Skip to main content

Proteases in Peptide Mapping and Sequencing

  • Chapter
Proteolytic Enzymes

Part of the book series: Springer Lab Manual ((SLM))

Abstract

The ability of some proteases to cleave polypeptide chains at restricted cleavage sites makes them important tools for the elucidation of the primary and even higher-order structure of proteins. This chapter provides an introduction into the methodology of enzymatic protein fragmentation. In addition, a series of complementary chemical methods are included which are indispensable for protein sequence analysis and peptide mapping. The specificity of most endopeptidases show a strong preference for particular amino acid residues or short sequence recognition sites. The chemical neighborhood of these residues, i.e. the character of their side chains, like hydrophobicity or size, may influence the rate of hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aebersold RH, Leavitt J, Saavedra RA, Hood LE, Kent SBH (1987) Internal amino acid sequence analysis of proteins separated by one- or two-dimensional gel electrophoresis after in situ protease digestion on nitrocellulose. Proc Natl Acad Sci USA 84:6970–6974

    Article  PubMed  CAS  Google Scholar 

  • Allen G (1989) Sequencing of Proteins and Peptides. Elsevier, Amsterdam

    Google Scholar 

  • Amons R (1987) Vapor-phase modification of sulfhydryl groups in proteins. FEBS Lett 212: 68–72

    Article  PubMed  CAS  Google Scholar 

  • Armentrout, R.W., Doolittle, R.F. (1969): Pyrrolidonecarboxylyl peptidase: stabilisation and purification. Archives Biochem. & Biophys. 132, 80–90.

    Article  CAS  Google Scholar 

  • Bailey JL and Cole RD (1959) Studies of the reaction of sulfite with proteins. J Biol Chem 234: 1733–1739

    PubMed  CAS  Google Scholar 

  • Barrett AJ (1981) Leukocyte elastase. Meth Enzymol 80: 581–588

    Article  PubMed  CAS  Google Scholar 

  • Baugham DJ (1970) The serine proteinases — Thrombin assay. Meth Enzymol 19:145–157

    Article  Google Scholar 

  • Brune DC (1992) Alkylation of cysteine with acrylamide for protein sequence analysis. Anal Biochem 207: 285–290

    Article  PubMed  CAS  Google Scholar 

  • Chaconas G, van de Sande JH (1980) 32P labeling of RNA and DNA restriction fragments. Methods Enzymol, Academic Press, New York 65: 75–85

    Google Scholar 

  • Chicz RM, Regnier FE (1990) High performance liquid chromatography; effective protein purification by various chromatographic methods. Methods Enzymol 182: 392–421

    Article  PubMed  CAS  Google Scholar 

  • Cleland WW (1964) Dithiothreitol, a new protective reagent for SH groups. Biochemistry 3: 480–482

    Article  PubMed  CAS  Google Scholar 

  • Cleveland DW, Fischer SG, Kirschner MK, Laemmli UK (1977) Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem 252: 1102–1106

    PubMed  CAS  Google Scholar 

  • Cole EG, Mecham DK (1966) Cyanate formation and electrophoretic behavior of proteins in gels containing urea. Anal Biochem 14: 215–222

    Article  PubMed  CAS  Google Scholar 

  • Crestfield AM, Moore S, Stein WH (1963) The preparation and enzymatic hydrolysis of reduced and S-carboxymethylated proteins. J Biol Chem 238: 622–627

    PubMed  CAS  Google Scholar 

  • Darbre A (1986) Practical Protein Chemistry. Wiley, Chichester

    Google Scholar 

  • Dolan JW (1991) Preventive maintainance and trouble shooting LC instrumentation. In: High-Performance Liquid Chromatography of Peptides and Proteins: Separation, Analysis and Conformation. (Mant CT, Hodges RS, eds.) CRC Press, Boca Raton, pp. 23–29

    Google Scholar 

  • Drapeau GR (1980) Substrate specificity of a proteolytic enzyme isolated from a mutant of Pseudomonas fragi. J Biol Chem 255 (3): 839–840

    PubMed  CAS  Google Scholar 

  • Drapeau, G.R., Boily Y., Houmard, J. (1972) purification and properties of an extracellular protease of Staphylococcus aureus. J. Biol. Chem. 247, 6720–6726.

    PubMed  CAS  Google Scholar 

  • Ebeling W, Hennrich N, Klockow M, Metz M, Orth HD, Lang H (1974) Proteinase K from Tritirachium album limber. Eur J Biochem 47: 91–97

    Article  PubMed  CAS  Google Scholar 

  • Eckerskorn C, Lottspeich F (1989) Internal amino acid sequence analysis of proteins separated by gel electrophoresis after tryptic digestion in polyacrylamide matrix. Chromatographia 28: 92–94

    Article  CAS  Google Scholar 

  • Eckerskorn C, Mewes W, Goretzki H, Lottspeich F (1988) A new siliconized-glass fibre as support for protein-chemical analysis of electroblotted proteins. Eur J Biochem 176: 509–519

    Article  PubMed  CAS  Google Scholar 

  • Eckerskorn C, Strupat K, Kellermann J, Lottspeich F, Hillenkamp F. (1997) High-sensitive peptide mapping by micro-LC with on-line membrane blotting and subsequent detection by scanning-IR-MALDI mass spectrometry. J Prot Chem 16: 349–362

    Article  CAS  Google Scholar 

  • Edman P, Begg G (1967) A Protein Sequenator. Eur J Biochem 1: 80–91

    Article  PubMed  CAS  Google Scholar 

  • Farries TC, Harris A, Auffret AD, Aitken A (1991) Removal of N-acetyl groups from blocked peptides with acylpeptide hydrolase. Eur J Biochem 196: 679–685

    Article  PubMed  CAS  Google Scholar 

  • Fernandez J, Andrews L, Mische SM (1994) A one-step enzymatic digestion procedure for PVDF-bound proteins that does not require PVP-40. Techniques in protein chemistry V (Crabb JW, ed.) Academic Press, San Diego, pp 215–222

    Google Scholar 

  • Folk, JE (1970) Carboxypeptidase B (porcine panreas). Meth Enzymol 19: 504

    Article  Google Scholar 

  • Fontana A (1972) Modification of tryptophan with BNPS-skatole (2-(2-nitrophenylsul-fenyl)-3-methyl-3-bromoindolenine). Meth Enzymol 25: 419–423

    Article  PubMed  CAS  Google Scholar 

  • Friedman M, Krull LH, Cavins JF (1970) The chromatographic determination of cystine and cysteine residues in proteins as S-(β-(pyridylethyl)cysteine. J Biol Chem 245:3868–3871

    PubMed  CAS  Google Scholar 

  • Fruton JS (1977) Specificity and mechanism of pepsin action on synthetic substrates. Adv Exp Medicine & Biology 95: 131–140

    Article  CAS  Google Scholar 

  • Glazer AN, De Lange, RJ, Sigman DS (1975) Chemical modification of proteins. North-Holland, Amsterdam.

    Google Scholar 

  • Gross E, Wittkop B (1961) Selective cleavage of the methionyl peptide bonds in ribonuclease with cyanogen bromide. J Am Chem Soc 83: 1510–1511

    Article  CAS  Google Scholar 

  • Hayashi, R., Moore, S., Stein W.H. (1973) Carboxypeptidase from Yeast. Large scale pre-peration and the application to COOH-terminal analysis of peptides and proteins. J. Biol. Chem. 248, 3889–3892

    PubMed  CAS  Google Scholar 

  • Heinrickson, R.L. (1977) Methods Enzymol. 47, 189–193

    Article  Google Scholar 

  • Hirs CHW (1967a) Performic acid oxidation. Meth Enzymol 11: 197–199

    Article  CAS  Google Scholar 

  • Hopp CE, Bakhtiar R (1997) An introduction to electrospray ionisation and matrix-assisted laser desorption/ionisation mass spectrometry — essential tools in a modern biotechnology environment. Biospectroscopy 3(4): 259–280

    Article  Google Scholar 

  • Kaspar CB (1970) Protein Sequence Determination. (Needleman SB ed.) Springer-Verlag, Berlin, Heidelberg, New York, pp 114–161

    Google Scholar 

  • Kaspar CB (1975) Fragmentation of proteins for sequence studies and separation of the peptide mixture. In: Protein sequence determination. (Needleman SB ed.) Springer, Heidelberg, pp 114–161

    Chapter  Google Scholar 

  • Kellner R (1994) Chemical and Enzymatic Fragmentation of Proteins. In: Microcharac-terisation of Proteins. (Kellner R, Lottspeich F, Meyer H ed) VCH, Weinheim, pp 11–27

    Chapter  Google Scholar 

  • Kennedy TE, Gawinowicz MAQ, Barzilai A, Kandel ER, Sweatt JD (1988) Sequencing of proteins from two-dimensional gels by using in situ digestion and transfer of peptides to polyvinylidene difluoride membranes: Application to proteins associated with sensitization in Aplysia. Proc Natl Acad Sci USA 85: 7008–7012

    Article  PubMed  CAS  Google Scholar 

  • Light, A. & Janska, H. (1989) Enterokinase (enteropeptidase): Comparative aspects. Trends Biochem. Sci. 14, 110–112

    Article  PubMed  CAS  Google Scholar 

  • Lindley H (1956) A new synthetic substrate for trypsin and ist application to the determination of the amino acid sequence of proteins. Nature 178: 647–648

    Article  PubMed  CAS  Google Scholar 

  • Lynn KR, Labow RS (1984) A comparison of four sulfhydryl cathepsins (B,C,H, and L) from porcine spleen. Can J Biochem Cell Biol 62: 1301–1308

    Article  PubMed  CAS  Google Scholar 

  • Maley F (1989) Characterisation of Glycoproteins and their associated oligosacherides through the use of Endoglycosidases. Anal Biochem 180: 195–204

    Article  PubMed  CAS  Google Scholar 

  • Mant CT, Hodges RT (1991a) Mobile phase preparation and column maintenance. In: High-Performance Liquid Chromatography of Peptides and Proteins: Separation, Analysis and conformation (Mant CT, Hodges RS eds) CRC Press Boca Raton, pp37–45

    Google Scholar 

  • Mant CT, Hodges RT (1991b) Mobile phase preparation and column maintenance. In: High-Performance Liquid Chromatography of Peptides and Proteins: Separation, Analysis and conformation (Mant CT, Hodges RS eds) CRC Press Boca Raton, pp 69–94

    Google Scholar 

  • Matsudeira PT (1993): A practical guide to protein and peptide purification for micro-sequencing. Academic Press, San Diego

    Google Scholar 

  • Meyer HE (1994) HPLC. In: Microcharacterisation of Proteins (Kellner R, Lottspeich F, Meyer H eds) VCH, Weinheim, pp 11–27

    Google Scholar 

  • Neugebauer JM (1990) Detergents: An overview. In: Protein Purification (Deutscher MP ed.) Academic Press, San Diego, pp239–253

    Google Scholar 

  • Nugent KD (1991) Commercially available columns and packings for reversed phase HPLC of peptides and proteins. In: High-Performance Liquid Chromatography of Peptides and Proteins: Separation, Analysis and conformation (Mant CT, Hodges RS eds) CRC Press Boca Raton, pp279–287

    Google Scholar 

  • Owen WG, Esmo CT, Jackson, CM (1974) The conversion of prothrombin to thrombin. J Biol Chem 249: 594–605

    PubMed  CAS  Google Scholar 

  • Pappin DJC (1997), Peptide mass fingerprinting using MALDI-TOF mass spectrometry. In: Methods in Molecular Biology, Vol.64. Protein Sequencing Protocols, pp 165–173. Humana Press Inc.: Totowa, New Jersey, USA.

    Google Scholar 

  • Petra PH (1970) Carboxypeptidase A. Meth Enzymol 19: 460

    Article  Google Scholar 

  • Pluskal MG, Przekop MB, Kavonian MR, Vecoli C, Hicks DA (1986) Immobilon PVDF transfer membrane: a new membrane substrate for western blotting of proteins. Biotechniques 4: 272–283

    CAS  Google Scholar 

  • Raftery MA, Cole RD (1966) On the aminoethylation of proteins. J Biol Chem 241: 3457–3461

    PubMed  CAS  Google Scholar 

  • Riviere LR, Fleming M, Elicone C, Tempst P (1991) Study and applications of the effects of detergents and chaotropes on enzymatic proteolysis. Techniques in protein chemistry II (Villafranca JJ ed) Academic Press, San Diego, pp 171–179

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning. A Laboratory Manual B16. Cold Spring Harbour Press

    Google Scholar 

  • Schenkein I, Levy M, Franklin EC, Frangione B, (1977 Jul) Proteolytic enzymes from the mouse submaxillary gland. Specificity restricted to arginine residues. Arch Biochem Biophys 182(1): 64–70

    Article  PubMed  CAS  Google Scholar 

  • Serano L, Avila J, Maccioni RB (1984) Controlled proteolysis of tubulin by subtilisin. Localisation of the site for MAP2 interaction. Biochemistry 23: 4675

    Article  Google Scholar 

  • Tschesche, H. Kupfer S. (1972) C-terminal-sequence determination by carboxypeptidase C from orange levels. Eur. J. Biochem. 26, 33–46

    Article  PubMed  CAS  Google Scholar 

  • Umomoto J, Bhavanandan VP, Davidson EA (1977) Purification and properties of an Endo-alpha-N-acetyl-D-galactosaminidase from Diplococcus pneumoniae. J Biol Chem 252: 8609–8614

    Google Scholar 

  • Verjee ZHM (1969) Isolation of three acid phosphatases from wheat germ. Eur J Biochem 9: 439–444

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama S, Oobayashi, Tanabe O, Ichishima E (1981) Agr Biol Chem 45:311–319

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kellermann, J. (1999). Proteases in Peptide Mapping and Sequencing. In: Sterchi, E.E., Stöcker, W. (eds) Proteolytic Enzymes. Springer Lab Manual. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59816-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59816-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-47807-9

  • Online ISBN: 978-3-642-59816-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics