Skip to main content

Long-term Cuff Electrode Recordings from Peripheral Nerves in Animals and Humans

  • Chapter
Modern Techniques in Neuroscience Research

Abstract

A peripheral nerve contains thousands of nerve fibers, each of them transmitting information, either from the periphery to the central nervous system or from the central nervous system to the periphery. The efferent fibers transmit information to actuators, mainly muscles, whereas afferent fibers transmit sensory information about the state of organs and events, such as muscle length, touch, skin temperature, joint angles, nociception, and several other modalities of sensory information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Andreasen LNS, Jensen W. (1996) Characterization of the calcaneal and sural ENG during standing-An experimental study. Master thesis, report nr. S10–M11, Aalborg University, Denmark

    Google Scholar 

  • Davis LA, Gordon T, Hoffer JA, Jhamandas J, Stein RB. (1978) Compound action potentials recorded from mammalian peripheral nerves following ligation or resuturing. J. Physiol. (Lond) 285: 543–559

    CAS  Google Scholar 

  • Erzin R, Bajd T., Kralj A., Savrim R., Benko H. (1996) Influence of sensory biofeedback on FES assisted walking, Elektroteh. Vestn., 63: 53

    Google Scholar 

  • Gillespie MJ, Stein RB. (1983) The relationship between axon diameter, myelin thickness and conduction velocity during atrophy of mammalian peripheral nerves. Brain Res., 259:41–56

    Article  PubMed  CAS  Google Scholar 

  • Gordon T, Gillespie J, Orozco R, Davis L. (1991) Axotomy-induced changes in rabbit hindlimb nerves and the effects of chronic electrical stimulation. J. Neurosci., 11:2157–2169

    PubMed  CAS  Google Scholar 

  • Gordon T, Hoffer JA, Jhamandas J, Stein RB. (1980) Long-term effects of axotomy on neural activity during cat locomotion. J. Physiol. (Lond) 303:243–263

    CAS  Google Scholar 

  • Grill WM, Mortimer JT (1994) Electrical properties of implant encapsulation tissue. Annals of Biomed. Eng. 22: 23–33

    Article  CAS  Google Scholar 

  • Hanson MA, Moore PJ, Nijhuis JG. (1987) Chronic recording from the phrenic nerve in fetal sheep in utero. J. Physiol. (Lond) 394: 4 P

    Google Scholar 

  • Haugland, M., Hoffer, J.A. (1994a) Artifact-free sensory nerve signals obtained from cuff electrodes during functional electrical stimulation of nearby muscles. IEEE Transactions on Rehabilitation Engineering, 2: 37–39

    Article  Google Scholar 

  • Haugland MK, Hoffer JA, Sinkjœr T. (1994) Skin contact force information in sensory nerve signals recorded by implanted cuff electrodes. IEEE Trans. Rehab. Eng., 2: 18–28

    Article  Google Scholar 

  • Haugland MK, Hoffer JA. (1994b) Slip information provided by nerve cuff signals: Application in closed-loop control of functional electrical stimulation. IEEE Trans. Rehab. Eng. 2: 29–36

    Article  Google Scholar 

  • Haugland MK, Lickel A, Haase J, Sinkjœr T. (1999) Control of FES thumb force using slip information obtained from the cutaneous electro-neurogram in quadriplegic man. IEEE Trans. Rehab. Eng., Vol. 7.

    Google Scholar 

  • Haugland M, Lickel A, Riso R, Adamczyk MM, Keith M, Jensen IL, Haase J, Sinkjœr T. (1995) Restoration of lateral hand grasp using natural sensors. Proc. of the 5th Vienna Int. Workshop on FES, Vienna, pp. 339–342

    Google Scholar 

  • Haugland MK, Sinkjœr T. (1995) Cutaneous whole nerve recordings used for correction of foot-drop in hemiplegic man. IEEE Trans. Rehab. Eng., 3: 307–317

    Article  Google Scholar 

  • Haugland MK, Sinkjœr T. (1999) Control with natural sensors. Invited chapter to section VIII. Synthesis of Posture and movement in Neural Prostheses. Book Editors: Jack Winters and Pat Crago. In Press

    Google Scholar 

  • Häbler HJ, Jänig W, Koltzenburg M. (1993) Myelinated primary afferents of the sacral spinal cord responding to slow filling and distention of the cat urinary bladder, J. Physiol. (Lond) 463: 449

    Google Scholar 

  • Hoffer JA. (1990) Techniques to record spinal cord, peripheral nerve and muscle activity in freely moving animals. In: Neurophysiological Techniques: Applications to Neural Systems. Neuromethods 15, A. A. Boulton, G.B. Baker and C.H. Vanderwolf, Eds. Humana Press, Clifton, N.J., pp. 65–145

    Google Scholar 

  • Hoffer JA, Loeb GE, Pratt CA. (1981) Single unit conduction velocities from averaged nerve cuff electrode records in freely moving cats. J. of Neurosc. Meth., 4: 211–225

    Article  CAS  Google Scholar 

  • Hoffer JA, Loeb GE, Marks WB, O’Donovan MJ, Pratt CA, Sugano N. (1987) Cat hindlimb motoneurons during locomotion. I. Destination, axonal conduction velocity and recruitment threshold. J. Neurophysiol., 57: 510–529

    PubMed  CAS  Google Scholar 

  • Hoffer JA, Marks WB, Rymer WZ. (1974) Nerve fiber activity during normal movements, Soc. Neurosci. Abstr., 4: 300

    Google Scholar 

  • Hoffer JA, Sinkjœr T. (1986) A natural “force sensor” suitable for closed-loop control of functional neuromuscular stimulation. Proc. 2nd Vienna Int. Workshop on Functional Electrostimulation, pp. 47–50

    Google Scholar 

  • Hoffer JA, Stein RB, Gordon T. (1979) Differential atrophy of sensory and motor fibers following section of cat peripheral nerves. Brain Res., 178: 347–361

    Article  PubMed  CAS  Google Scholar 

  • Jensen W., Riso R.R. and Sinkjær T. (1998) Position information in whole nerve cuff recordings of muscle spindle afferents in a rabbit model of normal and paraplegic standing. Proceedings of the IEEE/EMBS Annual Meeting, Hong Kong, Nov

    Google Scholar 

  • Jezernik S, Wen JG, Rijkhoff NJM, Djurhuus JC, Sinkjœr T. (1999) Analysis of nerve cuff electrode recordings from preganglionic pelvic nerve and sacral roots in pigs. J. Urology, Submitted

    Google Scholar 

  • Jezernik S, Wen JG, Rijkhoff NJM, Haugland M, Djurhuus JC, Sinkjœr T. (1997) Whole nerve cuff recordings from nerves innervating the urinary bladder, Second Annual IFESS Conference/Fifth Triennial Neural Prostheses Conference, Vancouver, Canada, Proceedings pp. 45–46, August

    Google Scholar 

  • Johansson RS, Hager C, Backström L. (1992c) Somatosensory control of precision grip during unpredictable pulling loads: III. Impairments during digital anesthesia, Exp. Brain Res., 89:204

    Article  CAS  Google Scholar 

  • Johansson RS, Hager C, Riso RR, (1992b) Somatosensory control of precision grip during unpredictable pulling loads. II. Changes in load force rate, Exp. Brain Res., 89:192

    Article  CAS  Google Scholar 

  • Johansson RS, Riso RR, Hager C, Backström C. (1992a) Somatosensory control of precision grip during unpredictable pulling loads: 1. Changes in load force amplitude, Exp. Brain Res., 89:204

    Article  CAS  Google Scholar 

  • Johansson RS, Westling G. (1987) Signals in tactile afferents from the fingers eliciting adaptive motor responses during precision grip, Exp. Brain Res., 67:141

    Google Scholar 

  • Kallesoe JA, Hoffer JA, Strange K, Valenzuela I. (1996) Implantable cuff having improved closure: United States Patent No.5,487,756, awarded January 30

    Google Scholar 

  • Knaflitz M, Merletti R. (1988) Suppression of stimulation artifacts from myoelectric-evoked potential recordings. IEEE Transactions on Biomedical Engineering, 35(9):758–763

    Article  PubMed  CAS  Google Scholar 

  • Krarup C, Loeb GE. (1987) Conduction studies in peripheral cat nerve using implanted electrodes: I. Methods and findings in control. Muscle & Nerve, 11:922–932

    Google Scholar 

  • Krarup C, Loeb GE, Pezeshkpour GH. (1988) Conduction studies in peripheral cat nerve using implanted electrodes: II The effects of prolonged constriction on regeneration of crushed nerve fibers. Muscle & Nerve, 11: 933–944

    Article  CAS  Google Scholar 

  • Krarup C, Loeb GE, Pezeshkpour GH. (1989) Conduction studies in peripheral cat nerve using implanted electrodes: III The effects of prolonged constriction on the distal nerve segment. Muscle & Nerve, 12: 915–928

    Article  CAS  Google Scholar 

  • Larsen JO, Thomsen M, Haugland M, Sinkjær T. (1998) Degeneration and regeneration in rabbit peripheral nerve with long-term nerve cuff electrode implant. A stereological study of myelinated and unmyelinated axons. Acta Neuropathologica, 96: 365–378

    Article  PubMed  CAS  Google Scholar 

  • Lickel A, Haugland MK, Sinkjœr T. (1996) Comparison of catch responses between a tetraplegic patient using an FES system and healthy subjects, Proc. 18th Annual International Conference of IEEE/EMBS

    Google Scholar 

  • Little JW. (1986) Serial recording of reflexes after feline spinal cord transection. Exp. Neurol., 93: 510–521

    Article  PubMed  CAS  Google Scholar 

  • Loeb GE, Marks WB, Hoffer JA. (1987) Cat hindlimb motoneurons during locomotion. IV. Participation in cutaneous reflexes. J. Neurophysiol., 57: 563–573

    PubMed  CAS  Google Scholar 

  • Loeb GE, Peck RA, (1996) Cuff electrodes for chronic stimulation and recording of peripheral nerve activity. J. Neurosc. Meth., 64: 95–103

    Article  CAS  Google Scholar 

  • Marks WB, Loeb GE. (1976) Action currents, internodal potentials and extracellular records of myelinated mammalian nerve fibres derived from node potentials. Biophys. J., 16: 655–668

    Article  PubMed  CAS  Google Scholar 

  • Marshall KW, Tatton WG. (1990) Joint receptors modulate short and long latency muscle responses in the awake cat. Exp. Brain Res., 83: 137–150

    Article  PubMed  CAS  Google Scholar 

  • Milner TE, Dugas C, Picard N, Smith AM. (1991) Cutaneous afferent activity in the median nerve during grasping in the primate. Brain Res., 548: 228–241

    Article  PubMed  CAS  Google Scholar 

  • Naples GG, Mortimer JT, Schemer A, Sweeney JD. (1988) A spiral cuff electrode for peripheral nerve stimulation, IEEE Trans. Biomed. Eng., 35: 905

    Article  PubMed  CAS  Google Scholar 

  • Nicolic ZM, Popovic DB, Stein RB, Kenwell Z. (1994) Instrumentation for ENG and EMG recordings in FES systems. IEEE Trans. Biomed. Eng., 41: 703–706

    Article  Google Scholar 

  • Palmer CI, Marks WB, Bak MJ. (1985) The responses of cat motor cortical units to electrical cutaneous stimulation during locomotion and during lifting, falling and landing. Exp. Brain Res., 58: 102–116

    Article  PubMed  CAS  Google Scholar 

  • Pflaum C, Riso RR. (1996) Performance of alternative amplifier configurations for tripolar nerve cuff recorded ENG, Proc. 18th Annual meeting IEEE/Engr. In Med. Biol. Soc., Amsterdam

    Google Scholar 

  • Phillips CA (1988) Sensory feedback control of upper and lower extremity, motor prostheses CRC Crit. Rev. Biomed. Eng., 16:105

    CAS  Google Scholar 

  • Popovic DB, Stein RB, Jovanovic KL, Rongching D, Kostov A, Armstrong WW. (1993) Sensory nerve recording for closed-loop control to restore motor functions. IEEE Trans. Biomed. Eng., 40: 1024–1031

    Article  PubMed  CAS  Google Scholar 

  • Rijkhoff NJM, Wijkstra H, van Kerrebroeck PEV, Debruyne FMJ. (1998) Selective detrusor activation by sacral ventral nerve root stimulation: First results of intraoperative testing in humans during implantation of a Finetech-Brindley system. World Journal of Urology, 16:337–341

    Article  PubMed  CAS  Google Scholar 

  • Riso RR. (1998) Perspectives on the role of natural sensors for cognitive feedback in neuromotor prostheses. Automedica, 16:329–353

    Google Scholar 

  • Riso RR, Slot PJ. (1996) Characterization of the ENG activity from a digital nerve for feedback control in grasp neuroprostheses, In: Neuroprosthethics from basic research to clinical applications, Pedotti A., Ferrarin M., Quintern J., Riener R., Eds, Springer, pp. 354–358

    Google Scholar 

  • Riso RR, Mosallie FK, Jensen W, Sinkjœr T. (1999) Nerve Cuff recordings of muscle afferent activity from tibial and peroneal nerves in rabbit during passive ankle motion. IEEE Trans. on Rehab. Eng. Provisionally accepted

    Google Scholar 

  • Riso RR, Slot P, Haugland M, Sinkjœr T. (1995) Characterization of cutaneous nerve responses for control of neuromotor prostheses, Proc. 5th Vienna Intl. Workshop on Functional Electrical Stimulation, p. 335

    Google Scholar 

  • Sahin M, Haxhiu MA, Durand DM, Dreshaj IA. (1997) Spiral nerve cuff electrode for recording of respiratory output. J. Appl. Physiol., 83: 317

    PubMed  CAS  Google Scholar 

  • Sinkjœr T, Hansen M, Upshaw B, Haugland M, Kostov A. (1998) Processing sensory nerve signals meant for control of paralyzed muscles. NORSIG ’88 IEEE Nordic Signal Processing Symposium. 8th–11th June, Vigso Holiday Resort, Denmark, 17–24.

    Google Scholar 

  • Sinkjœr T, Haugland MK, Haase J. (1994) Natural neural sensing and artificial muscle control in man. Exp. Brain Res., 98: 542

    Google Scholar 

  • Sinkjœr T, Haugland M, Haase J. (1993) Neural cuff electrode recordings as a replacement of lost sensory feedback in paraplegic patients. Neurobionics, 267–277

    Google Scholar 

  • Sinkjœr T, Hoffer JA. (1990) Factors determining segmental reflex action in normal and decerebrate cats. J. Neurophysiol., 64: 1625–1635

    Google Scholar 

  • Slot P, Selmar P, Rasmussen A, Sinkjœr T. (1997) Effect of long-term implanted nerve cuff electrodes on the electrophysiological properties of human sensory nerves. J. Artificial Organs, 21: 207–209

    CAS  Google Scholar 

  • Stein RB, Charles D, Davis L, Jhamandas J, Mannard A, Nichols TR. (1975) Principles underlying new methods for chronic neural recording. Canad. J. Neurol. Sci., 2: 235–244

    PubMed  CAS  Google Scholar 

  • Stein RB, Gordon T, Ogurtöreli, Lee RG. (1981) Classifying sensory patterns and their effects on locomotion and tremor. Can. J. Physiol. Pharmacol., 59: 645–655

    Article  PubMed  CAS  Google Scholar 

  • Stein RB, Nichols TR, Jhamandas J, Davis L, Charles D. (1977) Stable long-term recordings from cat peripheral nerves. Brain Res., 128: 21–38

    Article  PubMed  CAS  Google Scholar 

  • Strain RE, Olson WH. (1975) Selective damage of large diameter peripheral nerve fibers by compression: An application of Laplace’s law. Exp. Neurol., 47: 68–80

    Article  PubMed  CAS  Google Scholar 

  • Struijk, J.J., Thomsen, M., Larsen, J.O., Sinkjœr, T. (1999) The use of cuff electrodes in long-term recordings of natural sensory information from peripheral nerves. IEEE Engineering in Medicine and Biology Magazine. May/June 1999

    Google Scholar 

  • Struijk JJ, Thomsen M. (1998) Tripolar nerve cuff recording: Stimulus artifact, EMG and the recorded nerve signal. 17th Annual International Conference IEEE Engineering in Medicine and Biology Society, September, Montreal, Quebec, Canada. Only available on CD-ROM

    Google Scholar 

  • Thomsen M. (1998) Characterisation and optimisation of whole nerve cuff recording cuff electrodes. Ph.D.-thesis, Aalborg University, Denmark

    Google Scholar 

  • Thomsen M, Struijk JJ, Sinkjœr T. (1996) Artifact reduction with monopolar nerve cuff recording electrodes. 18th Annual Int. Conference of the IEEE Engineering in Medicine and Biology Society, October-November, Amsterdam, The Netherlands

    Google Scholar 

  • Thomsen M, Struijk JJ, Sinkjœr T. (1999) Nerve cuff recording with a combined mono-and bipolar electrode, IEEE Trans. Rehab. Eng., Submitted

    Google Scholar 

  • Tyler DJ, Durand DM. (1996) Selective stimulation with a chronic slowly penetrating interfascicular nerve electrode. Proceedings of the 18th Annual Meeting of the IEEE/EMBS, Amsterdam, paper #582

    Google Scholar 

  • Upshaw, B., Sinkjœr, T. (1998) Digital signal processing algorithms for the detection of afferent nerve activity recorded from cuff electrodes. IEEE Transactions on Rehabilitation Engineering, 6: 172–181

    Article  PubMed  CAS  Google Scholar 

  • Upshaw B, Sinkjœr T. (1997) Natural vs. artificial sensors applied in peroneal nerve stimulation. Journal of Artificial Organs, 21 (3): 227–231

    Article  CAS  Google Scholar 

  • Westling G, Johansson RS. (1984) Factors influencing the force control during precision grip, Exp. Br. Res., 53: 277

    Article  CAS  Google Scholar 

  • Woodbury JW, Woodbury DM. (1991) Vagal stimulation reduces the severity of maximal electroshock seizures in intact rats: Use of a cuff electrode for stimulating and recording. Pace, 14: 94–107

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Horch K. (1996) Closed-loop control of ankle position using muscle afferent feedback with functional neuromuscular stimulation, IEEE Trans. Biomed. Eng., 43 (2): 167

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sinkjær, T., Haugland, M., Struijk, J., Riso, R. (1999). Long-term Cuff Electrode Recordings from Peripheral Nerves in Animals and Humans. In: Windhorst, U., Johansson, H. (eds) Modern Techniques in Neuroscience Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58552-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58552-4_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63643-1

  • Online ISBN: 978-3-642-58552-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics