEM & TEM). 3. Dynamics of the relationships between tapetal and sporal cells. Ann Sci Nat Bot Biol Veg 2/3:27–37

    Google Scholar 

  60. Hideux M, Abadie M (1985) Cytologie ultrastructurale de l’anthere de Saxifraga. I. Periode d’initiation de preceurceurs des sporopollenines au niveau des principaux types exiniques. Can J Bot 63(1): 97–112

    Article  Google Scholar 

  61. Holloway PJ (1982) Structure and histochemistry of plant cuticular membranes: an overview. In: Cutler DF, Alvin KL, Price CE (eds) The Plant Cuticle. Academic Press, London, pp 1–32

    Google Scholar 

  62. Horner HT, Pearson CB (1978) Pollen wall and aperture development in Helianthus annuus (Compositae: Helianteae). Amer J Bot 65:293–309

    Google Scholar 

  63. Huysmans S, El-Ghazaly G, Smets E (In prep) Pollen wall development of Rondeletia odorata (Rubia- ceae)

    Google Scholar 

  64. Kedves M (1990) Quasi-crystalloid basic molecular structure of the sporoderm. Rev Palaeobot Palynol 64:181–186,pi 1

    Google Scholar 

  65. Kedves M, Toth A, Farkas E (1993) An experimental investigation of the biopolymer organization of both recent and fossil sporoderms. - Grana Suppl 1:40–48

    Google Scholar 

  66. Knox RB (1984) The pollen grain. In: Johri BM (ed) Embryology of Angiosperms. Springer, Berlin, pp 197–271

    Google Scholar 

  67. Knox RB, Heslop-Harrison J (1970) Pollen wall proteins: Localization and enzymatic activity. J Cell Sci 6:1–27

    Google Scholar 

  68. Kolattukudy PE (1980) Biopolyester membranes of plants: cutin and suberin. Science 208:990–1000

    Article  PubMed  CAS  Google Scholar 

  69. Kolattukudy PE, Koller W (1983) Fungal penetration of the first line defensive barriers of plants. In: Callow JA (ed) Biochemical Plant Pathology, New York, J Wiley, pp 79–100

    Google Scholar 

  70. Kronestedt-Robards E C, Rowley R (1989) Pollen grain development and tapetal changes in Strelitzia reginae (Strelitziaceae). Amer J Bot 76:856–870

    Article  Google Scholar 

  71. Kurmann MH (1989) Pollen wall formation in Abies concolor and a discussion on wall layer homologies. Can J Bot 67:2489–2504

    Article  Google Scholar 

  72. Kurmann MH (1990) Exine ontogeny in conifers. In: Blackmore S, Knox RB (eds) Microspores: Evolution and Ontogeny. Academic Press, London, pp 157–172

    Google Scholar 

  73. Lugardon B (1990) Pteridophyte sporogenesis: a survey of spore wall ontogeny and fine structure in a polyphyletic plant group. In: Blackmore S, Knox RB (eds) Microspores: Evolution and Ontogeny. Academic Press, London, pp 95–120

    Google Scholar 

  74. Marinozzi V (1967) Reaction de l’acide phosphotungstique avec la mucine et les glycoproteins desplasmamembranes. J Microsc 6:682–692

    Google Scholar 

  75. Marinozzi V (1968) Phosphotungstic acid (PTA) as a stain for polysaccharides and glycoproteins in electron microscopy. Proc. 4th Eur Reg Conf, Rome

    Google Scholar 

  76. Martinsson K (1993) The pollen of Swedish Callitriche (Callitrichaceae) trends towards submergence. Grana 32:198–209

    Article  Google Scholar 

  77. Paul W, Hodge R, Smartt S, Draper J, Scott RJ (1992) Isolation and characterisation of the tapetum-specific Arabidopsis thaliana A9 gene. Plant Molec Biol 19:611–622

    Google Scholar 

  78. Pease, DC (1968) Phosphotungstic acid as an electron stain. 26th Annual EMS A Meeting. Calitor’s, Baton Rouge, LA, pp 36–37

    Google Scholar 

  79. Pettitt JM (1979) Development mechanisms in heterospory: cytochemical demonstration of spore wall enzymes associated with ß-lectins, polysaccharides and lipids in water ferns. J Cell Sci 38:61–82

    Google Scholar 

  80. Pettitt JM, McConchie CA, Ducker SC, Knox RB (1981) Submarine pollination. Sci Amer 244:134–143

    Google Scholar 

  81. Prahl AK, Springstubbe H, Grumbach K, Wiermann R (1985) Studies on sporopollenin biosynthesis: the effect of inhibitors of carotenoid biosynthesis on sporopollenin accumulation. Z Naturforsch 40c: 621–626

    Google Scholar 

  82. Raghavan V (1989) Developmental biology of fern gametophytes; Cambridge University Press, Cambridge

    Book  Google Scholar 

  83. Roberts MR, Hodge R, Sorenson AM, Ross J, Murphy DJ, Draper J, Scott R (1993) Characterisation of a new class of oleosins suggests a male gametophyte-specific lipid storage pathway. Plant J 3:629–636

    Article  PubMed  CAS  Google Scholar 

  84. Rodriguez-Garcia MI (1978) Elektronenmikroskopische Untersuchungen von Tapetum und Meiocyten wahrend der Mikrosporogenesis bei Scilla nonscripta. Pollen Spores 20:467–484

    Google Scholar 

  85. Roland F (1971) Characterization and extraction of the polysaccharides of the intine and of the generative cell wall in the pollen grains of some Ranunculaceae. Grana 11:101–106

    Article  Google Scholar 

  86. Rowley J, El-Ghazaly G (1992) Lipid in wall and cytoplasm of Solidago pollen. Grana 31:273–283

    Google Scholar 

  87. Rowley JR (1964) Formation of the pore in pollen of Poa annua. In: Linskens HF (ed) Pollen physiology and fertilization. North-Holland Publ Co, Amsterdam, pp 59–69

    Google Scholar 

  88. Rowley JR (1973) Formation of pollen exine bacules and microchannels on a glycocalyx. Grana 13: 129–138

    Article  Google Scholar 

  89. Rowley JR (1983) Plasma membrane surface processes a construction units of the exine of Epilobium (Onagraceae). In: Fertilization and Embryogenesis in Ovulated Plants. Vedy Slov Acad Sci, Bratislava

    Google Scholar 

  90. Rowley JR (1987) Plasmodesmata-like processes of tapetal cells. La Cellule 74:229–241

    Google Scholar 

  91. Rowley JR (1988) Substructure within the endexine, an interpretation. J Palynol 24:29–42,3 pi

    Google Scholar 

  92. Rowley JR (1990) The fundamental structure of the pollen exine. Plant Syst Evol Suppl 5:13–29,3 pi

    Google Scholar 

  93. Rowley JR (1996) Chapter 14D. In situ pollen and spores in plant evolution. Exine origin,development and structure in pteridophytes, gymnosperms and angiosperms. In: eds. Jansonius J, McGregor DC Palynology: Principles and Applications. Am AssocStratigrPalynolsFound Voll, AASP, Houston, pp 443–462

    Google Scholar 

  94. Rowley JR, Claugher D (1996) Structure of the exine of Epilobium angustifolium (Onagraceae). Grana 35:79–86

    Google Scholar 

  95. Rowley JR, Dahl AO (1977) Pollen development in Artemisia vulgaris with special reference to glycocalyx material. Pollen Spores 19:169–284

    Google Scholar 

  96. Rowley JR, Dahl AO (1982) A similar substructure for tapetal surface and exine “tuft”-units. Pollen Spores 24:5–8, pi 1

    Google Scholar 

  97. Rowley JR, Dahl AO, Rowley JS (1980) Coiled construction of exinous units in pollen of Artemisia.

    Google Scholar 

  98. Rowley JR, Dahl AO, Sengupta S, Rowley JS (1981) A model of exine substructure based on dissection of pollen and spore exines. - Palynology 5:107–152

    Google Scholar 

  99. Rowley JR, Dunbar A (1967) Sources of membranes for exine formation. Sv Bot Tidskr 61:49–64

    Google Scholar 

  100. Rowley JR, Dunbar A (1996) Pollen development in Centrolepis asistata (Centrolepidaceae). Grana 35: 1–15

    Article  Google Scholar 

  101. Rowley JR, Flynn JJ, Takahashi M (1995) Atomic force microscope information on pollen exine substructure in Nuphar. Bot Acta 108:300–308

    Google Scholar 

  102. Rowley JR, Rowley JS (1986) Ontogenetic development of microspores of Ulmus (Ulmaceae). In: Black- more S, Ferguson IK (eds) Pollen and Spores: form and function. Linn Soc Symp Ser 12, Academic Press, London, pp 19–33

    Google Scholar 

  103. Schulze Osthoff K, Wiermann (1987) Phenols as integrated compounds of sporopollenin from Pinus pollen. J Plant Physiol 131:5–15

    Google Scholar 

  104. Scott RG (1994) Pollen exine the sporopollenin enigma and the physics of pattern. In: Scott RJ, Stead MA (eds) Molecular and cellular Aspects of plant Reproduction. Soc Exp Biol Semin Ser 55. Cambridge Univ Press, pp 49–81

    Google Scholar 

  105. Shaw G (1971) The chemistry of sporopollenin. In: Brooks J, Grant PR, Muir M, van Gijzel P, Shaw G (eds) Sporopollenin. Academic Press, London, pp 305–348

    Google Scholar 

  106. Shaw G, Yeadon A (1966) Chemical studies on the constitution of some pollen and spore membranes. J Chem Soc C: 16–22

    Google Scholar 

  107. Sheldon JM, Dickinson HG (1983) Determination of patterning in the pollen wall of Lilium henryi. J Cell Sci63:191–208

    Google Scholar 

  108. Sheldon JM, Dickinson HG (1986) Pollen wall formation in Lilium: the effect of chaotropic agents, and the organisation of the microtubular cytoskeleton during pattern development. Planta 168:11–23

    Article  CAS  Google Scholar 

  109. Simpson MG (1983) Pollen ultrastructure of the Haemodoraceae and its taxonomic significance. Grana 22:79–103

    Article  Google Scholar 

  110. Skvarla JJ, Larson DA (1966) Fine structural studies of Zea mays pollen. I. Cell membranes in exine ontogeny. Amer J Bot 52:1112–1125

    Google Scholar 

  111. Southworth D (1985) Pollen exine substructure I. Lilium longiflorum. — Amer J Bot 72:1274–1283

    Google Scholar 

  112. Southworth D (1986) Substructural organization of pollen exines. In: Blackmore S, Ferguson IK (eds) Pollen and Spores. Form and function. Linn Soc Symp Serl2, Academic Press, London, pp 61–69

    Google Scholar 

  113. Spurr AR(1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31

    Article  PubMed  CAS  Google Scholar 

  114. Thiery JP (1967) Mise en évidence des polysaccharides sur coupes fines au microscope électronique. J Microscop 6:987–1018

    CAS  Google Scholar 

  115. Tomlinson PB (1995) Non-homology of vascular organisation in monocotyledons and dicotyledons. In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ (eds) Monocotyledons: systematics and evolution. R Bot Gard, Kew, pp 589–622

    Google Scholar 

  116. Tryon AF, Lugardon B (1991) Spores of the Pteridophyta. Springer, N York

    Google Scholar 

  117. Wall D (1962) Evidence from recent plankton regarding the biological affinities of Tasmanites, Newton 1875, and Leiosphaeridia, Eisenack 1958. Geol Mag 99:353–362

    Article  Google Scholar 

  118. Wattendorf J, Holloway PJ (1980) Studies on the ultrastructure and histochemistry of plant cuticles: the cuticular membranes of Agave americana L. In situ. Ann Bot 46: 13 –28

    Google Scholar 

  119. Wehling K, Niester Ch, Boon JJ, Willemse MTM, Wiermann R (1989) ß-Coumaric acid — a monomer in the sporopollenin skeleton. Planta 179:376–380

    Article  CAS  Google Scholar 

  120. Wittborn J, Rao KV, El-Ghazaly G, Rowley JR (1996) Substructure of spore and pollen grain exines in Lycopodium, Alnus, Betula, Fagus and Rhododendron investigated with Atomic Force and Scanning Tunnelling Microscopy. Grana 35(4): 185–198

    Google Scholar 

  121. Wodehouse RP (1935) Pollen Grains. Their Structure, Identification and Significance in Science and Medicine. McGraw-Hill, New York Xi YZ,

    Google Scholar 

  122. Wang FH (1989) Pollen exine ultrastructure of extant Chinese gymnosperms. Cathaya 1:119–142

    Google Scholar 

  123. Young BA, Schulz-Schaeffer J, Carroll TW (1979) Anther and pollen development in male-sterile intermediate wheatgrass plants derived from wheat X wheatgrass hybrids. Can J Bot 57:602–618

    Article  Google Scholar 

  124. Zavada MS, Dilcher DL (1986) Comparative pollen morphology and its relationship to phylogeny of pollen in the Hamamelidae. Ann Mo Bot Gard 73:348–381

    Article  Google Scholar 

  125. Zetzsche F, Kalt P, Liechti J, Ziegler E (1937) Zur Konstitution des Lycopodium-sporonins des tasmanins und des lange-sporonins. J Prakt Chem 148:267–286

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

El-Ghazaly, G. (1999). Development and Substructures of Pollen Grains Wall. In: Cresti, M., Cai, G., Moscatelli, A. (eds) Fertilization in Higher Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59969-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59969-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64202-9

  • Online ISBN: 978-3-642-59969-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics