Skip to main content

Polymerase Chain Reaction

  • Chapter
Techniques in Molecular Medicine

Part of the book series: Springer Lab Manual ((SLM))

Abstract

The polymerase chain reaction (PCR) (1) is a rapid technique for in vitro amplification of a specific DNA fragment by use of two short single- stranded primers flanking this fragment. Through repeated cycles of heat denaturation of the double-stranded DNA template, primer annealing, and primer extension using a heat-stable polymerase, the fragment of interest is amplified exponentially up to a million fold. Starting from very small amounts of DNA such as even that contained in a single cell, µg amounts of PCR product may be produced. The PCR product can be further modified by cloning into a vector, labeling for use as a probe, or directly sequenced. Starting with very small amounts of template the technique gives a high yield and can be modified in many ways. In this chapter the components and mechanisms of a PCR are described, followed by a standard PCR proctocol. Subsequently, modifications of this protocol for specific experimental purposes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mullis KB, Faloona (1987) Specific synthesis of DNA in vitro via a polymerase-cat-alysed chain reaction. Methods Enzymol 155:335–350

    Article  PubMed  CAS  Google Scholar 

  2. Erlich HA (ed) (1989) PCR technology. Stockton, New York

    Google Scholar 

  3. Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) (1990) PCR protocols: a guide to methods and applications. Academic press, San Diego

    Google Scholar 

  4. Erlich H (1991) Recent advances in the polymerase chain reaction. Science 252:1643–1651

    Article  PubMed  CAS  Google Scholar 

  5. Saiki RK, Gelfand DH (1989) Introducing AmpliTaq DNA polymerase. Amplifications 1:4–6

    Google Scholar 

  6. Innis MA, Myambo KB, Gelfand DH, Brow MAD (1988) DNA sequencing with Ther-mus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA. Proc Natl Acad Sci U.S.A. 85:9436–9440

    Article  PubMed  CAS  Google Scholar 

  7. Saiki RK et al. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491

    Article  PubMed  CAS  Google Scholar 

  8. Longo MC, Berninger MS, Harley JL (1990) Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene 93:125–128

    Article  PubMed  CAS  Google Scholar 

  9. Handyside AH, Kontogianni EH, Hardy K, Winston RML (1990) Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature 344:768–770

    Article  PubMed  CAS  Google Scholar 

  10. Pääbo S, Huguchi RG, Wilson AC (1989) Ancient DNA and the polymerase chain reaction. J Biol Chem 264:9709–9712

    PubMed  Google Scholar 

  11. Persing DH et al. (1990) Detection of Borrelia burgdorferi DNA in museum specimens of ixodes dammini ticks. Science 249:1420–1423

    Article  PubMed  CAS  Google Scholar 

  12. Impraim CC, Saiki RK, Erlich HA, Teplitz RL (1987) Analysis of DNA extracted from formalin-fixed, paraffin-embedded tissues by enzymatic amplification and hybridization with sequence-specific oligonucleotides. Biochem Biophys Res Comm 142:710–716

    Article  PubMed  CAS  Google Scholar 

  13. Ochman H, Gerber AS, Hartl DL (1988) Genetic applications of an inverse polymerase chain reaction. Genetics 120:621

    PubMed  CAS  Google Scholar 

  14. Triglia T, Peterson MG, Kemp DJ (1988) A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences. Nucleic Acids Res 16:8186

    Article  PubMed  CAS  Google Scholar 

  15. Silver J, Keerikatte V (1989) Novel use of polymerase chain reaction to amplify cellular DNA adjacent to an integrated provirus. J Virol 63:1924–1928

    PubMed  CAS  Google Scholar 

  16. Jeffreys AJ, MacLeod A, Tamaki K, Neil DL, Monckton DG (1991) Minisatellite repeat coding as a digital approach to DNA typing. Nature 354:204–209

    Article  PubMed  CAS  Google Scholar 

  17. Weber JL, May PE (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet 44:338–396

    Google Scholar 

  18. Ledbetter SA, Nelson DL, Warren ST, Ledbetter DH (1990) Rapid isolation of DNA probes within specific chromosome regions by interspersed repetitive sequence polymerase chain reaction. Genomics 6:475–481

    Article  PubMed  CAS  Google Scholar 

  19. Phadnis SH, Huang HV, Berg DE (1989) Tn5supF, a 264-base-pair transposon derived from Tn5 for insertion mutagenesis and sequencing DNAs cloned in phage 1. Proc Natl Acad Sci U.S.A. 86:5908–5012

    Article  PubMed  CAS  Google Scholar 

  20. Strausbaugh LD, Bourke MT, Sommer MT, Coon ME, Berg CM (1990) Probe mapping to facilitate transposon-based DNA sequencing. Proc Natl Acad Sci U.S.A. 87:6213–6217in press

    Article  PubMed  CAS  Google Scholar 

  21. Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218

    Article  PubMed  CAS  Google Scholar 

  22. Williams JGK, Kubelik AR, Livak KJ, et al. (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  PubMed  CAS  Google Scholar 

  23. Olson M, Hood L, Cantor C, Botstein D (1989) A common language for physical mapping of the human genome. Science 245:1434–1435

    Article  PubMed  CAS  Google Scholar 

  24. Mueller PR, Wold B (1989) In vivo footprinting of a muscle specific enhancer by ligation mediated PCR. Science 246:780–786

    Article  PubMed  CAS  Google Scholar 

  25. Meitzer PS, Guan X-Y, Burgess A, Trent JM (1992) Rapid generation of region specific probes by chromosome microdissection and their application. Nature Genet 1:24–28

    Article  Google Scholar 

  26. Rappolee DA, Wang A, Mark D, Werb Z (1989) Novel method for studying mRNA phenotypes in single or small number of cells. J Cell Biochem 39:1–11

    Article  PubMed  CAS  Google Scholar 

  27. Loh EY, Elliott JF, Cwirla S, Lanier LL, Davis MM (1989) Polymerase chain reaction with single-sided specificity.analysis of T cell receptor d chain. Science 243:217–220

    Article  PubMed  CAS  Google Scholar 

  28. Frohman MA, Dush MK, Martin GR (1988) Rapid production of full-length cDNAs from rare transcripts: amplifacation using a single gene-specific loigonucleotide primer. Proc Natl Acad Sci U.S.A. 85:8998–9002

    Article  PubMed  CAS  Google Scholar 

  29. Lee C.C. et al. (1988) Generation of cDNA probes directed by amino acid sequence: cloning of urate oxidase. Science 239:1288–1291

    Article  PubMed  CAS  Google Scholar 

  30. Varadi A, Gilmore-Hebert M, Benz EJ (1989) Amplification of the phosphorylation site — ATP-binding site cDNA fragment of the Na+, K+-ATPase and the Ca2+-ATPase of Drosophila melanogaster by polymerase chain reaction. FEBS let 258:203–207

    Article  CAS  Google Scholar 

  31. Rappolee DA, Mark D, Banda M, Werb Z (1988) Wound macrophages express TGF-a and other growth factors in vivo: analysis by mRNA phenotyping. Science 241:708–712

    Article  PubMed  CAS  Google Scholar 

  32. Tecott LH, Barchas JD, Eberwine JH (1988) In situ transcription: specific synthesis of complementary DNA in fixed tissue sections. Science 240:1661–1664

    Article  PubMed  CAS  Google Scholar 

  33. Vigilant L, Pennington R, Harpending H, Kocher T, Wilson AC (1989) Mitochondrial DNA sequences in single hairs from a southern African population. Proc Natl Acad Sci U.S.A. 86:9350–9354

    Article  PubMed  CAS  Google Scholar 

  34. Williams SD, Kwok S (1991) In: Lenette EH (ed) Laboratory diagnosis of viral infections. Dekker, New York, pp 147–173

    Google Scholar 

  35. Goodenow M et al. (1989) HIV-1 isolates are rapidly evolving quasispecies: evidence for viral mixtures and preferred nucleotide substitutions. J Acquired Immune Def Syndr 2:344–352

    CAS  Google Scholar 

  36. Lathe R (1985) Synthetic oligonucleotide probes deduced from amino acid sequence data. J Mol Biol 183:1–12

    Article  PubMed  CAS  Google Scholar 

  37. Scharf SJ, Horn GT, Erlich HA (1986) Direct cloning and sequence analysis of en-zymatically amplified genomic sequences. Science 233:1076–1078

    Article  PubMed  CAS  Google Scholar 

  38. Higuchi R (1989) In: Erlich H (ed) PCR technology: principles and applications for DNA Amplification. Stockton, New York, pp 61–70

    Google Scholar 

  39. Sakar G, Sommer SS (1989) Access to a messenger RNA sequence or its protein product is not limited by tissue or species specificity. Science 244:331–334

    Article  Google Scholar 

  40. Martin et al. (1990) The GAP-related domain of the neurofibromatiosis type 1 gene product interacts with ras p21. Cell 63:843–849

    Article  PubMed  CAS  Google Scholar 

  41. Erlich H (1991) Recent advances in the polymerase chain reaction. Science 252:1643–1651

    Article  PubMed  CAS  Google Scholar 

  42. Gyllenstein UB, Erlich HA (1988) Generation of single-stranded DNA by the polymerase chain reaction and its application to direct sequencing of the HLA-DQA locus. Proc Natl Acad Sci U.S.A. 85:7652–7656

    Article  Google Scholar 

  43. Saiki RK, Bugawan TL, Horn GT, Mullis KB, Erlich HA (1986) Analysis of enzyma-tically amplified β-globin and HLA-DQα DNA with allele-specific oligonucleotide probes. Nature 324:163–166

    Article  PubMed  CAS  Google Scholar 

  44. Wong C, et al. (1986) Characterization of β-thalassaemia mutations using direct genomic sequencing of amplified single copy DNA. Nature 330:384–386

    Article  Google Scholar 

  45. Saiki RK et al. (1988) Diagnosis of sickle call anemia and β-thalassemia with enzymatically amplified DNA and nonradioactive allele.specific oligonucleotide probes. N Engl J Med 319:537–541

    Article  PubMed  CAS  Google Scholar 

  46. Conner BJ et al. (1983) Detection of sickle cell bs-globin allele by hybridization with synthetic oligonucleotides. Proc Natl Acad Sci U.S.A. 80:278–282

    Article  PubMed  CAS  Google Scholar 

  47. Erlich H et al. (1991) HLA-DR, DQ and DP typing using PCR amplification and immobilized probes. Eur J Immunogen 18:33–55

    Article  PubMed  CAS  Google Scholar 

  48. Fisher SG, Lerman LS (1983) DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc Natl Acad Sci U.S.A. 80:1579–1583

    Article  Google Scholar 

  49. Myers RM, Sheffield VC, Cox DR (1988) Detection of single base changes in DNA: ribonuclease cleavage and denaturing gradient gel electrophoresis. In: Davies K (ed) Genomic analysis: a practial approach. IRL Press, Oxford

    Google Scholar 

  50. Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci U.S.A. 86:2766–2770

    Article  PubMed  CAS  Google Scholar 

  51. Nickerson DA et al. (1990) Automated DNA diagnostics using an ELISA-based oligonucleotide ligation assay. Proc Natl Acad Sci U.S.A. 87:8923–8927

    Article  PubMed  CAS  Google Scholar 

  52. Brow MD (1990) In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, CA, p 189

    Google Scholar 

  53. Wang AM, Doyle MV, Mark DF (1989) Quantitation of mRNA by the polymerase chain reaction. Proc Natl Acad Sci U.S.A. 86:9717–9721

    Article  PubMed  CAS  Google Scholar 

  54. Gilliland G, Perrin S, Blanchard K, Bunn HF (1990) Analysis of cytokine mRNA and DNA: detection and quantitation by competitive polymerase chain reaction. Proc Natl Acad Sci U.S.A. 87:2725–2729

    Article  PubMed  CAS  Google Scholar 

  55. Siebert PD, Larrick JW (1992) Competitive PCR. Nature 359:557–558

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedhelm Hildebrandt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hildebrandt, F., Singh-Sawhney, I. (1999). Polymerase Chain Reaction. In: Hildebrandt, F., Igarashi, P. (eds) Techniques in Molecular Medicine. Springer Lab Manual. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59811-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59811-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-47808-6

  • Online ISBN: 978-3-642-59811-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics