Skip to main content

Neuropathology of Alzheimer’s Disease, as Seen in Fixed Tissues

  • Conference paper
The Living Brain and Alzheimer’s Disease

Summary

The progress of in vivo imaging will in the future determine if deductions made from fixed tissue concerning the pathology of Alzheimer’s disease (AD) were correct. It will mainly enable us to apprehend directly the chronological sequence of the lesions and their duration. This paper reviews some of the data concerning the classical pathology of AD. Lesions may be categorized into Aβ peptide deposition, tau accumulation and loss of neurons and of synapses. Aβ peptide originates from the amyloid precursor protein, a transmembrane protein that is found in lipid rafts of the cellular membrane. Accumulation of flotillin-1, a raft marker, in AD indicates a disturbance of this membrane transport system in AD. Diffuse deposits of Aβ peptide within the cerebral cortex have little clinical consequence. Focal deposits are generally amyloid, i.e., Congo red positive and highly insoluble. They are usually associated with microglial activation and low-grade inflammation. Aβ peptide is initially embedded in a cell membrane and partly hydrophobic. It may actually be linked to cholesterol in the extracellular milieu, as recently suggested. Tau accumulation takes place in the cell body, the dendrites and the axons of the neurons, forming, respectively, neurofibrillary tangles, neuropil threads and coronae of senile plaques. Heiko and Eva Braak have shown that the progression of neurofibrillary pathology takes place in a stereotyped manner that appears to be correlated with the clinical symptoms. Contrary to the prediction of the amyloid cascade hypothesis, neurofibrillary pathology in the rhinal cortex and pyramidal sectors of the hippocampus most often precedes the first morphological evidence of All peptide accumulation. This observation suggests that tau and amyloid pathologies are, at the start, independent processes that secondarily interact. Data from transgenic mice support this view: neurofibrillary pathology is not observed in APP transgenic mice, except if a human mutated tau transgene has also been incorporated. Progression of the lesions is different in the entorhinal-hippocampal region and in the isocortex. In the former, tau pathology may be observed in the absence of Aβ deposition, which appears to be a relatively late phenomenon. In the isocortex, by contrast, Aβ peptide deposition is the first observable event.

The sequence of the lesions in the isocortex appears to be the following: diffuse, focal, then amyloid deposits, neuropil threads, neuritic corona of the plaque and finally neurofibrillary tangles. Neuronal loss, in this sequence of events, occurs probably at a late stage, shortly preceding or occurring at the same time as tangle formation. Synaptic loss is a more complex process than previously thought: vesicular markers of the synapse drop sharply in advanced cases, whereas membrane markers are relatively spared. The decrease in the number of synapses is associated with enlargement of the ones that survive.

Up to now, observation of fixed brain tissue has dealt almost exclusively with proteins immobilized by formalin or other fixatives. Recent data show that membrane lipids play an essential role in the pathogenesis of AD. One of the future challenges of neuropathology will be to visualize not only the proteins but also the membrane domains that bear them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alzheimer A (1907) Uber eine eigenartige Erkrankung der Hirnrinde. Allgemeine Zeitschr Psychiatr Gerichtlisch Med 64: 146–148

    Google Scholar 

  • Arends M, Duyckaerts C, Rozemuller JM, Eikelenboom P, Hauw J-J (2000) Microglia, amyloid and dementia in Alzheimer disease. A correlative study. Neurobiol Aging 21: 39–47

    Article  PubMed  CAS  Google Scholar 

  • Bamberger ME, Harris ME, McDonald DR, Husemann J, Landreth GE (2003) A cell surface receptor complex for fibrillar beta-amyloid mediates microglial activation. J Neurosci 23: 2665–2674

    PubMed  CAS  Google Scholar 

  • Bielschowsky M (1902) Die Silberimprägnation der Achsencylinder. Neurologisches Zentralblatt (Leipzig) 21: 579–584

    Google Scholar 

  • Bielschowsky M (1903) Die Silberimprägnation der Achsencylinder. Neurologisches Zentralblatt (Leipzig) 22: 997–1006

    Google Scholar 

  • Blessed G, Tomlinson BE, Roth,M (1968) The association between quantitative measures of dementia and of senile change in the cerebral grey matter of elderly subjects. Brit J Psychiat 114: 797–811

    CAS  Google Scholar 

  • Bouillot C, Prochiantz A, Rougon G, Allinquant B (1996) Axonal amyloid precursor protein expressed by neurons in vitro is present in a membrane fraction with caveolae-like properties. J Biol Chem 271: 7640–7644

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Braak E (1997) Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging 18: 351–357

    Article  PubMed  CAS  Google Scholar 

  • Brandt HM, Apkarian AV (1992) Biotin-dextran: a sensitive anterograde tracer for neuroanatomic studies in rat and monkey. J Neurosci Meth 45: 35–40

    Article  CAS  Google Scholar 

  • Chui DH, Dobo E, Makifuchi T, Akiyama H, Kawakatsu S, Petit A, Checler F, Araki W, Takahashi K, Tabira T (2001) Apoptotic neurons in Alzheimer’s disease frequently show intracellularAbeta42 labeling. J Alzheimer’s Dis 3: 231–239

    CAS  Google Scholar 

  • Cupers P, Bentahir M, Craessaerts K, Orlans I, Vanderstichele H, Saftig P, De Strooper B, Annaert W (2001) The discrepancy between presenilin subcellular localization and gammasecretase processing of amyloid precursor protein. J Cell Biol 154: 731–740

    Article  PubMed  CAS  Google Scholar 

  • Delaère P, Duyckaerts C, Masters C, Piette F, Hauw JJ (1990) Large amounts of neocortical ßA4 deposits without Alzheimer changes in a nondemented case. Neurosci Lett 116: 87–93

    Article  PubMed  Google Scholar 

  • Delaère P, Duyckaerts C, Masters C, Piette F, Hauw JJ (1990) Large amounts of neocortical ßA4 deposits without Alzheimer changes in a nondemented case. Neurosci Lett 116: 87–93

    Article  PubMed  Google Scholar 

  • Dickson D (1997) Qualitative differences between senile plaques (SP) in pathological aging (PA) and Alzheimer disease. Brain Pathol 7: 1054

    Google Scholar 

  • Dickson DW, Crystal HA, Mattiace LA, Masur DM, Blau AD, Davies P, Yen S, Aronson MK (1991) Identification of normal and pathological aging in prospectively studied nondemented elderly humans. Neurobiol Aging 13: 179–189

    Article  Google Scholar 

  • Dickson DW, Crystal HA, Bevona C, Honer W, Vincent I, Davies P (1995) Correlations of synaptic and pathological markers with cognition of the elderly. Neurobiol Aging 16: 285–304

    Article  PubMed  CAS  Google Scholar 

  • Duyckaerts C, Godefroy G (2000) Voronoi tessellation to study the numerical density and the spatial distribution of neurones. J Chem Neuroanat 20: 83–92

    Article  PubMed  CAS  Google Scholar 

  • Duyckaerts C, Hauw JJ, Bastenaire F, Piette F, Poulain C, Rainsard V, Javoy-Agid F, Berthaux P (1986) Laminar distribution of neocortical plaques in senile dementia of the Alzheimer’s type. Acta Neuropathol (Berl) 70: 249–256

    Article  CAS  Google Scholar 

  • Duyckaerts C, Godefroy G, Hauw JJ (1994) Evaluation of neuronal numerical density by Dirichlet tessellation. J Neurosci Meth 51: 47–69

    Article  CAS  Google Scholar 

  • Duyckaerts C, Colle MA, Bennecib M, Grignon Y, Uchihara T, Hauw JJ (1997) Plaques and tangles: where and when? In: Hyman BT, Duyckaerts C, Christen Y (eds) Connections, cognition, and Alzheimer’s disease. Berlin, Springer-Verlag, pp. 33–39

    Google Scholar 

  • Edbauer D, Winkler E, Regula JT, Pesold B, Steiner H, Haass C (2003) Reconstitution of gammasecretase activity. Nature Cell Biol, 5: 486–488

    Article  PubMed  CAS  Google Scholar 

  • Ehehalt R, Keller, Haass C, Thiele C, Simons K (2003) Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J Cell Biol 160: 113–123

    Article  PubMed  CAS  Google Scholar 

  • Fantini J, Garmy N, Mafhoud R, Yahi N (2002) Lipid rafts: structure, function and role in HIV, Alzheimer’s and prion diseases. Expert Rev Mol Med. http://www.expertreviews.org/02005392h.htm

  • Girardot N, Allinquant B, Langui D, El Hachimi KH, Dubois B, Hauw JJ, Duyckaerts C (2003) Accumulation of flotillin-1 in tangle-bearing neurones of Alzheimer’s disease. J Neuropathol Appl Neurobiol. 29: 451–461

    Article  CAS  Google Scholar 

  • Gomez-Isla T, Price JL, McKeel DW, Morris JC, Growdon JH, Hyman BT (1996) Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosci 16: 4491–4500

    PubMed  CAS  Google Scholar 

  • Gomez-Isla T, Hollister R, West H, Mui S, Growdon JH, Petersen RC, Parisi JE, Hyman BT (1997) Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol 41: 17–24

    Article  PubMed  CAS  Google Scholar 

  • Grignon Y, Duyckaerts C, Bennecib M, Hauw JJ (1998) Cytoarchitectonic alterations in the supramarginal gyrus of late onset Alzheimer’s disease. Acta Neuropathol (Berl) 95: 395–406

    Article  CAS  Google Scholar 

  • Gyure KA, Durham R, Stewart WF, Smialek JE, Troncoso JC (2001). Intraneuronal abeta-amy-loid precedes development of amyloid plaques in Down syndrome. Arch Pathol Lab Med 125: 489–492

    PubMed  CAS  Google Scholar 

  • Iwata H, Tomita T, Maruyama K, Iwatsubo T (2001) Subcellular compartment and molecular subdomain of beta-amyloid precursor protein relevant to the Abeta 42-promoting effects of Alzheimer mutant presenilin 2. J Biol Chem 276: 21678–21685

    Article  PubMed  CAS  Google Scholar 

  • Kamal A, Stokin GB, Yang Z, Xia CH, Goldstein LS (2000) Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron 28: 449–459

    Article  PubMed  CAS  Google Scholar 

  • Kamal A, Almenar-Queralt A, LeBlanc JF, Roberts EA, Goldstein LS (2001) Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APP. Nature 414: 643–648

    Article  PubMed  CAS  Google Scholar 

  • Koo EH, Sisodia SS, Archer DR, Martin LJ, Weidemann A, Beyreuther K, Fischer P, Masters CL, Price DL (1990) Precursor of amyloid protein in Alzheimer disease undergoes fast anterograde axonal transport. Proc Natl Acad Sci USA 87: 1561–1565

    Article  PubMed  CAS  Google Scholar 

  • Lam FC, Liu R, Lu P, Shapiro AB, Renoir JM, Sharom FJ, Reiner PB (2001) beta-Amyloid efflux mediated by p-glycoprotein. J Neurochem 76: 1121–1128

    Article  PubMed  CAS  Google Scholar 

  • Maltese WA, Wilson S, Tan Y, Suomensaari S, Sinha S, Barbour R, McConlogue L (2001) Retention of the Alzheimer’s amyloid precursor fragment C99 in the endoplasmic reticulum prevents formation of amyloid beta-peptide. J Biol Chem 276: 20267–20279

    Article  PubMed  CAS  Google Scholar 

  • Metsaars WP, Hauw JJ, van Welsem ME, Duyckaerts C (2003) Pathology of tangle-free areas. A grading system of Alzheimer lesions in the isocortex. Neurobiol Aging 24: 565–574

    Article  Google Scholar 

  • Mori C, Spooner ET, Wisniewski KE, Wisniewski TM, Yamaguchi H, Saido TC, Tolan DR, Selkoe DJ, Lemere CA (2002) Intraneuronal Abeta42 accumulation in Down syndrome brain. Amyloid 9: 88–102

    PubMed  CAS  Google Scholar 

  • Mori T, Paris D, Town T, Rojiani AM, Sparks DL, Delledonne A, Crawford F, Abdullah LI, Humphrey JA, Dickson DW, Mullan MJ (2001) Cholesterol accumulates in senile plaques of Alzheimer disease patients and in transgenic APP(SW) mice. J Neuropathol Exp Neurol 60: 778–785

    PubMed  CAS  Google Scholar 

  • Perusini G (1910) Über klinisch and histologisch eigenartige psychische Erkrangungen des späteren Lebensalters. Histologische and histopathologische Arbeiten. Nissl F, Alzheimer A, Jena Gustav Fischer

    Google Scholar 

  • Regeur L, Badsberg Jensen G, Pakkenberg H, Evans SM, Pakkenberg B (1994) No global neocortical nerve cell loss in brains from patients with senile dementia of Alzheimer’s type. Neurobiol Aging 15: 347–352

    Article  PubMed  CAS  Google Scholar 

  • Reiner A, Veenman CL, Honig MG (1993) Anterograde tracing using biotinylated dextran amine. Neuroscience protocols. Wouterlood, F. G. Amsterdam, Elsevier

    Google Scholar 

  • Riddell DR, Christie G, Hussain I, Dingwall C (2001) Compartmentalization of beta-secretase (Asp2) into low-buoyant density, noncaveolar lipid rafts. Curr Biol 11: 1288–1293

    Article  PubMed  CAS  Google Scholar 

  • Schmidt M, Lee V, Trojanowski J (1991) Comparative epitope analysis of neuronal cytoskeletal proteins in Alzheimer’s disease senile plaque, neurites and neuropil threads. Lab Invest 64: 352–357

    PubMed  CAS  Google Scholar 

  • Shimohama S, Kamiya S, Taniguchi T, Akagawa K, Kimura J (1997) Differential involvement of synaptic vesicle and presynaptic plasma membrane proteins in Alzheimer’s’s disease. Biochem Biophys Res Commun 236: 239–242

    Article  PubMed  CAS  Google Scholar 

  • Takasugi N, Tomita T, Hayashi I, Tsuruoka M, Niimura M, Takahashi Y, Thinakaran G, Iwatsubo T. (2003) The role of presenilin cofactors in the gamma-secretase complex. Nature 422: 438–441

    Article  PubMed  CAS  Google Scholar 

  • Terry RD, Gonatas JK, Weiss M (1964) Ultrastructural studies in Alzheimer presenile dementia. Am J Pathol 44: 269–297

    PubMed  CAS  Google Scholar 

  • Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen, LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30: 572–580

    Article  PubMed  CAS  Google Scholar 

  • Uchihara T, Duyckaerts C, He Y, Kobayashi K, Seilhean D, Amouyel P, Hauw JJ (1995) ApoE im- munoreactivity and microglial cells in Alzheimer’s disease brain. Neurosci Lett 195: 5–8

    Article  PubMed  CAS  Google Scholar 

  • Uchihara T, Duyckaerts C, Lazarini F, Mokhtari K, Seilhean D, Amouyel P, Hauw JJ (1996) Inconstant apolipoprotein E (ApoE)-like immunoreactivity in amyloid beta protein deposits: Relationship with APOE genotype in aging brain and Alzheimer’s disease. Acta Neuropathol (Berl) 92: 180–185

    Article  CAS  Google Scholar 

  • Veenman CL, Reiner A, Honig MG (1992) Biotinylated dextran amine as an anterograde tracer for single-and double-labeling studies. J Neurosci Methods 41: 239–54

    Article  PubMed  CAS  Google Scholar 

  • Wirths O, Multhaup G, Czech C, Blanchard V, Moussaoui S, Tremp G, Pradier L, Beyreuther K, Bayer TA (2001) Intraneuronal Abeta accumulation precedes plaque formation in beta-amyloid precursor protein and presenilin-1 double-transgenic mice. Neurosci Lett 306: 116–20

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Duyckaerts, C., Langui, D., Girardot, N., Hauw, JJ., Delatour, B. (2004). Neuropathology of Alzheimer’s Disease, as Seen in Fixed Tissues. In: Hyman, B.T., Demonet, JF., Christen, Y. (eds) The Living Brain and Alzheimer’s Disease. Research and Perspectives in Alzheimer’s Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59300-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59300-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63927-2

  • Online ISBN: 978-3-642-59300-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics