Skip to main content

Magnetic Resonance Spectroscopy of the Human Brain

  • Chapter
Modern Techniques in Neuroscience Research

Abstract

Twenty years ago, the optimum techniques available to address a metabolic question in the brain were considered to be — in order of reliability — brain slices in vitro, arteriovenous differences in vivo across the jugular bulb and carotid artery, isolated intact brain perfusion in situ and, the then newly emerging techniques of isolated brain-cell preparation (Ross 1979). Almost at the same time, however, there appeared a seminal paper describing the transfer, after 25 years, of the chemists’ major investigational tool, nuclear Magnetic Resonance Spectroscopy (MRS), to the intact mammalian brain in vivo (Thulborn et al. 1981). Soon thereafter followed in vivo MRS of human muscle (Ross et al. 1981), and of neonatal (Hamilton et al. 1986) and adult human brain (Bottomley et al. 1983). Today, few university hospitals in the world are without a whole-body MR scanner capable of assaying metabolites non-invasively in the human brain, using robust MRS methods. Together with MRS, physiological MRI, fMRI and PET (Chaps. 38 and 39, respectively), the neuroscientist can now reverse the order of preference when considering a technique with which to address a metabolic question in the brain. It is almost certainly “easiest” to turn first to the intact human brain with in vivo magnetic resonance spectroscopy. How best to do this in practice is the subject of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman JJH, Bore PJ, Wong GG, Gadian DG, Radda GK. (1980) Mapping of metabolites in whole animals by 31P NMR using surface coils. Nature 283: 167–170.

    Article  PubMed  CAS  Google Scholar 

  • Badar-Goffer RS, Ben-Yoseph O, Bachelard HS, Morris PG. (1992) Neuronal-glial metabolism under depolarizing conditions. Biochem. J 282: 225–230.

    PubMed  CAS  Google Scholar 

  • Barker PB, Soher BJ, Blackband SJ, Chatham JC, Mathews VP, Bryan RN. (1993) Quantitation of proton NMR spectra of the human brain using tissue water as an internal concentration reference. NMR Biomed 6: 89–94.

    Article  PubMed  CAS  Google Scholar 

  • Bluml S. (1999) In vivo quantification of cerebral metabolite concentrations using natural abundance 13C MRS at 1.5 Tesla. J. Magn. Reson 136: 219–225.

    Article  PubMed  CAS  Google Scholar 

  • Bluml S, McComb JG, Ross BD. (1997) Differentiation between cortical atrophy and hydrocephalus using 1H MRS. Magn. Reson. Med 37: 395–403.

    Article  PubMed  CAS  Google Scholar 

  • Bluml S, Seymour KJ, Ross BD. (1999) Developmental changes in choline-and ethanolamine-containing compounds measured with proton-decoupled 31P MRS in human brain. Magn. Reson. Med\(in press).

    Google Scholar 

  • Bluml S, Zuckerman E, Tan J, Ross BD. (1998b) Proton-decoupled 31P magnetic resonance spectroscopy reveals osmotic and metabolic disturbances in human hepatic encephalopathy. J. Neurochem 71: 1564–1576.

    Article  PubMed  CAS  Google Scholar 

  • Bottomley PA. (1987) Spatial localization in NMR spectroscopy in vivo. Ann. NY Acad. Sci 508: 333–348.

    Article  PubMed  CAS  Google Scholar 

  • Bottomley PA, Foster TB, Darrow RD. (1984) Depth-resolved surface spectroscopy (DRESS) for in vivo 1H, 31P and 13C NMR. J. Magn. Reson 59: 338–342.

    CAS  Google Scholar 

  • Bottomley PA, Hart HR, Edelstein WA, et al. (1983) NMR imaging/spectroscopy system to study both anatomy and metabolism. Lancet 1: 273–274.

    Article  Google Scholar 

  • Brody BA, Kinney HC, Kloman AS, Giles FM. (1987) Sequence of central nervous system myelination in human infancy: An autopsy study of myelination. J. Neuropathol. Exp. Neurol 46: 283.

    Article  PubMed  CAS  Google Scholar 

  • Brown TR, Kincaid BM, Ugurbil K. (1982) NMR chemical shift imaging in three dimensions. Proc Natl Acad Sci USA 79: 3523–3526.

    Article  PubMed  CAS  Google Scholar 

  • Cady EB, Dawson MJ, Hope PL, et al. (1983) Non-invasive investigation of cerebral metabolism in newborn infants by phosphorus nuclear magnetic resonance spectroscopy. Lancet 1: 1059–1062.

    Article  PubMed  CAS  Google Scholar 

  • Christiansen P, Henriksen O, Stubgaard M, Gideon P, Larsson HBW. (1993) In vivo quantification of brain metabolites by means of 1H MRS using water as an internal standard. Magn. Reson. Imaging 11: 107–118.

    Article  PubMed  CAS  Google Scholar 

  • Danielsen ER, Henriksen O. (1994) Quantitative proton NMR spectroscopy based on the amplitude of the local water suppression pulse. Quantification of brain water and metabolites. NMR Biomed 7: 311–318.

    Article  PubMed  CAS  Google Scholar 

  • Ernst T, Hennig J. (1994) Observation of a fast response in functional MR. Magn. Reson. Med 32: 146–149.

    Article  PubMed  CAS  Google Scholar 

  • Ernst T, Kreis R, Ross BD. (1993a) Absolute quantitation of water and metabolites in the human brain. Part I: Compartments and water. J. Magn. Reson 102 (1): 1–8.

    CAS  Google Scholar 

  • Ernst T, Lee JH, Ross BD. (1993b) Direct 31P imaging in human limb and brain. J. Comput. Assist. Tomogr 17 (5): 673–680.

    Article  PubMed  CAS  Google Scholar 

  • Flögel U, Niendorf T, Serkowa N, Brand A, Henke J, Leibfritz D. (1995) Changes in organic solutes, volume, energy state, and metabolism associated with osmotic stress in a glial cell line: A multinuclear NMR study. Neurochem. Res 20 (7): 793–802.

    Article  PubMed  Google Scholar 

  • Frahm J, Bruhn H, Gyngell ML, Merboldt K-D, Hänicke W, Sauter R. (1989) Localized proton NMR spectroscopy in different regions of the human brain in vivo. Relaxation times and concentrations of cerebral metabolites. Magn. Reson. Med 11: 47–63.

    Article  PubMed  CAS  Google Scholar 

  • Frahm J, Merboldt K-D, Hänicke W. (1987) Localized proton spectroscopy using stimulated echoes. J. Magn. Reson 72: 502–508.

    CAS  Google Scholar 

  • Frahm J, Michaelis T, Merboldt K-D, Bruhn H, Gyngell ML, Hänicke W. (1990) Improvements in localized proton NMR spectroscopy of human brain. Water suppression, short echo times, and 1 ml resolution. J. Magn. Reson 90: 464–473.

    CAS  Google Scholar 

  • Frahm J, Michaelis T, Merboldt K-D, et al. (1988) Localized NMR spectroscopy in vivo: progress and problems. NMR in Biomed 2 (5/6): 188–195.

    Google Scholar 

  • Greenman RL, Axel L, Lenkinski RE. (1998) Direct imaging of phosphocreatine in the human myocardium using a RARE sequence at 4.0 T. Proceedings, 6th International Society for Magnetic Resonance in Medicine. Sydney, Australia: p. 1922.

    Google Scholar 

  • Gruetter R, Adriany G, Merkle H, Anderson PM. (1996) Broadband decoupled, 1H-localized 13C MRS of the human brain at 4 Tesla. Magn. Reson. Med 36: 659–664.

    Article  PubMed  CAS  Google Scholar 

  • Gruetter R, Mescher M, Kirsch J, et al. (1997) 1H MRS of neurotransmitter GABA in humans at 4 Tesla. Proceedings, 5th International Society for Magnetic Resonance in Medicine. Vancouver, Canada:, 1217.

    Google Scholar 

  • Gruetter R, Novotny EJ, Boulware SD, et al. (1994) Localized 13C NMR spectroscopy in the human brain of amino acid labeling from D-[1– 13C]glucose. J. Neurochem 63: 1377–1385.

    Article  PubMed  CAS  Google Scholar 

  • Gyngell ML, Busch E, Schmitz B, et al. (1995) Evolution of acute focal cerebral ischemia in rats observed by localized 1H MRS, diffusion weighted MRI and electrophysiological monitoring. NMR in Biomed 8: 206–214.

    Article  CAS  Google Scholar 

  • Hamilton PA, Hope PL, Cady EB, Delpy DT, Wyatt JS, Reynolds EOR. (1986) Impaired energy metabolism in brains of newborn infants with increased cerebral echodensities. Lancet 1242–1246.

    Google Scholar 

  • Hanefeld F, Holzbach U, Kruse B, Wilichowski E, Christen HJ, Frahm J (1993) Diffuse white matter disease in three children: an encephalophathy with unique features on magnetic resonance imaging and proton magnetic resonance spectroscopy. Neuropediatrics 24 (5): 244–248.

    Article  PubMed  CAS  Google Scholar 

  • Hanstock CC, Rothman DL, Prichard JW, Jue R, Shulman R. (1988) Spatially localized 1H NMR spectra of metabolites in the human brain. Proc. Natl. Acad. Sci. USA 85: 1821–1825.

    Article  PubMed  CAS  Google Scholar 

  • Heerschap A, van den Berg P. (1993) Proton MR spectroscopy of the human fetus in utero. Proceedings, 12th Society of Magnetic Resonance in Medicine. New York: 318.

    Google Scholar 

  • Hennig J, Pfister H, Ernst T, Ott D. (1992) Direct absolute quantification of metabolites in the human brain with in vivo localized proton spectroscopy. NMR Biomed 5: 193–99.

    Article  PubMed  CAS  Google Scholar 

  • Hetherington HP, Newcomer BR, Pan JW. (1998) Measurements of human cerebral GABA at 4.1 T using numerically optimized editing pulses. Magn. Reson. Med 39: 6–10.

    Article  PubMed  CAS  Google Scholar 

  • Hoang T, Dubowitz D, Bluml S, Kopyov OV, Jacques D, Ross BD. (1997) Quantitative 1H MRS of neurotransplantation in patients with Parkinson’s and Huntington’s disease. 27th Annual Meeting, Society for Neuroscience. New Orleans, LA. Oct. 25–30: 658. 9.

    Google Scholar 

  • Hope PL, Cady EB, Tofts PS, et al. (1984) Cerebral energy metabolism studied with phosphorus NMR spectroscopy in normal and birth-asphyxiated infants. Lancet (Aug): 366–370.

    Google Scholar 

  • Hossman K-A. (1994) Viability thresholds and the penumbra of focal ischemia. Ann. Neurol 36: 557–565.

    Article  Google Scholar 

  • Hurd RE, Gurr D, Sailasuta N. (1998) Proton spectroscopy without water suppression: The over-sampled J-Resolved experiment. Magn. Res. Med. 40, 343–347.

    Article  CAS  Google Scholar 

  • Kanamori K, Ross BD. (1997) In vivo nitrogen MRS studies of rat brain metabolism. In: Bachelard H, ed. Advances in Neurochemistry. New York: Plenum Publishing 66–90. vol 8 ).

    Google Scholar 

  • Kreis R. (1997) Quantitative localized 1H MR spectroscopy for clinical use. Progress in Nuclear Magnetic Resonance Spectroscopy 31: 155–195.

    Article  CAS  Google Scholar 

  • Kreis R, Ernst T, Ross BD. (1993a) Absolute quantitation of water and metabolites in the human brain. Part II: Metabolite concentrations. J. Magn. Reson 102 (1): 9–19.

    Article  CAS  Google Scholar 

  • Kreis R, Ernst T, Ross BD. (1993b) Development of the human brain: In vivo quantification of metabolite and water content with proton magnetic resonance spectroscopy. Magn. Reson. Med 30: 1–14.

    Article  Google Scholar 

  • Kreis R, Farrow NA, Ross BD. (1990) Diagnosis of hepatic encephalopathy by proton magnetic resonance spectroscopy. Lancet 336: 635–6.

    Article  PubMed  CAS  Google Scholar 

  • Kreis R, Farrow NA, Ross BD. (1991) Localized 1H NMR spectroscopy in patients with chronic hepatic encephalopathy. Analysis of changes in cerebral glutamine, choline and inositols. NMR Biomed 4: 109–16.

    Article  PubMed  CAS  Google Scholar 

  • Kreis R, Ross BD, Farrow NA, Ackerman Z. (1992) Metabolic disorders of the brain in chronic hepatic encephalopathy detected with 1H MRS. Radiology 182: 19–27

    PubMed  CAS  Google Scholar 

  • Kumar A, Welti D, Ernst RR. (1975) NMR Fourier zeugmatography. J Magn Reson 18: 69–83

    CAS  Google Scholar 

  • Mason GF, Gruetter R, Rothman DL, Behar KL, Shulman RG, Novotny EJ. (1995) NMR determination of the TCA cycle rate and a-ketoglutarate/glutamate exchange rate in rat brain. J. Cereb. Blood Flow Metab 15: 12–25.

    Article  PubMed  CAS  Google Scholar 

  • Merboldt K-D, Bruhn H, Hanicke W, Michaelis T, Frahm J. (1992) Decrease of glucose in the human visual cortex during photic stimulation. Magn. Reson. Med 25: 187–194.

    Article  PubMed  CAS  Google Scholar 

  • Merboldt KD, Chien D, Hanicke W, Gyngell ML, Bruhn H, Frahm J. (1990) Localized 31P NMR spectroscopy of the adult human brain in vivo using stimulated-echo (STEAM) sequences. J. Magn. Reson 89: 343–361.

    CAS  Google Scholar 

  • Michaelis T, Merboldt K-D, Bruhn H, Hänicke W, Frahm J. (1993) Absolute concentrations of metabolites in the adult human brain in vivo: Quantification of localized proton MR spectra. Radiology 187: 219–27.

    PubMed  CAS  Google Scholar 

  • Michaelis T, Merboldt K-D, Hänicke W, Gyngell ML, Bruhn H, Frahm J. (1991) On the identification of cerebral metabolites in localized 1H NMR spectra of human brain in vivo. NMR Biomed 4: 90–8.

    Article  PubMed  CAS  Google Scholar 

  • Narayana PA, Johnston D, Flamig DP. (1991) In vivo proton magnetic resonance spectroscopy studies of human brain. Magn. Reson. Imag 9: 303–308.

    Article  CAS  Google Scholar 

  • Oberhaensli RD, Hilton Jones D, Bore PJ, Hands LJ, Rampling RP, Radda GK. (1986) Biochemical investigation of human tumours in vivo with phosphorus-31 magnetic resonance spectroscopy. Lancet 2: 8–11.

    Article  PubMed  CAS  Google Scholar 

  • Ordidge RJ, Bendall MR, Gordon RE, Connelly A. (1985) Volume selection for in vivo biological spectroscopy. In: Govil G, Khetrapal CL, Saran A, ed. Magnetic Resonance in Biology and Medicine. New Delhi: Tata McGraw-Hill, 387–397.

    Google Scholar 

  • Ordidge RJ, Connelly A, Lohman JAB. (1986) Image-selected in vivo spectroscopy (ISIS). A new technique for spatially selective NMR spectroscopy. J. Magn. Reson 66: 283–294.

    CAS  Google Scholar 

  • Pettegrew JW, Minshew NJ, Cohen MM, Kopp SJ, Glonek T. (1984) P-31 NMR changes in Alzheimer and Huntington diseased brain. Neurology 34: 281.

    Google Scholar 

  • Prichard JW, Alger JR, Behar KL, Petroff OAC, Shulman RG. (1983) Cerebral metabolic studies in vivo by 31P NMR. Proc Natl Acad Sci USA 80: 2748–2751.

    Article  PubMed  CAS  Google Scholar 

  • Provencher SW. (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn. Reson. Med 30: 672–79.

    Article  PubMed  CAS  Google Scholar 

  • Ross BD (1979) Techniques for investigation of tissue metabolism. In: Kornboj HC, Metcalf JC, Northcote D, Pogson CI, Tipton KF, (eds) Techniques in Metabolic Research, Part I. Elsevier,: 1–22. vol B203 ).

    Google Scholar 

  • Ross BD, Bluml S, Cowan R, Danielsen ER, Farrow N, Gruetter R. (1997) In vivo magnetic resonance spectroscopy of human brain: the biophysical basis of dementia. Biophysical Chemistry 68: 161–172.

    Article  PubMed  CAS  Google Scholar 

  • Ross BD, Hoang T, Blüml S, Dubowitz D, Kopyov OV, Jacques DB, Alexander Lin, Kay Seymour and Jeannie Tan. In vivo magnetic resonance spectroscopy of human fetal neural transplants. NMR in Biomed 1999, 12: 221–236.

    Article  CAS  Google Scholar 

  • Ross BD, Kreis R, Ernst T. (1992) Clinical tools for the 90’s: magnetic resonance spectroscopy and metabolite imaging. Eur. J. Radiol 14: 128–140.

    Article  PubMed  CAS  Google Scholar 

  • Ross BD, Michaelis T. (1994) Clinical applications of magnetic resonance spectroscopy. Magn. Re-son. Quarterly 10 (4): 191–247.

    CAS  Google Scholar 

  • Ross BD, Narasimhan PT, Tropp J, Derby K. (1989) Amplification or obfuscation: Is localization improving our clinical understanding of phosphorus metabolism? NMR in Biomed 2 (5): 340–345.

    Article  CAS  Google Scholar 

  • Ross BD, Radda GK, Gadian DG, Rocker G, Esiri M, Falconer-Smith JC (1981) Examination of a case of suspected McArdle’s syndrome by 31P nuclear magnetic resonance. N. Engl. J. Med 304 (22): 1338–42.

    Article  PubMed  CAS  Google Scholar 

  • Rothman DL, Petroff OAC, Behar KL, Mattson RH. (1993) Localized 1H NMR measurements of yaminobutyric acid in human brain in vivo. Proc. Natl. Acad. Sci 90: 5662–5666.

    Article  PubMed  CAS  Google Scholar 

  • Ryner LN, Sorenson JA, Thomas MA. (1995) Localized 2D J-Resolved 1H MR spectroscopy: strong coupling effects in vitro and in vivo. Magn. Reson. Imag 13 (6): 853–869.

    Article  CAS  Google Scholar 

  • Seymour, K., Bluml S, Sutherling J, Sutherling W and Ross B.D. (1998) Identification of cerebral acetone by 1H MRS in patients with epilepsy, controlled by ketogenic diet 1999, MAGMA, 8: 33–42

    Google Scholar 

  • Shen J, Novotny EJ, Rothman DL. (1998) In vivo lactate and 3-hydroxybutyrate editing using a pure phase refocusing pulse train. Proceedings, 6th International Society for Magnetic Resonance in Medicine. Sydney, Australia: 1883.

    Google Scholar 

  • Stockler S, Hanefeld F, Frahm J. (1996) Creatine replacement therapy in guanidinoacetate methyltransferase deficiency, a novel inborn error of metabolism. Lancet 348: 789–90.

    Article  PubMed  CAS  Google Scholar 

  • Tallan HH. (1957) Studies on the distribution of N-acetyl-L-aspartic acid in brain. J. Biol. Chem 224: 41–45.

    PubMed  CAS  Google Scholar 

  • Thulborn KR, Ackerman JJH. (1983) Absolute molar concentrations by NMR in inhomogeneous B1. A scheme for analysis of in vivo metabolites. J. Magn. Reson 55: 357–371.

    CAS  Google Scholar 

  • Thulborn KR, du Boulay GH, Radda GK (1981) Proceedings of the Xth Int. Symp. on Cerebral Blood Flow and Metabolism.

    Google Scholar 

  • Van der Knaap MS, Ross BD, Valk J. (1993) Uses of MR in inborn errors of metabolism. In: Kucharcyzk J, Barkovich AJ, Moseley M, ed. Magnetic Resonance Neuroimaging. Boca Raton: CRC Press, Inc. 245–318.

    Google Scholar 

  • Webb PG, Sailasuta N, Kohler S, Raidy T, Moats RA, Hurd RE. (1994) Automated single-voxel proton MRS: Technical development and multisite verification. Magn. Reson. Med 31 (4): 365–373.

    Article  PubMed  CAS  Google Scholar 

  • Welch KMA. (1992) The imperatives of magnetic resonance for the acute stroke clinician (Plenary Lecture). 11th Society of Magnetic Resonance in Medicine. Berlin: 901.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blüml, S., Ross, B. (1999). Magnetic Resonance Spectroscopy of the Human Brain. In: Windhorst, U., Johansson, H. (eds) Modern Techniques in Neuroscience Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58552-4_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58552-4_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63643-1

  • Online ISBN: 978-3-642-58552-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics