Skip to main content

Segregating Cells - Proteases in Tissue Culture

  • Chapter
Proteolytic Enzymes

Part of the book series: Springer Lab Manual ((SLM))

  • 439 Accesses

Abstract

Rous and Johns first introduced the use of trypsin to detach growing cells from explanted tissue pieces (Rous and Johns 1916). For more than 80 years trypsin has remained a favorite enzyme for the primary dissociation of tissues and for detaching cells in monolayers for subsequent replating. The trypsin that was used by Rous and Johns and in many instances still is used is a mixture of various pancreatic enzymes. Low concentrations of crude trypsin usually did not harm cells, but higher concentrations would kill the cells. Tryptic isolation of individual cells from tissue for primary cultures were used to dissociate chick embryonic tissues for cell cultures (Weymouth 1974). Moskona (1952) was using a 3% crude trypsin solution in a calcium and magnesium free solution. The use of calcium and magnesium free solution was based on the evidence that these cations play a role in stabilising the intercellular matrix and thus in controlling mutual cellular adhesiveness. A first exhaustive review on the isolation of cells has been published by Rinaldini (Rinaldini 1958). He also reported that purified trypsin was less effective than crude trypsin preparations pointing out the existence of other enzymes in the mixture of crude trypsin. The intercellular material which has to be digested in order to segregate the cells are mucopolysaccharides and proteins of which collagen is one of the major intercellular proteins. Elastins are another kind of intercellular mucoproteins which are digested by the specific enzyme elastase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Arsenis C, Mc Donnell J (1989) Effects of antirheumatic drugs on the interleukin-1 alpha induced synthesis and activation of proteinases in articular cartilage expiants in culture. Agents-Actions, 27; 261–64

    Article  PubMed  CAS  Google Scholar 

  • Bailey LE, Carlos H, Amian A, Moon KE (1987) Oxydative metabolism in guinea pig ventricular myocytes protected from proteolytic enzyme activity. Cardiovasc Res 21; 481–88

    Article  PubMed  CAS  Google Scholar 

  • Besch GJ, Woleberg WH, Gilchrist KW, Völkel JG, Gould MN (1983) A comparison of methods for the production of monodispersed cell suspensions from human primary breast carcinoms. Breast Cancer Res Treat 3; 15–22

    Article  PubMed  CAS  Google Scholar 

  • Bullaro JC, Brookman DH (1976) Comparison of sceletal muscle monolayer culture initiated with cells dissociated by Vortex and by trypsin methods. In Vitro 12; 564–70

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee D, Sakar PK (1984) Isolation of protoplasmic astrozytes: A procedure based on controled trypsin digestion. J. Neurochem 42; 1229–34

    Article  PubMed  CAS  Google Scholar 

  • Colizza D, Guevara MR and Shrier A (1983) A comparative study of collagenase and trypsin dissociated embryonic heart cells reaggregation electrophysiology and pharmacology. Can J. Physio Pharmacol 61; 408–19

    Article  CAS  Google Scholar 

  • Döhner L, Kiessig R (1975) Zur Sterilisation von Serum und Trypsin für die Zellkultivierung mit Betapropiolakton. Labortech 16; 277–280

    Google Scholar 

  • Draghici D, Schimmel D und Hubrig Th (1969) Mycoplasmen von Schwein und Zellkulturen: Die Isolierung von Mycoplasmen des Schweines in Primärzellkulturen. Arch Exp Veterinärmed 23; 101–134

    PubMed  CAS  Google Scholar 

  • Engelholm SA, Spang-Thomsen M, Brunner N, Nohr I and Vindelov LL (1985) Disaggregation of human solid tumors by combined mechanical and enzymatic methods. Br. J. Cancer 51; 93–98

    Article  PubMed  CAS  Google Scholar 

  • Fine AS, Egnor RW, Forrester E, Stahl SS (1981) Elastase soybean trypsin inhibitor dissociation of rat oral mucosa: Ultrastructural and oxidative metabolic destructive changes in isolated epithelial and dermal mitochondria after dissociation. J. Invest Dermatol 76; 239–54

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald SC, Willis MA, Yu C, Rigatto H (1992) In search of the central respiratory neurons: I. dissociated cell cultures of respiratory areas from the upper medulla. J. Neurosci Res 33; 579–89

    Article  PubMed  CAS  Google Scholar 

  • Frazier ME, Hadley JG, Andrews TK and Drucker H (1975) Use of thermolysin for the dissociation of lung tissue into cellular components. Lab Invest 33; 231–38

    PubMed  CAS  Google Scholar 

  • Frater R (1976) A new technique for dissociation of hair follicles into single cells. Experientia 32; 675–76

    Article  PubMed  CAS  Google Scholar 

  • Germain L, Rouabhia M, Guignard R, Carrier L, Bouvard V, Auger FA (1983) Improvement of human keratinocyte isolation and culture using thermolysin. Burns 19; 99–104

    Article  Google Scholar 

  • Gibson-D’ Ambrosio RE, Samuel M, D’ Ambrosio SM (1986) A method for isolation large numbers of viable disaggregated cells from various human tissues for cell culture establishment. In Vitro Cell dev Biol 22; 529–34

    Article  Google Scholar 

  • Ginns E, Guarnieri M (1976) Trypsin bound to sephadex beads. A tool for neuronal cell dissociation. Expl Cell Res 97; 42–46

    Article  CAS  Google Scholar 

  • Helms SR, Brazeal FI, Bueschen AJ, Pretlow TG (1975) Separation of cells with histochemically demonstrable acid phosphatase activity from suspensions of human prostatic cells in an isokinetic gradient of Ficoe in tissue culture medium. Am. J. Pathol 80; 79–90

    PubMed  CAS  Google Scholar 

  • Hentzer B, Kobayashi T (1976) Dissociation of human adult epidermal cells by disulfide reducing agents and subsequent trypsinization. Acta Derm Venerol (Stockholm) 56; 19–25

    CAS  Google Scholar 

  • Heymanns J, Behrendt H and Schmutzler W (1982) Comparative studies of mast cells from normal (non immunized) and activly sensitized dogs. Agents-Actions 12; 192–8.

    Article  PubMed  CAS  Google Scholar 

  • Hoshi H, Kan M, Me Keehan WL (1987) Direct analysis of growth factor requirements for isolated human fetal hepatocytes. In-Vitro-Cell-Dev-Biol 23; 723–32

    Article  PubMed  CAS  Google Scholar 

  • Hosick HL and Strohman R (1971) Changes in ribosome-polyribosome balance in chick muscle cells during tissue dissociation, development in culture, and exposure to simplified culture medium. J Cell Physiol 77; 145–156

    Article  PubMed  CAS  Google Scholar 

  • Kemmner W, Moldenhauer G, Schlag P, Brossmer R (1992) Separation of tumor cells from a suspension of dissociated human colorectal carcinoma tissue by means of monoclonal antibody-coated magnetic beads. J. Immunol Methods 147; 197–200.

    Article  PubMed  CAS  Google Scholar 

  • Kirkpatrick CJ., Melzner I, Goller T (1985) Comparative effects of trypsin, collagenase and mechanical harvesting on cell membrane lipids studied in monolayer-cultured endothelial cells and a green monkey kidney cell line. Biochim Biophys Acta 846; 120–126

    Article  PubMed  CAS  Google Scholar 

  • Kohnert KD, Hehmke B (1986) Preparation of suspensions of pancreatic islet cells: A comparison of methods. J. Biochem Biophys Methods 12; 81–88

    Article  PubMed  CAS  Google Scholar 

  • Korver WE, Cornelisse CJ, Herrmans J, Fleuren GJ (1995) Limited loss of 9 tumor associate surface antigenic determinants after trypic cell dissociation. Cytometry, volume 19, p. 267–72

    Article  Google Scholar 

  • Kurokawa IJ, Saito S, Kanamaru R, Sato T, Sato H (1975) Separation of gastric mucosal cells of rat with proteolytic enzymes, pronase and trypsin with special reference to the collection, morphology and viability of the generative cells. Tohoku J. Exp Med 116; 241–252

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre V, Peeters-Joris C and Vaes G (1990) Production of collagens collagenase and collagenase inhibitor during the dedifferentiation of articular chondrocytes in serial subcultures. Biochim Biophys Acta 1051; 266–275

    Article  PubMed  CAS  Google Scholar 

  • Levinson C, and Green JW (1965) Cellular injury resulting from tissue disaggregation. Exp Cell Res 39; 309–317

    Article  PubMed  CAS  Google Scholar 

  • Marcus GJ, Connor L, Domingo MT, Tsang BK, Downey WR, Ainsworth L (1984) Enzymatic dissociation of ovarian and uterine tissues. Endocr Res 10; 151–62

    Article  PubMed  CAS  Google Scholar 

  • Merkenschlager M, Kardamakis D, Rawle FC, Spurr N, Beverley PC (1988) Rate of incorporation of radiolabelled nucleosides does not necessarily reflect the metabolic state of cells in culture: Effects of latent mycoplasma contamination. Immunology 63; 125–31

    PubMed  CAS  Google Scholar 

  • Miller WA, Everett MM, Freedman JT, Feagans WC and Cramer JF (1976) Enzyme separation techniques for the study of growth of cells from layers of bovine dental pulp. In Vitro 12; 580–8

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki K, Takaki R, Nakayama F, Yamauchi S, Koga A, Todo S (1981) Isolation and primary culture of adult human hepatocytes. Ultrastructural and functional studies. Cell-Tissue-Res 218; 13–21

    PubMed  CAS  Google Scholar 

  • Moscona A (1952) Cell suspension from organ rudiments of chick embryos. Exp Cell Res 3; 535–539

    Article  CAS  Google Scholar 

  • Nakashima M (1991) Establishment of primary cultures of pulp cells from bovine permanent incisors. Archs oral Biol 36; 655–63

    Article  CAS  Google Scholar 

  • Oakley CL, Warrack GH, Van Heyningen WE (1946) The collagenase (K toxin) of Cl. welchii type A. J Pathol Bacteriol 58; 229–235

    Article  PubMed  CAS  Google Scholar 

  • Phillips HJ (1972) Dissociation of single cells from lung or kidney tissue with elastase. In Vitro 8; 101–105

    Article  PubMed  CAS  Google Scholar 

  • Poste G (1971) Tissue dissociation with proteolytic enzymes. Adsorption and activity of enzyme at the cell surface. Exp Cell Res 65; 359–367

    Article  PubMed  CAS  Google Scholar 

  • Rinaldini LM (1958) The isolation of living cells from animal tissues. Int Rev Cytol 7; 587–647

    Article  CAS  Google Scholar 

  • Rinaldini LM (1958) An improved method for isolation and quantitative cultivation of embryonic cells. Exp Cell Res 16; 477–505

    Article  Google Scholar 

  • Romrell LJ, Coppe MR, Munro DR, Ito S (1975) Isolation and separation of highly enriched fractions of viable mouse gastric parietal cells by velocity sedimentation. J. Cell Biol 56; 428–38

    Article  Google Scholar 

  • Rous P, Jones FS (1916) A method for obtaining suspensions of living cells from the fixed tissues, and for the plating out of individual cells. J Exp Med 23; 549–555

    Article  PubMed  CAS  Google Scholar 

  • Sanford WC (1974) A new method for dispersing strongly adhesive cells in tissue culture. In Vitro 10; 281–300

    Article  CAS  Google Scholar 

  • Schimmelpfeng L, Langenberg U, Peters JH (1980) Macrophages overcome mycoplasma infections of cells in vitro. Nature 285; 661–62

    Article  PubMed  CAS  Google Scholar 

  • Sherman JM Jr, Haase B, Carr T und Tandler B (1988) Goblet cell isolation from cat trachea: a comparison of methods. Exp Lung Res 14; 375–385

    Article  PubMed  Google Scholar 

  • Smidt-Jensen S, Christensen B and Lind AM (1989) Chorionic villus culture for prenatal diagnosis of chromosome defects: reduction of the longterm cultivation time. Prenat Diagn 9; 309–19

    Article  PubMed  CAS  Google Scholar 

  • Snow C, Allen A (1970) The release of radioactive nucleic acids and mucoproteins by trypsin and ethylenediaminetetraacetate treatment of baby-hamster cells in tissue culture. Biochem J (England), Oct 1970, 119(4) p 707–14

    CAS  Google Scholar 

  • Sullivan JC, Schafer IA (1966) Survival of pronase-treated cells in tissue culture. Exp Cell Res 43; 676

    Article  PubMed  CAS  Google Scholar 

  • Takahashi H, Sano K, Yoshizato K, Shioya N, Sasaki K (1985) Comparative studies on methods of isolating rat epidermal cells. Ann plast surg 14; 266–285

    Article  Google Scholar 

  • Tepperman K, Morris G, Essien F, Heywood SM (1975) A mechanical dissociation method for preparation of muscle cell cultures. J. Cell Physiol 86; 561–65

    Article  PubMed  CAS  Google Scholar 

  • Tokiwa T, Hoshika T, Shiraishi M, Sato J (1979) Mechanism of cell dissociation with trypsin and EDTA. Acta Med Okayama 33; 1–4

    PubMed  CAS  Google Scholar 

  • Varani J, Perone P, Inman DR, Burmeister W, Schollenberger SB, Fligiel SE, Sitrin RG, Johnson KJ (1995) Human skin in organ culture. Elaboration of proteolytic enzymes in the presence and absence of exogenouse growth factors. Am J Pathol 146; 210–217

    PubMed  CAS  Google Scholar 

  • Vielkind U and Crawford BJ (1988) Evaluation of different procedures for the dissociation of retinal pigmented epithelium into single viable cells. Pigmented cell Res 1; 419–33

    Article  CAS  Google Scholar 

  • Viko H, Osnes JB, Sjetnan AE and Skomedal T (1995) Improved isolation of cardiomyo-cytes by trypsinisation in addition to collagenase treatment. Pharmacol Toxicol 76; 68–71

    Article  PubMed  CAS  Google Scholar 

  • Waymouth C (1974) To disaggregate or not disaggregate injury and cell diaggregation, transient or permanent? In Vitro 10; 97–111

    Article  PubMed  CAS  Google Scholar 

  • Weinstein D (1966) Comparison of pronase and trypsin for detachment of human cells during serial cultivation. Exp Cell Res 43; 234–236

    Article  PubMed  CAS  Google Scholar 

  • West DC, Kumar S (1986) Elastase activity in capillary and aortic endothelial cells. Anticancer Res 6; 1069–72

    PubMed  CAS  Google Scholar 

  • Willson BW, Lau TL (1963) Dissociation and cultivation of chick embryo cells with an Actinomycete protease. Proc Soc Exp Biol Med 114; 649–651

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wiesmann, U.N. (1999). Segregating Cells - Proteases in Tissue Culture. In: Sterchi, E.E., Stöcker, W. (eds) Proteolytic Enzymes. Springer Lab Manual. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59816-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59816-6_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-47807-9

  • Online ISBN: 978-3-642-59816-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics