Skip to main content

Dynamic Mapping of Alzheimer’s Disease

  • Conference paper
The Living Brain and Alzheimer’s Disease

Summary

Neuroimaging strategies to track Alzheimer’s disease are greatly accelerating our understanding of the disease. How early can we detect disease-related brain changes? How do these changes progress anatomically? Do drugs slow down the physical spread of the disease? Brain imaging now provides answers to some of these important questions. With recent innovations in magnetic resonance imaging (MRI) and brain image analysis, Alzheimer’s disease can be mapped dynamically as it spreads in the living brain (Reiman et al. 2001; Fox et al. 2001; Janke et al. 2001; Thompson et al. 2003a). Drug and gene effects on the disease process can be detected, both in patients and in family members at increased genetic risk. We show how these brain mapping tools help explore the dynamic processes of aging and dementia, revealing factors that affect them. As an illustrative example, we report the mapping of a dynamically spreading wave of gray matter loss in the brains of Alzheimer’s patients scanned repeatedly with MRI. The loss pattern is visualized, in 3D, as it spreads from temporal cortices into frontal and cingulate brain regions. Deficit patterns are resolved with a novel cortical pattern matching strategy (CPM). A dynamic mapping technique produces color-coded image sequences that reveal the disease spreading in the human cortex over a period of several years. The trajectory of cortical deficits, observed here in vivo with MRI, corresponded closely to the spread of the underlying pathology (as defined by the well-known Braak stages of neurofibrillary tangle and beta-amyloid accumulation). The magnitude of these deficits was also tightly linked with cognitive decline. In initial studies, these maps detected disease effects more sensitively than conventional cortical anatomic volume measures. By storing these dynamic brain maps in a growing, population-based digital atlas (N>1000 subjects), clinical imaging data can be analyzed on a large scale, adjusting for effects of age, sex, genotype, and disease subtypes. These maps chart the dynamic progress of Alzheimer’s disease and reveal a changing pattern of cortical deficits. We are now using them to detect where deficit patterns are modified by drug treatment and known risk genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnold SE, Hyman BT, Flory J, Damasio AR, Van Hoesen GW (1991) The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cereb Cortex 1: 103–116

    PubMed  CAS  Google Scholar 

  • Ashburner J, Friston KJ (2000) Voxel-based morphometry-the methods. Neuroimage 11, 6: 805–821

    PubMed  CAS  Google Scholar 

  • Ashburner J, Csernansky J, Davatzikos C, Fox NC, Frisoni G, Thompson PM (2003) Computer-assisted imaging to assess brain structure in healthy and diseased brains. Lancet Neurol 2: 79–88

    PubMed  Google Scholar 

  • Baron JC, Chetelat G, Desgranges B, Perchey G, Landeau B, de la Sayette V, Eustache F (2001) In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer’s disease. Neuroimage 14: 298–309

    PubMed  CAS  Google Scholar 

  • Bartzokis G, Beckson M, Lu PH, Nuechterlein KH, Edwards N, Mintz J (2001) Age-related changes in frontal and temporal lobe volumes in men: a magnetic resonance imaging study. Arch Gen Psychiatry 58: 461–465

    PubMed  CAS  Google Scholar 

  • Black SE (1999) The search for diagnostic and progression markers in AD: so near but still too far? Neurology 52: 1533–1534

    PubMed  CAS  Google Scholar 

  • Braak H, Braak E (1997) Staging of Alzheimer-related cortical destruction. Int Psychogeriatr 9 Suppl 1:257–261; discussion 269–272

    PubMed  Google Scholar 

  • Bradley KM, Bydder GM, Budge MM, Hajnal JV, White SJ, Ripley BD, Smith AD (2002). Serial brain MRI at 3–6 month intervals as a surrogate marker for Alzheimer’s disease. Br J Radiol 75: 506–13

    PubMed  CAS  Google Scholar 

  • Brun A, Englund E (1981) Regional pattern of degeneration in Alzheimer’s disease: Neuronal loss and histopathologic grading, Histopathology 5: 549–564

    PubMed  CAS  Google Scholar 

  • Bullmore ET, Suckling J, Overmeyer S, Rabe-Hesketh S, Taylor E, Brammer MJ (1999) Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain. IEEE Trans Med Imag 18: 32–42

    CAS  Google Scholar 

  • Burton EJ, Karas G, Paling SM, Barber R, Williams ED, Ballard CG, McKeith IG, Scheltens P, Barkhof F, O’Brien JT (2002) Patterns of cerebral atrophy in dementia with Lewy bodies using voxel-based morphometry. Neuroimage. 17: 618–630

    PubMed  CAS  Google Scholar 

  • Chan D, Fox NC, Jenkins R, Scahill RI, Crum WR, Rossor MN (2001) Rates of global and regional cerebral atrophy in AD and frontotemporal dementia. Neurology 57: 1756–1763

    PubMed  CAS  Google Scholar 

  • Chetelat G, Baron JC (2003). Early diagnosis of Alzheimer’s disease: contribution of structural neuroimaging. Neuroimage 18: 525–541

    PubMed  Google Scholar 

  • Convit A, de Asis J, de Leon MJ, Tarshish CY, De Santi S, Rusinek H (2000) Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in non-demented elderly predict decline to Alzheimer’s disease. Neurobiol Aging 21: 19–26

    PubMed  CAS  Google Scholar 

  • Crum WR, Scahill RI, Fox NC (2001) Automated hippocampal segmentation by regional fluid registration of serial MRI: validation and application in Alzheimer’s disease. Neuroimage 13: 847–855

    PubMed  CAS  Google Scholar 

  • Csernansky JG, Wang L, Joshi S, Miller JP, Gado M, Kido D, McKeel D, Morris JC, Miller MI (2000) Early DAT is distinguished from aging by high-dimensional mapping of the hippo-campus. Dementia of the Alzheimer type. Neurology 55: 1636–1643

    PubMed  CAS  Google Scholar 

  • Cuénod CA, Denys A, Michot JL, Jehenson P, Forette F, Kaplan D, Syrota A, Boller F (1993) Amygdala atrophy in Alzheimer’s disease. An in vivo magnetic resonance imaging study. Arch Neurol 50: 941–945

    PubMed  Google Scholar 

  • Davatzikos C, Genc A, Xu D, Resnick SM (2001) Voxel-based morphometry using the RAVENS maps: methods and validation using simulated longitudinal atrophy. Neuroimage. 14: 1361–1369

    PubMed  CAS  Google Scholar 

  • Davatzikos C, Resnick SM (2002) Degenerative age changes in white matter connectivity visualized in vivo using magnetic resonance imaging. Cereb Cortex, 12: 767–771

    PubMed  Google Scholar 

  • de Brabander JM, Kramers RJ, Uylings HB (1998) Layer-specific dendritic regression of pyramidal cells with aging in the human prefrontal cortex. Eur J Neurosci 10: 1261–1269

    PubMed  Google Scholar 

  • De La Monte SM (1989) Quantitation of cerebral atrophy in preclinical and end-stage Alzheimer’s disease. Ann Neurol 25: 450–459

    PubMed  Google Scholar 

  • De Leon MJ, George AE, Golomb J, Tarshish C, Convit A, Kluger A, De Santi S, McRae T, Ferris SH, Reisberg B, Ince C, Rusinek H, Bobinski M, Quinn B, Miller DC, Wisniewski HM (1997) Frequency of hippocampal formation atrophy in normal aging and Alzheimer’s disease. Neurobiol Aging 18: 1–11

    PubMed  Google Scholar 

  • Delacourte A, David JP, Sergeant N, Buee L, Wattez A, Vermersch P, Ghozali F, Fallet-Bianco C, Pasquier F, Lebert F, Petit H, Di Menza C (1999) The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer’s disease. Neurology 52: 1158–1165

    PubMed  CAS  Google Scholar 

  • Dickerson BC, Goncharova I, Sullivan MP, Forchetti C, Wilson RS, Bennett DA, Beckett LA, deToledo-Morrell L (2001) MRI-derived entorhinal and hippocampal atrophy in incipient and very mild Alzheimer’s disease. Neurobiol Aging 22: 747–754

    PubMed  CAS  Google Scholar 

  • Du AT, Schuff N, Amend D, Laakso MP, Hsu YY, Jagust WJ, Yaffe K, Kramer JH, Reed B, Norman D, Chui HC, Weiner MW (2001) Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer’s disease. J Neurol Neurosurg Psychiat 71: 441–447

    PubMed  CAS  Google Scholar 

  • Fischl B, Sereno MI, Tootell RBH, Dale AM (1999) High-resolution inter-subject averaging and a coordinate system for the cortical surface. Human Brain Mapp 8: 272–84

    CAS  Google Scholar 

  • Flood DG, Buell SJ, Horwitz GJ, Coleman PD (1987) Dendritic extent in human dentate gyrus granule cells in normal aging and senile dementia. Brain Res 402: 205–216

    PubMed  CAS  Google Scholar 

  • Folstein MF, Folstein SE, McHugh PR (1975) `Mini mental state’: a practical method of grading the cognitive state of patients for the clinician. J Psychiat Res 12:189–198

    Google Scholar 

  • Forette F, Seux ML, Staessen JA, Thijs L, Babarskiene MR, Babeanu S, Bossini A, Fagard R, Gil-Extremera B, Laks T, Kobalava Z, Sarti C, Tuomilehto J, Vanhanen H, Webster J, Yodfat Y, Birkenhager WH. (2002) The prevention of dementia with antihypertensive treatment: new evidence from the systolic hypertension in Europe (syst-eur) study. Arch Intern Med 162: 2046–2052

    PubMed  Google Scholar 

  • Fox NC, Freeborough PA (1997) Brain atrophy progression measured from registered serial MRI: validation and application to Alzheimer’s disease. J Magn Reson Imag 7: 1069–1075

    CAS  Google Scholar 

  • Fox NC, Freeborough PA, Rossor MN (1996) Visualisation and quantification of rates of atrophy in Alzheimer’s disease. Lancet 348: 94–97

    PubMed  CAS  Google Scholar 

  • Fox NC, Cousens S, Scahill R, Harvey RJ, Rossor MN (2000) Using serial registered brain magnetic resonance imaging to measure disease progression in Alzheimer disease: power calculations and estimates of sample size to detect treatment effects. Arch Neurol 57: 339–344

    PubMed  CAS  Google Scholar 

  • Fox NC, Crum WR, Scahill RI, Stevens JM, Janssen JC, Rossor MN (2001) Imaging of onset and progression of Alzheimer’s disease with voxel-compression mapping of serial magnetic resonance images. Lancet 358: 201–205

    PubMed  CAS  Google Scholar 

  • Friedland RP, Luxenberg J (1988) Neuroimaging and dementia. In: Theodore WH (ed) Clinical neuroimaging: frontiers in clinical neuroscience. Vol. 4. New York, Allan Liss, pp 139–163

    Google Scholar 

  • Frisoni GB, Laakso MP, Beltramello A, Geroldi C, Bianchetti A, Soininen H, Trabucchi M (1999) Hippocampal and entorhinal cortex atrophy in frontotemporal dementia and Alzheimer’s disease. Neurology 52: 91–100

    PubMed  CAS  Google Scholar 

  • Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RSJ (1995). Statistical parametric maps in functional imaging: a general linear approach. Human Brain Mapp 2: 189–210

    Google Scholar 

  • Ge Y, Grossman RI, Babb JS, Rabin ML, Mannon LJ, Kolson DL (2002) Age-related total gray matter and white matter changes in normal adult brain. part II: quantitative magnetization transfer ratio histogram analysis. Am J Neuroradiol 23: 1334–1341

    PubMed  Google Scholar 

  • Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A, Paus T, Evans AC, Rapoport JL (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nature Neurosci 2: 861–863

    PubMed  CAS  Google Scholar 

  • Gomez-Isla T, Price JL, McKeel DW Jr, Morris JC, Growdon JH, Hyman BT (1996) Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosci 16: 4491–4500

    PubMed  CAS  Google Scholar 

  • Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RSJ (2001) A voxelbased morphometric study of ageing in 465 normal adult human brains. Neuroimage 14: 2136

    Google Scholar 

  • Grenander U, Miller MI (1998) Computational anatomy: an emerging discipline. Quart Appl Math 4: 617–694

    Google Scholar 

  • Grundman M, Sencakova D, Jack CR Jr, Petersen RC, Kim HT, Schultz A, Weiner MF, DeCarli C, DeKosky ST, van Dyck C, Thomas RG, Thal LJ (2002) Alzheimer’s Disease Cooperative Study (2002). Brain MRI hippocampal volume and prediction of clinical status in a mild cognitive impairment trial. J Mol Neurosci 19: 23–27

    PubMed  CAS  Google Scholar 

  • Haller JW, Banerjee A, Christensen GE, Gado M, Joshi S, Miller MI, Sheline Y, Vannier MW, Csernansky JG (1997) Three-dimensional hippocampal MR morphometry with high-dimensional transformation of a neuroanatomic atlas. Radiology 202: 504–510

    PubMed  CAS  Google Scholar 

  • Hanks SD, Flood DG (1991) Region-specific stability of dendritic extent in normal human aging and regression in Alzheimer’s disease. I. CAl of hippocampus. Brain Res 540: 63–82

    PubMed  CAS  Google Scholar 

  • Hayashi KM, Thompson PM, Mega MS, Zoumalan CI, Dittmer S (2002) Medial hemispheric surface gyral pattern delineation in 3D: surface curve protocol. Available via Internet: http://www.loni.ucla.edu/-khayashi/Public/medial_surface/

    Google Scholar 

  • Hubbard BM, Anderson JM (1981) A quantitative study of cerebral atrophy in old age and senile dementia. J Neurol Sci 50: 135–145

    PubMed  CAS  Google Scholar 

  • Hulstaert F, Blennow K, Ivanoiu A, Schoonderwaldt HC, Riemenschneider M, De Deyn PP, Bancher C, Cras P, Wiltfang J, Mehta PD, Iqbal K, Pottel H, Vanmechelen E, Vanderstichele H (1999) Improved discrimination of AD patients using beta-amyloid (1–42) and tau levels in CSF. Neurology 52: 1555–1562

    PubMed  CAS  Google Scholar 

  • Hyman BT, Van Hoesen GW, Damasio AR (1990) Memory-related neural systems in Alzheimer’s disease: an anatomic study. Neurology 40: 1721–1730

    PubMed  CAS  Google Scholar 

  • Hyman BT, Gomez-Isla T, Rebeck GW, Briggs M, Chung H, West HL, Greenberg S, Mui S, Nichols S, Wallace R, Growdon JH (1996) Epidemiological, clinical, and neuropathological study of apolipoprotein E genotype in Alzheimer’s disease. Ann NY Acad Sci 802: 1–5

    CAS  Google Scholar 

  • Jack CR Jr, Petersen RC, O’Brien PC, Tangalos EG (1992) MR-based hippocampal volumetry in the diagnosis of Alzheimer’s disease. Neurology 42: 183–138

    PubMed  Google Scholar 

  • Jack CR Jr, Petersen RC, Xu YC, Waring SC, O’Brien PC, Tangalos EG, Smith GE, Ivnik RJ, Kok-men E (1997) Medial temporal atrophy on MRI in normal aging and very mild Alzheimer’s disease. Neurology 49: 786–794

    PubMed  Google Scholar 

  • Jack CR Jr, Petersen RC, Xu Y, O’Brien PC, Smith GE, Ivnik RJ, Tangalos EG, Kokmen E (1998) Rate of medial temporal lobe atrophy in typical aging and Alzheimer’s disease. Neurology 51: 993–999

    PubMed  Google Scholar 

  • Jack CR Jr, Petersen RC, Xu YC, O’Brien PC, Smith GE, Ivnik RJ, Boeve BF, Waring SC, Tangalos EG, Kokmen E (1999) Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 52: 1397–1403

    PubMed  Google Scholar 

  • Jack CR Jr, Petersen RC, Xu Y, O’Brien PC, Smith GE, Ivnik RJ, Boeve BF, Tangalos EG, Kokmen E (2000) Rates of hippocampal atrophy correlate with change in clinical status in aging and AD. Neurology 55: 484–489

    PubMed  Google Scholar 

  • Jack CR Jr, Slomkowski M, Gracon S, Hoover TM, Felmlee JP, Stewart K, Xu Y, Shiung M, O’Brien PC, Cha R, Knopman D, Petersen RC (2003) MRI as a biomarker of disease progression in a therapeutic trial of milameline for AD. Neurology 60: 253–260

    PubMed  Google Scholar 

  • Janke AL, Zubicaray GD, Rose SE, Griffin M, Chalk JB, Galloway GJ (2001) 4D deformation modeling of cortical disease progression in Alzheimer’s dementia. Magn Reson Med 46: 661–666

    PubMed  CAS  Google Scholar 

  • Jernigan TL, Archibald SL, Berhow MT, Sowell ER, Foster DS, Hesselink JR (1991) Cerebral structure on MRI, Part II: specific changes in Alzheimer’s and Huntington’s diseases. Biol Psychiat 29: 68–81

    PubMed  CAS  Google Scholar 

  • Jobst KA, Smith AD, Szatmari M, Molyneux A, Esiri ME, King E, Smith A, Jaskowski A, McDonald B, Wald N (1992) Detection in life of confirmed Alzheimer’s disease using a simple measurement of medial temporal lobe atrophy by computed tomography. Lancet 340: 1179–1183

    PubMed  CAS  Google Scholar 

  • Jobst KA, Smith AD, Szatmari M, Esiri MM, Jaskowski A, Hindley N, McDonald B, Molyneux AJ (1994) Rapidly progressing atrophy of medial temporal lobe in Alzheimer’s disease. Lancet 343: 829–830

    PubMed  CAS  Google Scholar 

  • Johnson KA, Jones K, Holman BL, Becker JA, Spiers PA, Satlin A, Albert MS (1998) Preclinical prediction of Alzheimer’s disease using SPECT. Neurology 50: 1563–1571

    PubMed  CAS  Google Scholar 

  • Kaye JA (2000) Methods for discerning disease-modifying effects in Alzheimer disease treatment trials. Arch Neurol 57: 312–314

    PubMed  CAS  Google Scholar 

  • Kaye J, Moore M, Kerr D, Quinn J, Camicioli R, Howieson D, Payami H, Sexton G (1999) The rate of brain volume loss accelerates as Alzheimer’s disease progresses from a presymptomatic phase to frank dementia. Neurology 52: A569 - A570

    Google Scholar 

  • Kaye JA, Swihart T, Howieson D, Dame A, Moore MM, Karnos T, Camicioli R, Ball M, Oken B, Sexton G (1997) Volume loss of the hippocampus and temporal lobe in healthy elderly persons destined to develop dementia. Neurology 48: 1297–1304

    PubMed  CAS  Google Scholar 

  • Laakso MP, Frisoni GB, Kononen M, Mikkonen M, Beltramello A, Geroldi C, Bianchetti A, Trabucchi M, Soininen H, Aronen HJ (2000a) Hippocampus and entorhinal cortex in frontotemporal dementia and Alzheimer’s disease: a morphometric MRI study. Biol Psychiat 47: 1056–1063

    CAS  Google Scholar 

  • Laakso MP, Lehtovirta M, Partanen K, Riekkinen PJ, Soininen H (2000b) Hippocampus in AD: a 3-year follow-up MRI study. Biol Psychiat 47: 557–561

    CAS  Google Scholar 

  • Malmgren R (2000) Epidemiology of aging. In: Coffey CE, Cummings JL (eds) Textbook of geriatric neuropsychiatry. Washington, D.C., American Psychiatric Press, Inc., pp. 17–31

    Google Scholar 

  • Mazziotta JC, Toga AW, Evans AC, Fox P, Lancaster J (1995) A probabilistic atlas of the human brain: theory and rationale for its development. Neurolmage 2: 89–101

    CAS  Google Scholar 

  • Mazziotta JC, Toga AW, Evans AC, Fox PT, Lancaster J, Zilles K, Woods RP, Paus T, Simpson G, Pike B, Holmes CJ, Collins DL, Thompson PM, MacDonald D, Schormann T, Amunts K, Palomero-Gallagher N, Parsons L, Narr KL, Kabani N, Le Goualher G, Boomsma D, Cannon T, Kawashima R, Mazoyer B (2000) A probabilistic atlas and reference system for the human brain. Invited Paper. J Roy Soc 356: 1293–1322

    Google Scholar 

  • McEwen BS (1997) Possible mechanisms for atrophy of the human hippocampus. Mol Psychiat 2: 255–262

    CAS  Google Scholar 

  • Mega MS, Chen S, Thompson PM, Woods RP, Karaca TJ, Tiwari A, Vinters H, Small GW, Toga AW (1997) Mapping pathology to metabolism: coregistration of stained whole brain sections to PET in Alzheimer’s disease. Neurolmage 5: 147–153

    CAS  Google Scholar 

  • Mega MS, Chu T, Mazziotta JC, Trivedi KH, Thompson PM, Shah A, Cole G, Frautschy SA, Toga AW (1999) Mapping biochemistry to metabolism: FDG-PET and beta-amyloid burden in Alzheimer’s disease. NeuroReport 10: 2911–2917

    CAS  Google Scholar 

  • Mega MS, Thompson PM, Toga AW, Cummings JL (2000) Brain mapping in dementia, book chapter. In: Toga AW, Mazziotta JC (eds.) Brain mapping: the disorders. Academic Press pp 218–234

    Google Scholar 

  • Meltzer CC, Frost JJ (1994) Partial volume correction in emission-computed tomography: focus on Alzheimer disease. In: Thatcher RW, Hallett M, Zeffiro T, John ER, Huerta M (eds) Functional neuroimaging. San Diego, Academic Press, pp. 163–170

    Google Scholar 

  • Mesulam MM (2000) A plasticity-based theory of the pathogenesis of Alzheimer’s disease. Ann NY Acad Sci 924: 42–52

    PubMed  CAS  Google Scholar 

  • Miller MI, Trouve A, Younes L (2002) On the metrics and Euler-Lagrange equations of computational anatomy. Annu Rev Biomed Eng. 4: 375–405

    PubMed  CAS  Google Scholar 

  • Morrison JH, Hof PR (1997) Life and death of neurons in the aging brain. Science 278: 412–419

    PubMed  CAS  Google Scholar 

  • Mummery CJ, Patterson K, Price CJ, Ashburner J, Frackowiak RS, Hodges JR (2000) A voxel-based morphometry study of semantic dementia: relationship between temporal lobe atrophy and semantic memory. Ann Neurol 47: 36–45

    PubMed  CAS  Google Scholar 

  • Murphy DGM, DeCarli CD, Daly E, Gillette JA, McIntosh AR, Haxby JV, Teichberg D, Schapiro MB, Rapoport SI, Horwitz B (1993) Volumetric magnetic resonance imaging in men with dementia of the Alzheimer type: correlations with disease severity. Biol Psychiat 34: 612–621

    PubMed  CAS  Google Scholar 

  • Nakamura S, Koshimura K, Kato T, Yamao S, Iijima S, Nagata H, Miyata S, Fujiyoshi K, Okamoto K, Suga H, Kameyama M (1984) Neurotransmitters in dementia. Clin Ther. 7 Spec No: 18–34

    PubMed  Google Scholar 

  • O’Brien JT, Paling S, Barber R, Williams ED, Ballard C, McKeith IG, Gholkar A, Crum WR, Rossor MN, Fox NC (2001) Progressive brain atrophy on serial MRI in dementia with Lewy bodies, AD, and vascular dementia. Neurology 56: 1386–1388

    PubMed  Google Scholar 

  • Ohm TG, Muller H, Braak H, Bohl J (1995) Close-meshed prevalence rates of different stages as a tool to uncover the rate of Alzheimer’s disease-related neurofibrillary changes. Neuroscience 64: 209–217

    PubMed  CAS  Google Scholar 

  • Pearson RCA, Esiri MM, Hiorns RW, Wilcock GK, Powell TPS (1985) Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer’s disease. Proc Natl Acad Sci USA 82: 4531–4534

    PubMed  CAS  Google Scholar 

  • Peters A, Morrison JH, Rosene DL, Hyman BT (1998) Feature article: are neurons lost from the primate cerebral cortex during normal aging? Cereb Cortex 8: 295–300

    PubMed  CAS  Google Scholar 

  • Price JL, Morris JC (1999) Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease Ann Neurol 45: 358–368

    CAS  Google Scholar 

  • Price JL, Ko AI, Wade MJ, Tsou SK, McKeel DW, Morris JC (2001) Neuron number in the ento-rhinal cortex and CA1 in preclinical Alzheimer disease. Arch Neurol 58: 1395–1402

    PubMed  CAS  Google Scholar 

  • Rasser PE, Johnston P, Lagopoulos J, Ward PB, Schall U, Thienel R, Bender S, Thompson PM (2003) Analysis of fMRI BOLD activation during the Tower of London Task using Cortical Pattern Matching. International Congress for Schizophrenia Research (ICSR), Colorado Springs, Colorado, March 29-April 2, 2003

    Google Scholar 

  • Reiman EM, Caselli RJ, Chen K, Alexander GE, Bandy D, Frost J (2001) Declining brain activity in cognitively normal apolipoprotein E epsilon 4 heterozygotes: A foundation for using positron emission tomography to efficiently test treatments to prevent Alzheimer’s disease. Proc Natl Acad Sci USA 98: 3334–3339

    PubMed  CAS  Google Scholar 

  • Resnick SM, Goldszal AF, Davatzikos C, Golski, Kraut MA, Metter EJ, Bryan RN, Zonderman AB (2000) One-year age changes in MRI brain volumes in older adults. Cereb Cortex 10: 464–472

    PubMed  CAS  Google Scholar 

  • Rex DE, Pouratian N, Thompson PM, Cunanan CC, Sicotte NL, Collins RC, Toga AW (2000) Cortical surface warping applied to group analysis of fMRI of tongue movement in the left hemisphere. [abstract] Proc Soc Neurosci 26: 2102

    Google Scholar 

  • Roberts GW, Nash M, Ince PG, Royston MC, Gentleman SM (1993) On the origin of Alzheimer’s disease: a hypothesis. Neuroreport 4: 7–9

    PubMed  CAS  Google Scholar 

  • Rombouts SA, Barkhof F, Witter MP, Scheltens P (2000) Unbiased whole-brain analysis of gray matter loss in Alzheimer’s disease. Neurosci Lett 285: 231–233

    PubMed  CAS  Google Scholar 

  • Rosen HJ, Gorno-Tempini ML, Goldman WP, Perry RJ, Schuff N, Weiner M, Feiwell R, Kramer JH, Miller BL (2002) Patterns of brain atrophy in frontotemporal dementia and semantic dementia. Neurology 58: 198–208

    PubMed  CAS  Google Scholar 

  • Rossor MN, Fox NC, Freeborough PA, Roques PK (1997) Slowing the progression of Alzheimer disease: monitoring progression. Alzheimer Dis Assoc Disord 11 Suppl 5: S6–9

    PubMed  Google Scholar 

  • Scahill RI, Schott JM, Stevens JM, Rossor MN, Fox NC (2002) Mapping the evolution of regional atrophy in Alzheimer’s disease: unbiased analysis of fluid-registered serial MRI. Proc Natl Acad Sci USA 99: 4703–4707

    PubMed  CAS  Google Scholar 

  • Scheltens P, Fox N, Barkhof F, De Carli C (2002) Structural magnetic resonance imaging in the practical assessment of dementia: beyond exclusion. Lancet Neurol 1: 13–21

    PubMed  Google Scholar 

  • Shimada A (1999) Age-dependent cerebral atrophy and cognitive dysfunction in SAMP10 mice. Neurobiol Aging 20: 125–136

    PubMed  CAS  Google Scholar 

  • Simic G, Kostovic I, Winblad B, Bogdanovic N (1997) Volume and number of neurons of the human hippocampal formation in normal aging and Alzheimer’s disease. J Comp Neurol 379: 482–494

    PubMed  CAS  Google Scholar 

  • Smith SM, De Stefano N, Jenkinson M, Matthews PM (2002) Measurement of brain change over time, FMRIB Technical Report TROOSMS1 http://www.fmrib.ox.ac.uk/analysis/research/siena/siena/siena.html

    Google Scholar 

  • Sowell ER, Thompson PM, Holmes CJ, Jernigan TL, Toga AW (1999) Progression of structural changes in the human brain during the first three decades of life: in vivo evidence for post-adolescent frontal and striatal maturation, Nature Neurosci 2: 859–861

    PubMed  CAS  Google Scholar 

  • Sowell ER, Thompson PM, Tessner KD, Toga AW (2001) Accelerated Brain Growth and Cortical Gray Matter Thinning are Inversely Related during Post-Adolescent Frontal Lobe Maturation. J Neurosci 21: 8819–8829

    PubMed  CAS  Google Scholar 

  • Sowell ER, Thompson PM, Mattson SN, Tessner KD, Jernigan TL, Riley EP, Toga AW (2002) Regional brain shape abnormalities persist into adolescence after heavy prenatal alcohol exposure. Cereb Cortex 12: 856–865

    PubMed  Google Scholar 

  • Sowell ER, Peterson B, Thompson PM, Henkenius A, Welcome SE, Toga AW, (2003) Mapping age related cortical changes across the human life span. Nature Neurosci 6: 309–315

    PubMed  CAS  Google Scholar 

  • Studholme C, Cardenas V, Schuff N, Rosen H, Miller B, Weiner MW (2001) Detecting spatially consistent structural differences in Alzheimer’s and fronto temporal dementia using deformation morphometry. MICCAI 41–48

    Google Scholar 

  • Terry RD, DeTeresa R, Hansen LA (1987) Neocortical cell counts in normal human adult aging. Ann Neurol 21: 530–539

    PubMed  CAS  Google Scholar 

  • Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30: 572–580

    PubMed  CAS  Google Scholar 

  • Thal DR, Rub U, Orantes M, Braak H (2002) Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 58: 1791–1800

    PubMed  Google Scholar 

  • Thompson PM, Toga AW (1996) A surface-based technique for warping 3-dimensional images of the brain. IEEE Trans Med Imag 15: 402–417

    CAS  Google Scholar 

  • Thompson PM, Toga AW (1998) Anatomically-driven strategies for high-dimensional brain image warping and pathology detection. In: Toga AW (Ed) Brain warping. Academic Press, San Diego pp. 311–336

    Google Scholar 

  • Thompson PM, Toga AW (2000) Elastic image registration and pathology detection. In: Bank-man I, Rangayyan R, Evans AC, Woods RP, Fishman E, Huang HK (eds) Handbook of medical image processing. Academic Press

    Google Scholar 

  • Thompson PM, Toga AW (2002) A framework for computational anatomy. Invited Paper. Comput Visual Sci 5: 1–12

    Google Scholar 

  • Thompson PM, Toga AW (2002) A framework for computational anatomy. Invited Paper. Comput Visual Sci 5: 1–12

    Google Scholar 

  • Thompson PM, Schwartz C, Lin RT, Khan AA, Toga AW (1996) 3D statistical analysis of sulcal variability in the human brain. J Neurosci 16:4261–4274

    PubMed  CAS  Google Scholar 

  • Thompson PM, MacDonald D, Mega MS, Holmes CJ, Evans AC, Toga AW (1997a) Detection and mapping of abnormal brain structure with a probabilistic atlas of cortical surfaces. J Comp Assist Tomograph 21: 567–581

    CAS  Google Scholar 

  • Thompson PM, Toga AW (1997b) Detection, visualization and animation of abnormal anatomic structure with a deformable probabilistic brain atlas based on random vector field transformations. Invited Paper. Med Image Anal 1: 271–294; paper, with video sequences on CD-ROM with Journal Issue, November 1997

    Google Scholar 

  • Thompson PM, Moussai J, Khan AA, Zohoori S, Goldkorn A, Mega MS, Small GW, Cummings JL, Toga AW (1998) Cortical variability and asymmetry in normal aging and Alzheimer’s disease. Cereb Cortex 8: 492–509

    PubMed  CAS  Google Scholar 

  • Thompson PM, Giedd JN, Woods RP, MacDonald D, Evans AC, Toga AW (2000a) Growth patterns in the developing brain detected by using continuum-mechanical tensor maps. Nature 404: 190–193

    CAS  Google Scholar 

  • Thompson PM, Mega MS, Narr KL, Sowell ER, Blanton RE, Toga AW (2000b) Brain image analysis and atlas construction. In: Fitzpatrick M (ed) SPIE Handbook on Medical Image Analysis. Society of Photo-Optical Instrumentation Engineers (SPIE) Press

    Google Scholar 

  • Thompson PM, Mega MS, Toga AW (2000c) Disease-specific brain atlases. In: Toga AW, Mazziotta JC (eds) Brain mapping: the disorders. Academic Press

    Google Scholar 

  • Thompson PM, Woods RP, Mega MS, Toga AW (2000d) Mathematical/computational challenges in creating population-based brain atlases. Human Brain Mapp 9: 81–92

    CAS  Google Scholar 

  • Thompson PM, Cannon TD, Narr KL, van Erp T, Khaledy M, Poutanen V-P, Huttunen M, Lönnqvist J, Standertskjöld-Nordenstam C-G, Kaprio J, Dail R, Zoumalan CI, Toga AW (200la) Genetic influences on brain structure. Nature Neurosci 4:1253–1258

    CAS  Google Scholar 

  • Thompson PM, de Zubicaray G, Janke AL, Rose SE, Dittmer S, Semple J, Gravano D, Han S, Herman D, Hong MS, Mega MS, Cummings JL, Doddrell DM, Toga AW (2001b) Detecting dynamic (4D) profiles of degenerative rates in Alzheimer’s disease patients, using high-resolution tensor mapping and a brain atlas encoding atrophic rates in a population. 7th Annual Meeting of the Organization for Human Brain Mapping, Brighton, England [abstract] 10587

    Google Scholar 

  • Thompson PM, Mega MS, Vidal C, Rapoport JL, Toga AW (2001c) Detecting disease-specific patterns of brain structure using cortical pattern matching and a population-based probabilistic brain atlas, IEEE Conference on Information Processing in Medical Imaging (IPMI), UC Davis, 2001. In: Insana M, Leahy R (eds) Lecture notes in computer science (LNCS). Springer-Verlag, Heidelberg, 2082: 488–501

    Google Scholar 

  • Thompson PM, Mega MS, Woods RP, Blanton RE, Moussai J, Zoumalan CI, Aron J, Cummings JL, Toga AW (2001d) Early cortical change in Alzheimer’s disease detected with a disease-specific population-based brain atlas. Cereb Cortex 11: 1–16

    CAS  Google Scholar 

  • Thompson PM, Narr KL, Blanton RE, Toga AW (2001e) Mapping structural alterations of the corpus callosum during brain development and degeneration, In: Iacoboni M, Zaidel E (eds) The corpus callosum. Boston, MIT Press.

    Google Scholar 

  • Thompson PM, Vidal C, Giedd JN, Gochman P, Blumenthal J, Nicolson R, Toga AW, Rapoport JL (2001f) Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. Proc Natl Acad Sci USA 98: 11650–11655

    CAS  Google Scholar 

  • Thompson PM, Cannon TD, Toga AW (2002) Mapping genetic influences on human brain structure. Review Paper. Ann Med 34: 523–536

    PubMed  CAS  Google Scholar 

  • Thompson PM, Hayashi KM, de Zubicaray G, Janke AL, Rose SE, Semple J, Doddrell DM, Cannon TD, Toga AW (2002) Detecting dynamic and genetic effects on brain structure using high-dimensional cortical pattern matching. Proc Intl Symp Biomed Imag (ISBI2002), Washington, DC, July 7–10, 2002

    Google Scholar 

  • Thompson PM, Rapoport JL, Cannon TD, Toga AW (2002c) Imaging the brain as schizophrenia develops: dynamic and genetic brain maps. Invited Paper. Primary Psychiatry 9: 40–47

    Google Scholar 

  • Thompson PM, Hayashi KM, de Zubicaray G, Janke AL, Rose SE, Semple J, Hong MS, Herman D, Gravano D, Dittmer S, Doddrell DM, Toga AW (2003a) Improved detection and mapping of dynamic hippocampal and ventricular change in Alzheimer’s disease using 4D parametric mesh skeletonization. 9th Annual Meeting of the Organization for Human Brain Mapping. New York City, NY

    Google Scholar 

  • Thompson PM, Hayashi KM, de Zubicaray G, Janke AL, Rose SE, Semple J, Herman D, Hong MS, Dittmer SS, Doddrell DM, Toga AW (2003b) Dynamics of gray matter loss in Alzheimer’s disease. J Neurosci 23: 994–1005

    CAS  Google Scholar 

  • Thompson PM, Rapoport JL, Cannon TD, Toga AW (2003c) Automated analysis of structural MRI data. In: Lawrie AL, Johnstone EC, Weinberger D (eds) Brain imaging in schizophrenia. Oxford, Oxford University Press

    Google Scholar 

  • Toga AW, Thompson PM (2003a) Mapping brain asymmetry. Nature Rev Neurosci 4: 37–48

    CAS  Google Scholar 

  • Toga AW, Thompson PM (2003b) Temporal dynamics of brain anatomy. Ann Rev Biomed Eng, 5: 119–145

    CAS  Google Scholar 

  • Uylings HB, de Brabander JM (2002) Neuronal changes in normal human aging and Alzheimer’s disease. Brain Cogn 49: 268–276

    PubMed  Google Scholar 

  • Van Essen DC, Drury HA, Joshi SC, Miller MI (1997) Comparisons between human and macaque using shape-based deformation algorithms applied to cortical flat maps. 3rd Intl Conf Functional Mapping of the Human Brain, Copenhagen, May 19–23, 1997. Neurolmage 5: S41

    Google Scholar 

  • Vidal CN, Rapoport JL, Gochman P, Giedd JN, Blumenthal J, Gogtay N, Nicolson R, Toga AW, Thompson PM (2003) Mapping lmbic system deficits in adolescents with schizophrenia using novel computational anatomy techniques. 9th Annual Meeting of the Organization for Human Brain Mapping, New York City, NY

    Google Scholar 

  • Wang D, Chalk JB, Rose SE, de Zubicaray GI, Cowin G, Galloway GJ, Barnes D, Spooner D, Doddrell DM, Semple J (2002) MR image-based measurement of rates of change in volumes of brain structures. Part II: Application to a study of Alzheimer’s disease and normal aging. Magn Reson Imag 20: 41–48

    Google Scholar 

  • Weinberger DR, McClure RK (2002) Neurotoxicity, neuroplasticity, and magnetic resonance imaging morphometry: what is happening in the schizophrenic brain? Arch Gen Psychiat 59: 553–558

    PubMed  Google Scholar 

  • Woods RP (1996) Modeling for intergroup comparisons of imaging data. Neuroimage 4: S84–94

    PubMed  CAS  Google Scholar 

  • Wright IC, McGuire PK, Poline JB, Travere JM, Murray RM, Frith CD, Frackowiak RSJ, Friston KJ (1995) A voxel-based method for the statistical analysis of gray and white matter density applied to schizophrenia. Neurolmage 2: 244–252

    CAS  Google Scholar 

  • Zeineh MM, Engel SA, Thompson PM, Bookheimer S (2001). Unfolding the human hippocampus with high-resolution structural and functional MRI. Invited Paper. The New Anatomist (Anatomical Record) 265: 111–120

    CAS  Google Scholar 

  • Zeineh MM, Engel SA, Thompson PM, Bookheimer SY (2003) Dynamic changes within the human hippocampus during memory consolidation. Science 299: 577–580

    PubMed  CAS  Google Scholar 

  • Zeineh MM, Mazziotta JC, Thompson PM, Engel SA, Bookheimer SY (2003) Hippocampal Flat Maps of Cortical Thickness and Power. 9th Annual Meeting of the Organization for Human Brain Mapping, New York City, NY

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Thompson, P.M. et al. (2004). Dynamic Mapping of Alzheimer’s Disease. In: Hyman, B.T., Demonet, JF., Christen, Y. (eds) The Living Brain and Alzheimer’s Disease. Research and Perspectives in Alzheimer’s Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59300-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59300-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63927-2

  • Online ISBN: 978-3-642-59300-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics