Skip to main content

Ecophysiology of Antarctic marine ectotherms: limits to life

  • Chapter
Ecological Studies in the Antarctic Sea Ice Zone

Abstract

The ecophysiology of Antarctic marine ectotherms is an area of active research. This review of recent progress covers metabolism, mitochondrial function, aerobic scope, growth and development. Energetics is shown to be a central feature of adaptation to temperature, with mitochondrial function and tissue oxygen supply important in setting limits to organismal size and performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ansell AD, Peck LS (2000) Burrowing in the Antarctic anemone Edwardsia heilcampoides. J Exp Mar Biol Ecol 252 (l): 45 – 55

    Article  PubMed  Google Scholar 

  • Archer SD, Johnston IA (1991) Density of cristae and distribution of mitochondria in the slow muscles of Antarctic fish. Physiol Zool 64: 242 – 258

    Google Scholar 

  • Arntz WE, Brey T, Gallardo VA (1994) Antarctic zoobenthos. Oceanogr Mar Biol Annu Rev 32: 241 – 304

    Google Scholar 

  • Barnes DKA (1995) Seasonal and annual growth in erect species of Antarctic bryozoans. J Exp Mar Biol Ecol 188: 181 – 198

    Article  Google Scholar 

  • Blier PU, Guderley HE (1993) Effects of pH and temperature on the kinetics of pyruvate oxidation by muscle mitochondria from rainbow trout (Oncorhynchus mykiss). Physiol Zool 66: 474 – 489

    CAS  Google Scholar 

  • Bosch I, Beauchamp KA, Steele ME, Pearse JS (1987) Development, metamorphosis and seasonal abundance of embryos and larvae of the Antarctic sea urchin Sterechinus neumayeri. Biol Bull 173: 126 – 135

    Article  Google Scholar 

  • Branch GM, Marsh AC (1978) Tenacity and shell shape in six Patellaspecies: adaptive features. J Exp Mar Biol Ecol 34: 111 – 130

    Article  Google Scholar 

  • Brockington S (2001) Ecology and physiology of S. neumayeriat Adelaide Island, Antarctica. PhD thesis, Open University, Milton Keynes

    Google Scholar 

  • Chapelle G, Peck LS (1995) The influence of acclimation and substratum on the metabolism of the amphipod Waldeckia obesa(Chevreux 1905) and Bovallia gigantea(Pfeffer 1888). Polar Biol 15: 225 – 232

    Article  Google Scholar 

  • Chapelle G, Peck LS (1999) Polar gigantism and oxygen. Nature 399: 114 – 115

    Article  CAS  Google Scholar 

  • Clarke A (1980) A reappraisal of the concept of metabolic cold adaptation in polar marine invertebrates. Biol J Linn Soc 14: 77 – 92

    Article  Google Scholar 

  • Clarke A (1983) Life in cold water: the physiological ecology of polar marine ectotherms. Oceanogr Mar Biol Annu Rev 21: 341 – 453

    Google Scholar 

  • Clarke A (1988) Seasonality in the Antarctic marine environment. Comp Biochem Physiol B 90: 461 – 473

    Article  Google Scholar 

  • Clarke A (1991a) What is cold adaptation and how should we measure it? Am Zool 31: 81 – 92

    Google Scholar 

  • Clarke A (1991b) Cold adaptation. J Zool 225: 691 – 699

    Google Scholar 

  • Clarke A (1998) Temperature and energetics: an introduction to cold ocean physiology. In: Portner HO, Playle R (eds) Cold ocean physiology. Cambridge University Press, Cambridge, pp 3 – 30

    Google Scholar 

  • Clarke A, Johnston N (1999) Scaling of metabolic rate and temperature in teleost fish. J Anim Ecol 68: 893 – 905

    Article  Google Scholar 

  • Clarke A, Peck LS (1991) The physiology of polar marine zooplankton. In: Sakshaug E, Hopkins CCE, Øritsland NA (eds) Proceedings of the Pro-Mare symposium on polar marine ecology, Trondheim. Polar Res 10: 355 – 369

    Google Scholar 

  • Clarke A, Prothero-Thomas E (1997) The effect of feeding on oxygen consumption and nitrogen excretion of the Antarctic nemertean Parborlasia corrugatus. Physiol Zool 70: 639 – 649

    PubMed  CAS  Google Scholar 

  • Davenport J (1988). Tenacity of the Antarctic limpet Nacella concinna. J Moll Stud 54: 355 – 356

    Article  Google Scholar 

  • Davenport J (1997). Comparisons of the biology of the intertidal subantarctic limpets Nacella concinnaand Kerguelenella lateralis. J Molluscan Stud 63: 39 – 48

    Article  Google Scholar 

  • Dayton PK, Newman WA, Paine RT, Dayton LB (1974) Ecological accommodation in the benthic community at McMurdo Sound, Antarctica. Ecol Monogr 44: 105 – 128

    Article  Google Scholar 

  • Dijk PLM van, Hardewig I, Pörtner H (1998) Exercise in the cold: high energy turnover in Antarctic fish. In: Prisco G di, Pisano E, Clarke A (eds) Fishes of Antarctica. A biological overview. Springer, Milan, pp 225 – 236

    Google Scholar 

  • Dijk PLM van, Tesch C, Hardewig I, Pörtner H (1999) Physiological disturbances at critically high temperatures. A comparison between stenothermal Antarctic, and eurythermal temperate eelpouts (Zoarcidae). J Exp Biol 202: 3611 – 3621

    PubMed  Google Scholar 

  • Eastman J (1993) Antarctic fish biology. Academic Press, San Diego

    Google Scholar 

  • Egginton S, Davison W (1998) Effects of environmental and experimental stress on Antarctic fish. In: Pörtner HO, Playle R (eds) Cold ocean physiology. Cambridge University Press, Cambridge, pp 299 – 326

    Google Scholar 

  • Everson I (1977) Antarctic marine secondary production and the phenomenon of cold adaptation. Philos Trans R Soc Lond Ser B 279: 55 – 66

    Article  Google Scholar 

  • Forster ME, Franklin CE, Taylor HH, Davison W (1991) The aerobic scope of an Antarctic fish, Pagothenia borchgrevinkiand its significance for metabolic cold adaptation. Polar Biol 8: 155 – 159

    Article  Google Scholar 

  • Fox HM (1936) The activity and metabolism of poikilothermic animals in different latitudes, I. Proc Zool Soc Lond 1936: 945 – 955

    Google Scholar 

  • Guderley H (1998). Temperature and growth rates as modulators of the metabolic capacities of fish muscle. In: Pörtner HO, Playle R (eds) Cold ocean physiology. Cambridge University Press, Cambridge, 58 – 87

    Google Scholar 

  • Hain S (1991) Life maintenance of benthic mollusks from the Eastern Weddell Sea, Antarctica. Proceedings of the 10th International Malacological Congress, Tübingen 1989, pp 339 – 341

    Google Scholar 

  • Hardewig I, van Dijk PLM, Pörtner HO (1998) High energy turnover at low temperatures: recovery from exercise in antarctic and common eelpout (Zoarcidae). Am J Physiol 274: R1789 – 1796

    PubMed  CAS  Google Scholar 

  • Hoegh-Guldberg O, Pearse JS (1995) Temperature, food availability and the development of marine invertebrate larvae. Am Zool 35: 415 – 125

    Google Scholar 

  • Holeton GF (1974) Metabolic cold adaptation of polar fish: fact or artefact? Physiol Zool 47: 137 – 152

    Google Scholar 

  • Hubley MJ, Locke BR, Moerland TS (1997) Reaction-diffusion analysis of the effects of temperature on high-energy phosphate dynamics in goldfish skeletal muscle. J Exp Biol 200: 975 – 988

    PubMed  CAS  Google Scholar 

  • Ikeda T (1974) Nutritional ecology of marine zooplankton. Mem Fac Fish Hokkaido Univ 22: 1 – 97

    Google Scholar 

  • Ivleva IV (1980) The dependence of crustacean respiration on body mass and habitat temperature. Int Rev Ges Hydrobiol 65: 1 – 47

    Article  Google Scholar 

  • Jobling M (1994) Fish bioenergetics. Chapman & Hall, London

    Google Scholar 

  • Johnston IA (1982) Quantitative analyses of ultrastructure and vascularisation of the slow muscle of the anchovy. Tissue Cell 14: 319 – 328

    Article  PubMed  CAS  Google Scholar 

  • Johnston I A, Battram J (1993) Feeding energetics and metabolism in demersal fish species from Antarctic, temperate and tropical environments. Mar Biol 115: 7 – 14

    Article  Google Scholar 

  • Johnston IA, Camm JP, White MG (1988) Specialisations of swimming muscles in the pelagic Antarctic fish Pleuragramma antarcticum. Mar Biol 100: 3 – 12

    Article  Google Scholar 

  • Johnston I A, Clarke A, Ward P (1991a) Temperature and metabolic rate in sedentary fish from the Antarctic, North Sea and Indo-West Pacific Ocean. Mar Biol 109: 191 – 195

    Article  Google Scholar 

  • Johnston I A, Johnson TP, Battram JC (1991b) Low temperature limits burst swimming performance in Antarctic fish. In: Prisco G di, Maresca B, Tota B (eds) Biology of Antarctic fish. Springer, Berlin Heidelberg New York, pp 179 – 190

    Google Scholar 

  • Johnston IA, Guderley HE, Franklin CE, Crockford T, Kamunde C (1994) Are mitochondria subject to evolutionary temperature adaptation? J Exp Biol 195: 293 – 306

    PubMed  Google Scholar 

  • Johnston IA, Calvo J, Guderley H, Fernandez D, Palmer L (1998) Latitudinal variation in the abundance and oxidative capacities of muscle mitochondria in perciform fishes. J Exp Biol 201: 1 – 12

    PubMed  CAS  Google Scholar 

  • Johnson TP, Bennet AF (1995) The thermal acclimation of burst escape performance in fish: an integrated study of molecular and cellular physiology and organismal performance. J Exp Biol 198: 2165 – 2175

    PubMed  Google Scholar 

  • Klages M (1993) Biology of the Antarctic gammaridean amphipod Eusirus perdentatusChevreux, 1912 (Crustacea: Amphipoda): distribution, reproduction and population dynamics. Antarct Sci 5: 349 – 359

    Article  Google Scholar 

  • Krogh A (1916) Respiratory exchange of animals and man. Longmans, London

    Google Scholar 

  • Moyes CD, Mathieu-Costello OA, Brill RW, Hochachka PW (1992) Mitochondrial metabolism of cardiac and skeletal muscles from a fast (Katsuwonas pelamis) and a slow (Cyprinus carpio) fish. Can J Zool 70: 1246 – 1253

    Article  CAS  Google Scholar 

  • Pearse JS (1962) Early development of the Antarctic asteroid Odontaster validusKoehler. Am Zool 2: 436

    Google Scholar 

  • Pearse JS (1965) Reproductive periodicities in several contrasting populations of Odontaster validusKoehler, a common antarctic asteroid. (Biology of the Antarctic seas, 2) Antarct Res Ser 5: 39 – 85

    Google Scholar 

  • Peck LS (1989) Temperature and basal metabolism in two Antarctic marine herbivores. J Exp Mar Biol Ecol 127: 1 – 12

    Article  Google Scholar 

  • Peck LS (1993) Larval development in the Antarctic nemertean Parborlasia corrugatus(Heteronemertea: Lineidae). Mar Biol 116: 301 – 310

    Article  Google Scholar 

  • Peck LS (1996) Metabolism and feeding in the Antarctic brachiopod Liothyrella uva: a low energy lifestyle species with restricted metabolic scope. Proc R Soc Lond Ser B 263: 223 – 228

    Article  CAS  Google Scholar 

  • Peck LS (1998) Feeding, metabolism and metabolic scope in Antarctic marine ectotherms. In: Pörtner HO, Playle R (eds) Cold ocean physiology. Cambridge University Press, Cambridge, pp 365 – 390

    Google Scholar 

  • Peck LS, Conway LZ (2000) The myth of metabolic cold adaptation: oxygen consumption in stenothermal Antarctic bivalves. In: Harper E, Crame AJ (eds) The evolutionary biology of bivalve molluscs. Cambridge University Press, Cambridge, pp 441 – 450

    Google Scholar 

  • Peck LS, Holmes LJ (1989) Seasonal and ontogenetic changes in tissue size in the Antarctic brachiopod Liothyrella uva(Broderip, 1833). J Exp Mar Biol Ecol 134: 25 – 36

    Article  Google Scholar 

  • Peck LS, Robinson K (1994) Pelagic larval development in the brooding Antarctic brachiopod Liothyrella uva. Mar Biol 120: 279 – 286

    Article  Google Scholar 

  • Peck LS, Prothero-Thomas E, Hough N (1993) Pedal mucus production by the Antarctic limpet Nacella concinna(Strebel, 1908). J Exp Mar Biol Ecol 174: 177 – 192

    Article  Google Scholar 

  • Peck LS, Brockington S, Brey T (1997) Growth and metabolism in the Antarctic brachiopod Liothyrella uva. Philos Trans R Soc Lond Ser B 352: 851 – 858

    Article  Google Scholar 

  • Peck LS, Colman J, Murray AWA (2000) Growth and tissue mass cycles in the infaunal bivalve Yoldia eightsiat Signy Island, Antarctica. Polar Biol 23: 420 – 428

    Article  Google Scholar 

  • Picken GB (1980) The distribution, growth and reproduction of the Antarctic limpet Nacella (Patinigera) concinna. (Strebel, 1908). J Exp Mar Biol Ecol 42: 71 – 85

    Article  Google Scholar 

  • Pörtner HO, Hardewig I, Sartoris FJ, Dijk P van (1998) Energetic aspects of cold adaptation: critical temperatures in metabolic, ionic and acid base regulation? In: Pörtner HO, Playle R (eds) Cold ocean physiology. Cambridge University Press, Cambridge, pp 88 – 120

    Google Scholar 

  • Pörtner HO, Peck LS, Zielinski S, Conway LZ (1999a) Intracellular pH and energy metabolism in the highly stenothermal Antarctic bivalve Limopsis marionensisas a function of ambient temperature. Polar Biol 22: 17 – 30

    Article  Google Scholar 

  • Pörtner HO, Hardewig I, Peck LS (1999b) Mitochondrial function and critical temperature in the Antarctic bivalve Laternula elliptica. Comp Biochem Physiol A 124: 179 – 189

    Article  Google Scholar 

  • Pörtner HO, Hardewig I, Peck LS (1999b) Mitochondrial function and critical temperature in the Antarctic bivalve Laternula elliptica. Comp Biochem Physiol A 124: 179 – 189

    Article  Google Scholar 

  • Precht H, Christophersen J, Hensel H (1955) Temperatur und Leben. Springer, Berlin Heidelberg New York, 514 pp

    Google Scholar 

  • Prosser CL (1958). General summary: the nature of physiological adaptation. In: Prosser CL (ed) Physiological adaptation. American Physiology Society, Washington, pp 167 – 180

    Google Scholar 

  • Rauschert M (1991) Ergebnisse der faunistischen Arbeiten im Benthal von King George Island (Südshetlandinseln, Antarktis). Ber Polarforsch 76: 1 – 75

    Google Scholar 

  • Scholander PF, Flagg W, Walters V, Irving L (1953) Climatic adaptation in Arctic and tropical poikilotherms. Physiol Zool 26: 67 – 92

    Google Scholar 

  • Somero GN, DeVries AL (1967) Temperature tolerance of some Antarctic fishes. Science 156: 257 – 258

    Article  PubMed  CAS  Google Scholar 

  • Somero GN, Fields PA, Hofmann GE, Weinstein RB, Kawall H (1998) Cold adaptation and stenothermy in Antarctic notothenioid fishes: what has been gained and what has been lost? In: Prisco G di, Pisano E, Clarke A (eds) Fishes of Antarctica. A biological overview, Springer, Milan, pp 97 – 109

    Google Scholar 

  • Sommer A, Pörtner HO (1999) Exposure of Arenicola marina(L.) to extreme temperatures: adaptive flexibility of a boreal and subpolar population. Mar Ecol Prog Ser 181: 215 – 226

    Article  Google Scholar 

  • Sommer A, Klein B, Pörtner HO (1997) Temperature induced anaerobiosis in two populations of the polychaete worm Arenicola marina. J Comp Physiol B 167: 25 – 35

    Article  Google Scholar 

  • Stanwell-Smith DP, Peck LS (1998) Temperature and embryonic development in relation to spawning and field occurrence of larvae of three Antarctic echinoderms. Biol Bull (Woods Hole) 194: 44 – 52

    Article  Google Scholar 

  • Thorson G (1936) The larval development, growth and metabolism of Arctic marine bottom invertebrates compared with those of other seas. Medd Groen 100: 1 – 155

    Google Scholar 

  • Tyler S, Sidell BD (1984) Changes in mitochondrial disruption and diffusion distances in muscle of goldfish on acclimation to warm and cold temperatures. J Exp Zool 232: 1 – 9

    Article  Google Scholar 

  • Weinstein RB, Somero GN (1998) Effects of temperature on mitochondrial function in the Antarctic fish Trematomus bernachii. J Comp Physiol 168: 190 – 196

    CAS  Google Scholar 

  • Wells RMG (1987) Respiration of Antarctic fishes from McMurdo Sound. Comp Biochem Physiol A 88: 417 – 124

    Article  PubMed  CAS  Google Scholar 

  • White MG (1984) Marine benthos. In: Laws RM (ed) Antarctic ecology, vol 2. Academic Press, London, pp 421 – 461

    Google Scholar 

  • Wohlschlag DE (1964) Respiratory metabolism and ecological characteristics of some fishes in McMurdo Sound, Antarctica. Antarct Res Ser Am Geophys Union 1: 33 – 62

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Peck, L.S. (2002). Ecophysiology of Antarctic marine ectotherms: limits to life. In: Arntz, W.E., Clarke, A. (eds) Ecological Studies in the Antarctic Sea Ice Zone. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59419-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59419-9_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63973-9

  • Online ISBN: 978-3-642-59419-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics