Skip to main content

Glutathione S-Transferases and Insect Resistance to Insecticides

  • Chapter
Biochemical Sites of Insecticide Action and Resistance

Abstract

Booth et al. (1961) were the first to report an enzyme that catalyzed the conjugation of l,2-dichloro-4-nitrobenzene (DCNB) with glutathione in a cytosolic extract of rat liver. Since then, this group of enzymes, glutathione S-transferases (GSTs, EC 2.5.1.18), has been widely observed in many aerobic organisms. The roles of GSTs, and their biochemical and physiological characteristics have been well investigated, most intensively in mammals. Molecular biology studies since the mid-1970s have resulted in significant understanding of the structure of GST genes and regulation of their expression. The three-dimensional structures of GST proteins, established since the early 1990s, have helped further elucidate the evolution and function of these enzymes in biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong RN (1997) Structure, catalytic mechanism and evolution of the glutathione transferases. Chem Res Toxicol 10:2–18.

    Article  PubMed  CAS  Google Scholar 

  • Booth J, Boyland E, Sims P (1961) An enzyme from rat liver catalysing conjugations with glutathione. Biochem J 79:516–524.

    PubMed  CAS  Google Scholar 

  • Beall C, Fyrberg C, Song S, Fyrberg E (1992) Isolation of aDrosophila gene encoding glutathione S-transferase. Biochem Genet 30:515–527.

    Article  PubMed  CAS  Google Scholar 

  • Chiang FM, Sun CN (1993) Glutathione transferase isozymes of diamondback moth larvae and their role in the degradation of some organophosphorus insecticides. Pestic Biochem Physiol 45:7–14.

    Article  CAS  Google Scholar 

  • Chien C, Dauterman WC (1991) Studies on glutathione S-transferase in Helicoverpa (=Heliothis) zea. Insect Biochem 21:857–864.

    Article  CAS  Google Scholar 

  • Chow NW, Whang-Peng J, Kao-Shan CS, Tam MF, Lai HCJ, Tu CPD (1988) Human glutathione S- transferases. The Ha multigene family encodes products of different but overlapping substrate specificities. J Biol Chem 263:12797–12800.

    CAS  Google Scholar 

  • Chung WY (1999) The molecular cloning of a glutathione S-transferase, GST-4, involved in insecticide resistance from the diamondback moth, Plutella xylostella. MS Thesis, National Chung—Hsing University, Taichung, 44pp.

    Google Scholar 

  • Clark AG (1989) The comparative enzymology of the glutathione S-transferases from non-vertebrate organisms. Comp Biochem Physiol 92B:419–446 Clark.

    Google Scholar 

  • Clark AG, Shamaan NA (1984) Evidence that DDT-dehydrochlorinase from the housefly is a glutathione S-transferase. Pestic Biochem Physiol 22:249–261.

    Article  CAS  Google Scholar 

  • Clark AG, Shamaan NA, Dauterman WC, Hayaoka T (1984) Characterization of multiple glutathione transferases from houseflies, Musca domestica (L.). Pestic Biochem Physiol 22:51–59.

    Article  CAS  Google Scholar 

  • Clark AG, Shamaan NA, Sinclair MD, Dauterman WC (1986) Insecticide metabolism by multiple glutathione S-transferases in two strains of the housefly, Musca domestica (L.). Pestic Biochem Physiol 24:169–175.

    Article  Google Scholar 

  • Daniel V (1993) Glutathione S-transferases: gene structure and regulation of expression. CRC Crit Rev Biochem Mol Biol 28:173–207.

    Article  CAS  Google Scholar 

  • Dauterman WC (1985) Insect metabolism: extramicrosomal. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 12. Pergamon Press, New York, pp 713–730.

    Google Scholar 

  • Ding VDH, Pickett CB (1985) Transcriptional regulation of rat liver glutathione S-transferase genes by phenobarbital and 3-methylcholanthrene. Arch Biochem Biophys 240:553–559.

    Article  PubMed  CAS  Google Scholar 

  • Feng QL, Davey KG, Pang ASD, Primavera M, Ladd TR, Zheng SC, Sohi SS, Retnakara A, Palli SR (1999) Glutathione S-transferase from the spruce budworm, Choristoneura fumiferana: identification, characterization, localization, cDNA cloning, and expression. Insect Biochem Mol Biol 29:779–793.

    Article  PubMed  CAS  Google Scholar 

  • Fournier D, Bride JM, Poirie M, Berge JB, Plapp FW Jr (1992) Insect glutathione S-transferases: biochemical characteristics of the major forms from housefly susceptible and resistant to insecticides. J Biochem Chem 167:1840–1845.

    Google Scholar 

  • Fukami J, Shishido T (1966) Nature of a soluble glutathione-dependent enzyme system active in cleavage of methyl parathion to desmethyl parathion. J Econ Entomol 59:1338–1352.

    PubMed  CAS  Google Scholar 

  • Grant DF (1991) Evolution of glutathione S-transferase subunits in culicidae and related nematocera: electrophoretic and immunological evidence for conserved enzyme structure and expression. Insect Biochem 21:435–445.

    Article  CAS  Google Scholar 

  • Hemingway J, Malcolm CA, Kissoon KE, Boddington RB, Curtis CF, Hill N (1985) The biochemistry of insecticide resistance in Anopheles sacharovi: comparative studies with a range of insecticide susceptible and resistant Anopheles and Culex species. Pestic Biochem Physiol 24:68–76.

    Article  CAS  Google Scholar 

  • Huang SY (1998) Molecular cloning of a gluathione S-transferase gene involved in insecticide resistance in the diamondback moth, Plutella xylostella (L.).MS Thesis, National Chung—Hsing University, Taichung, 57 pp.

    Google Scholar 

  • Huang HS, Hu NT, Yao YE, Wu CY, Chiang SW, Sun CN (1998) Molecular cloning and heterologous expression of a glutathione S-transferase involved in insecticide resistance from the diamondback moth, Plutella xylostella. Insect Biochem Mol Biol 28:651–658.

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa T (1992) The ATP-dependent glutathione S-conjugate export pump. Trends Biochem Sci 17:463–468.

    Article  PubMed  CAS  Google Scholar 

  • Kao CN, Sun CN (1991) In vitro degradation of some organophosphorus insecticides by susceptible and resistant diamondback moths. Pestic Biochem Physiol 41:132–141.

    Article  CAS  Google Scholar 

  • Ku CC, Chiang FM, Hsin CY, Yao YE, Sun CN (1994) Glutathione transferase isozymes involved in insecticide resistance of diamondback moth larvae. Pestic Biochem Physiol 50:191–197.

    Article  CAS  Google Scholar 

  • Lewis JB (1969) Detoxication of diazinon by subcellular fractions of diazinon-resistant and susceptible houseflies. Nature 22:917–919.

    Article  Google Scholar 

  • Lewis JB, Sawicki RM (1971) Characterization of the resistance mechanism to diazinon, parathion and diazoxon in the organophosphorus-resistant SKA strain of houseflies (Musca domestica L.). Pestic Biochem Physiol 1:275–285.

    Article  CAS  Google Scholar 

  • Lolah JO, Chien CI, Motoyama N, Dauterman WC (1995) Glutathione S-transferases: a-naphthyl acetate activity and possible role in insecticide resistance. J Econ Entomol 88:768–779.

    Google Scholar 

  • Lougarre A, Bride JM, Fournier D (1999) Is the insect glutathione S-transferase I gene family intronless? Insect Mol Biol 8:141–143.

    Article  PubMed  CAS  Google Scholar 

  • Mannervik B, Danielson UH (1988) Glutathione transferase: structure and catalytic activity. CRC Crit Rev Biochem 23:281–334.

    Article  Google Scholar 

  • Motoyama N (1982) Characterization of glutathione S-transferases in relation to azinphosmethyl resistance. J Pestic Sci 7:415–425.

    CAS  Google Scholar 

  • Motoyama N, Dauterman WC (1980) Glutathione S-transferases: their role in the metabolism of organophosphorus insecticides. Rev Biochem Toxicol 2:49–69.

    CAS  Google Scholar 

  • Oppenoorth FJ (1985) Biochemistry and genetics of insecticide resistance. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 12. Pergamon Press, New York, pp 731–773.

    Google Scholar 

  • Oppenoorth FJ, Smissaert HR, Welling W, van der Pass LJT, Hitman KT (1977) Insensitive acetylcholinesterase, high glutathione S-transferase, and hydrolytic activity as resistance factors in a tetrachlorvinphos-resistant strain of housefly. Pestic Biochem Physiol 11:176–188.

    Article  Google Scholar 

  • Prapanthadara L, Hemingway J, Ketterman AJ (1995) DDT-resistance in Anopheles gambiae (Diptera: Culicidae) from Zanzibar, Tanzania, based on increased DDT-dehydrochlorinase activity of glutathione S-transferases. Bull Entomol Res 85:267–274.

    Article  CAS  Google Scholar 

  • Ranson H, Prapanthadara, L, Hemingway J (1997) Cloning and characterization of two glutathione S-transferases from a DDT-resistant strain ofAnopheles gambiae. Biochem J 324:97–102.

    PubMed  CAS  Google Scholar 

  • Ranson H, Collins, R, Hemingway J (1998) The role of alternative mRNA splicing in generating heterogeneity within the Anopheles gambiae class I glutathione S-transferase family. Proc Natl Acad Sci USA 95:14284–14289.

    Article  PubMed  CAS  Google Scholar 

  • Reiss RA, James AA (1993) A glutathione S-transferase gene of the vector mosquito, Anopheles gambiae. Insect Mol Biol 2:25–32.

    Article  PubMed  CAS  Google Scholar 

  • Scott JG (1999) Cytochrome P450 and insecticide resistance. Insect Biochem Mol Biol 29:757–777.

    Article  PubMed  CAS  Google Scholar 

  • Shishido T, Usui K, Sat M, Fukami J (1972) Enzymatic conjugation of diazinon with glutathione in rat and American cockroach. Pestic Biochem Physiol 2:51–63.

    Article  CAS  Google Scholar 

  • Sun CN (1992) Insecticide resistance in diamondback moth. In: Talekar NS (ed) Management of diamondback moth and other cruciferous pests. Proceedings of the 2nd International Workshop, Asian Vegetable Research and Development Center, Shanghua, pp 419–426.

    Google Scholar 

  • Sun CN, Tsai YC, Chiang FM (1992) Resistance in the diamondback moth to pyrethroids and benzoylphenylureas. In: Mullin CA, Scott JG (eds) Molecular mechanisms of insecticide resistance. Diversity among insects. American Chemical Society, Washington, DC, pp 149–167.

    Chapter  Google Scholar 

  • Synanen M, Zhou ZH, Wang JY (1994) Glutathione transferase gene family from the housefly Musca domestica. Mol Gen Genet 245:25–31.

    Article  Google Scholar 

  • Syvanen M, Zhou Z, Wharton J, Goldsbury C, Clark A (1996) Heterogeneity of the glutathione transferase genes encoding enzymes responsible for insecticide degradation in the housefly. J Mol Evol 43:236–240.

    Article  PubMed  CAS  Google Scholar 

  • Tabashnik BE (1994) Evolution of resistance to Bacillus thuringiensis. Annu Rev Entomol 39:47–80

    Article  Google Scholar 

  • Talekar NS, Shelton AM (1995) Biology, ecology and management of the diamondback moth. Annu Rev Entomol 38:275–302

    Article  Google Scholar 

  • Tang AN, Tu CDP (1994) Biochemical characterization of Drosophila glutathione S-transferases D1 and D21. J Biol Chem 269:27876–27884.

    Google Scholar 

  • Tang AH, Tu CDP (1995) Pentobarbital-induced changes in Drosophila glutathione S-transferase D21 mRNA stability. J Biol Chem 270:13819–13825.

    Article  PubMed  CAS  Google Scholar 

  • Toung YPS, Hsieh TS, Tu CPD (1991) The Drosophila glutathione S-transferase 1–1 is encoded by an intronless gene at 87B. Biochem Biophys Res Commun 178:1205–1211.

    Article  PubMed  CAS  Google Scholar 

  • Toung YPS, Hsieh TS, Tu CPD (1993) The glutathione S-transferase D genes. A divergently organized, intronless gene family in Drosophila melanogaster. J Biol Chem 268:9737–9746.

    PubMed  CAS  Google Scholar 

  • Wang JY, McCommas S, Syvanen M (1991) Molecular cloning of a glutathione S-transferase over-produced in an insecticide-resistant strain of the housefly (Musca domestica). Mol Gen Genet 227:260–266.

    Article  PubMed  CAS  Google Scholar 

  • Wilce MCJ, Parker MW (1994) Structure and function of glutathione S-transferases. Biochim Biophys Acta 1205:1–18.

    Article  PubMed  CAS  Google Scholar 

  • Wilce MCJ, Board PG, Feil SC, Parker MW (1995) Crystal structure of a theta-class glutathione transferase. EMBO J 14:2133–2143.

    PubMed  CAS  Google Scholar 

  • Yang RSH, Hodgson E, Dauterman WC (1971) Metabolism in vitro of diazinon and diazoxon in susceptible and resistant houseflies. J Agric Food Chem 19:14–19.

    Article  CAS  Google Scholar 

  • Yu SJ (1982) Host plant induction of glutathione S-transferase in the fall armyworm. Pestic Biochem Physiol 18:101–106.

    Article  CAS  Google Scholar 

  • Yu SJ (1989) Purification and characterization of glutathione transferases from five phytophagous Lepidoptera. Pestic Biochem Physiol 35:97–105.

    Article  CAS  Google Scholar 

  • Yu SJ (1992) Plant-allelochemical-adapted glutathione transferases in Lepidoptera. In: Mullin CA, Scott JG (eds) Molecular mechanisms of insect resistance. Diversity among insects. American Chemical Society, Washington, DC, pp 174–190.

    Chapter  Google Scholar 

  • Yu SJ (1996) Insect glutathione S-transferases. Zool Stud 35:9–19.

    CAS  Google Scholar 

  • Yu SJ (1999) Induction of new glutathione S-transferase isozymes by allelochemicals in the fall armyworm. Pestic Biochem Physiol 63:163–171.

    Article  CAS  Google Scholar 

  • Yu SJ, Hsu EL (1993) Induction of detoxification enzymes in phytophagous insects: roles of insecticide synergists, larvae age and species. Arch Insect Biochem Physiol 24:21–32.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Sun, CN., Huang, SY., Hu, NT., Chung, WY. (2001). Glutathione S-Transferases and Insect Resistance to Insecticides. In: Ishaaya, I. (eds) Biochemical Sites of Insecticide Action and Resistance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59549-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59549-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67625-6

  • Online ISBN: 978-3-642-59549-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics