Skip to main content

Part of the book series: The Collected Works of Eugene Paul Wigner ((2875,volume A / 4))

  • 1190 Accesses

Abstract

In: Transfert d’energie dans les gaz. Douzième conseil de chimie 1962 (R. Stoops., ed.). Interscience Publishers, New York 1963, pp. 211-239, 303-306, 308, 453-457, 515-516. Translated into Hungarian: Áttekintés az ütközések elméletérol. Fizikai Szemle 14, 35-44 (1964)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Professor 1. Prigogine informed me, during the Conference, that he and his collaborators are engaged in the study of this question.

    Google Scholar 

  2. J.A. Wheeler, Phys. Rev., 52, 1107 (1937).

    Article  CAS  Google Scholar 

  3. W. Heisenberg, Zeits. f. Physik, 120, 513, 673 (1943).

    Article  CAS  Google Scholar 

  4. F. Dyson, Phys. Rev., 75, 486, 1736 (1949).

    Article  Google Scholar 

  5. M. Born, Zeits. f. Physik, 37, 803 (1926).

    Article  Google Scholar 

  6. B.A. Lippmann and J. Schwinger, Phys. Rev., 79, 469 (1950).

    Article  Google Scholar 

  7. The literature of dispersion relations is so large that one hardly can hope to mention even the most important papers. See, however, the reports of M.L. Goldberger and of S. Mandelstam to the Solvay Congress of 1961 (12e Conseil de Physique) or the forthcoming book, “Collision Theory”, by M.L. Goldberger and K.M. Watson.

    Google Scholar 

  8. M. Gell-Mann, Proceedings of the Sixth Annual Rochester Conference (Interscience Publishers, New York, 1956), pages III-30 ff.

    Google Scholar 

  9. N.N. Khuri, Phys. Rev., 107, 1148 (1957).

    Article  Google Scholar 

  10. See the articles of R. Blankenbecler, M.L. Goldberger, N.N. Khuri and S.B. Treiman, Annals of Phys., 10, 60 (1960) and of A. Klein, Jour. Math. Phys., 1, 41 (1960) which actually prove even further-going relations.

    Article  Google Scholar 

  11. The only potential for which it is easy to prove this seems to be c/r 2

    Google Scholar 

  12. See, however, E. Gerjuoy, Rev. Mod. Phys., 33, 544 (1961), particularly page 547; also E. Gerjuoy and N.A. Krall, Phys. Rev., 127, 2105 (1962).

    Article  Google Scholar 

  13. For reviews of this theory see A.M. Lane and R.G. Thomas, Rev. Mod. Phys., 30, 257 (1958) and E. Vogt’s article, “Resonance Reactions, Theoretical” in “Nuclear Reactions” (North Holland Publishing Co., Amsterdam 1959).

    Article  Google Scholar 

  14. For the treatment of the case in which this condition is not met, see T. Teichmann and E.P. Wigner, Phys. Rev., 87, 123 (1952) or the first article of Reference (13).

    Article  CAS  Google Scholar 

  15. The meromorphic nature of S as function of the complex k and the position of its poles can easily be established by the methods of R matrix theory, This has been done already by W. Schutzer and J. Tiomno, Phys Rev.,83, 249 (1951); see also E.P. Wigner, Rev. Mexicans de Fis., l, 91 (1952). However, whereas it is known from dispersion theory that, for constant momentum transfer, S goes to a constant value as k→∞ in the upper half plane, no similarly far-reaching statement could be derived so far from R matrix theory.

    Article  Google Scholar 

  16. See e.g., H. Feshbach, Annals of Phys., 5, 357 (1959), R.E. Peierls, Proc. Roy. Soc., A253, 16 (1959), J. Humblet and L. Rosenfeld, Nuclear Physics, 26, 529 (1961).

    Article  Google Scholar 

  17. T. Teichmann, Phys. Rev., 77, 506 (1950); see also Reference (14) or the second article of Reference (13).

    Article  CAS  Google Scholar 

  18. T. Regge, Nuovo Cim., 14, 951 (1959), 18, 947 (1960).

    Article  CAS  Google Scholar 

  19. N. Levinson, Kgl. Danske Vid. Selskab Mat. Fys. Medd., 25, No. 9 (1949); V. Bargmann, Phys. Rev., 75, 301 (1949); R. Jost and W. Kuhn, Kgl. Danske Vid. Selskab Mat. Fys. Medd., 27, No. 9 (1953). For Yukawa potentials and their superpositions, see A. Martin and G. Targonski, Nuovo Cim. 20, 1182 (1961).

    Google Scholar 

  20. J.A. Wheeler, Phys. Rev., 99, 630 (1955).

    Article  CAS  Google Scholar 

  21. T. Regge and G.A. Viano, Nuovo Cim., 25, 709 (1962).

    Article  Google Scholar 

  22. See, for instance, N.F. Mott and H.S.W. Massey, “The Theory of Atomic Collisions” (1st Ed. Oxford University Press, 1933, or 2nd Ed. 1952); H.S.W. Massey and E.H.S. Burhop. “Electronic and Ionic Impact Phenomena” (Oxford University Press, 1952).

    Google Scholar 

  23. E.P. Wigner, Proc. Nat. Acad., 32, 302 (1946). Actually, for pure scattering in the absence of any reaction, the cross section due to a single angular momentum, as function of energy, can and does go through zero. However, the Born approximation shows a similar behavior also in the presence of reactions and not only for a single angular momentum but also for the total scattering cross section in a definite direction.

    Article  CAS  Google Scholar 

  24. See P.M. Morse and E.C.G. Stückelberg, Ann. d. Phvs., 9, 579 (1931); H.S.W. Massey and C.B.O. Mohr, Proc. Rov. Soc., 132A, 605 (1931); 140A, 613 (1933). See also H.S.W. Massey, Rev. Mod. Phys., 28, 199 (1956), and the books quoted in Reference (22).

    Article  CAS  Google Scholar 

  25. See, for instance, C.A. Levinson and M.K. Banerjee, Ann. of Phys., 2, 471, 499 (1957); 3, 67 (1958). J.R. Lamarsh and H. Feshbach, Phys. Rev., 104, 1633 (1956). The optical model also has a long history which will not be related here. The modern work dates, however, from the paper of H. Feshbach, C.E. Porter and V.F. Weisskopf, Phys. Rev., 96, 448 (1954).

    Google Scholar 

  26. The article of A.M. Lane, R.G. Thomas, and E.P. Wigner, Phys. Rev., 98, 693 (1955) attempts to derive the results, not the equations, of the optical model.

    Article  CAS  Google Scholar 

  27. C. Zener, Phys. Rev., 37, 556 (1931); 38, 277 (1931); J.M. Jackson and N.F. Mott, Proc. Roy. Soc, 137A, 703 (1932). Also R.N. Schwartz, Z.I. Slawsky and K.F. Herzfeld, Jour. Chem. Phys., 20, 1591 (1952); R.N. Schwartz and K.F. Herzfeld, ibid., 22, 767 (1954).

    Article  CAS  Google Scholar 

  28. F. London, Zeits. f. Phys., 74, 143 (1932).

    Article  CAS  Google Scholar 

  29. See, for instance, Proceedings of the Second Conference on Reactions between Complex Nuclei (John Wiley and Sons, New York, 1960), particularly Sessions A, B, D.

    Google Scholar 

  30. See, for instance, J. de Boer and R.B. Bird, Physica, 20, 185 (1954) and J.A. Wheeler and K.W. Ford, Annals of Phys., 7, 259 (1959).

    Article  Google Scholar 

  31. Sang-II Choi and J. Ross, Journ. Chem. Phys., 33,1324 (1960). See, however, also Proc. Nat. Acad., 48, 803 (1962), by the same authors.

    Article  CAS  Google Scholar 

  32. See Reference (29), page 309.

    Google Scholar 

  33. See G.N. Watson, “Theory of Bessel Functions” (Cambridge University Press, 1958), page 243 ff.

    Google Scholar 

  34. L. Hulthen, Ark. Mat. Astr. och Fysik, 35A, No. 25 (1948); W. Kohn, Phys. Rev., 74, 1763 (1948).

    Google Scholar 

  35. I. Tamm, J. Exp. Theor. Phys. U.S.S.R., 18, 337 (1948), 19, 74 (1949).

    Google Scholar 

  36. B.A. Lippmann and J. Schwinger, Phys. Rev., 79, 469 (1950); M.L. Gold-berger, ibid., 82, 757 (1951); 84, 929 (1951); M. Kolsrud, ibid., 112, 1436 (1958). This article also contains an example in which the second term of the Born series is very much smaller than the first one (less than 4 %) but this is nevertheless very far from the exact value.

    Article  Google Scholar 

  37. T. Kato, Progr. Theoret. Phys., 6, 295, 394 (1950); L. Spruch and M. Kelly, Phys. Rev., 109, 2144 (1957).

    Google Scholar 

  38. L. Rosenberg, L. Spruch and T.F. O’Malley, Phys. Rev., 118, 184 (1960).

    Article  Google Scholar 

  39. N.W. Bazley, Proc. Nat. Acad., 45, 850 (1959). The method used is due to A. Weinstein, Mémorial des Sci. Math., Paris No. 88, 1937.

    Article  CAS  Google Scholar 

  40. G.F. Chew, Phys. Rev., 80, 196 (1950); Y. Fujimoto and Y. Yamaguchi, Progr. Theor. Phys., 6, 166 (1951); G.F. Chew and G.C. Wick, Phys. Rev. 85, 636 (1952); G.F. Chew and M.L. Goldberger, Phys. Rev., 87, 778 (1952).

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wigner, E.P. (1997). Review of Collision Theory. In: Wightman, A.S. (eds) Part I: Physical Chemistry. Part II: Solid State Physics. The Collected Works of Eugene Paul Wigner, vol A / 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59033-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59033-7_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63824-4

  • Online ISBN: 978-3-642-59033-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics