Skip to main content

Cell and Tissue Transplantation in the Rodent CNS

  • Chapter
Modern Techniques in Neuroscience Research
  • 1381 Accesses

Abstract

Transplantation of cells/tissue to the central nervous system (CNS) is a widely used experimental tool for studies of developmental and regenerative processes (for reviews, see in Dunnett and Björklund (eds) (1994), and Gaiano and Fishell (1998)). Transplantation is also of major interest with regard to neurodegenerative diseases as well as to several other CNS disorders, since experiments in related animal models have shown that grafts can ameliorate lesion-induced deficits. Depending on the characteristics of the disease model and of the implanted cells/tissue, such graft-derived functional effects have been shown to be mediated through different mechanisms, such as partial reconstruction of damaged circuitries, diffuse release of substances, trophic support and stimulation of regenerative processes (Dunnett and Björklund 1994). Indeed, transplantation is today also applied in clinical trials in patients with, for example, Parkinson’s disease or Huntington’s chorea (Lindvall 1994, Kopyov et al 1998, and in Freeman and Widner (eds) 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Altman J, Bayer SA (1995) Atlas of prenatal rat brain development. CRC Press Inc, Ann Arbor.

    Google Scholar 

  • Alvarez-Bolado G, Swanson LW (1996) Developmental brain maps: structure of the embryonic rat brain. Elsevier, Amsterdam.

    Google Scholar 

  • Barker RA, Fricker RA, Abrous DN, Fawcett J, Dunnett SB (1995) A comparative study of preparation techniques for improving the viability of nigral grafts using vital stains, in vitro cultures, and in vivo grafts. Cell Transplantation 4 (2): 173–200.

    PubMed  CAS  Google Scholar 

  • Bayer SA (1984) Neurogenesis in the rat neostriatum. Int J Dev Neurosci 2: 163–175

    Google Scholar 

  • Bayer SA, Altman J (1995) Neurogenesis and neuronal migration. In The rat nervous system. Second Edition (ed Paxinos G ) pp 1041–1078, Academic Press, San Diego.

    Google Scholar 

  • Bengzon J, Kokaia M, Brundin P, Lindvall O (1990) Seizure suppression in kindling epilepsy by intrahippocampal locus coeruleus grafts: evidence for an alpha-2-adrenoreceptor mediated mechanism. Exp Brain Research 81: 433–437.

    CAS  Google Scholar 

  • Björklund A, Katzman R, Stenevi U, West KA (1971) Development and growth of axonal sprouts from noradrenaline and 5-hydroxytryptamine neurones in the rat spinal cord. Brain Res 31: 21–33.

    PubMed  Google Scholar 

  • Björklund A, Stenevi U (1971) Growth of central catecholamine neurons into smooth muscle grafts in the rat mesencephalon. Brain Res 31: 1–20.

    PubMed  Google Scholar 

  • Björklund A, Schmidt RH, Stenevi U (1980) Functional reinnervation of the neostraitum in the adult rat by use of intraparenchymal grafting of dissociated cell suspensions from the substantia nigra. Cell Tiss Res 212: 39–45.

    Google Scholar 

  • Björklund A, Stenevi U, Schmidt RH, Dunnett SB, Gage FH (1983) Intracerebral grafting of neuronal cell suspensions. I. Introduction and general methods of preparation. Acta Physiol Scand 522: 1–7

    Google Scholar 

  • Björklund A, Stenevi U (1984) Intracerebral neural implants: neuronal replacement and reconstruction of damaged circuitries. Ann Rev Neurosci 7: 229–308.

    Google Scholar 

  • Björklund A, Stenevi U (1985) Intracerebral neural grafting: a historical perspective. In Neural grafting in the mammalian CNS (eds Björklund Am Stenevi U ) pp 3–14. Elsevier, Amsterdam.

    Google Scholar 

  • Björklund A, Nornes H, Gage FH (1986) Cell suspension grafts of noradrenergic locus coeruleus neurons in rat hippocampus and spinal cord: reinnervation and transmitter turnover. Neuroscience 18: 685–698.

    PubMed  Google Scholar 

  • Björklund A, Dunnett SB (1992) Neural transplantation in adult rats. In Neural transplantation. A practical approach. (eds Dunnett SD, Björklund A) pp 57–78, IRL Press, at Oxford University Press, Oxford.

    Google Scholar 

  • Björklund A, Campbell K, Sirinathsinghji DJS, Fricker RA, Dunnett SB (1994) Functional capacity of striatal transplants in the rat Huntington model. In Functional neural transplantation (eds Dunnett SB, Björklund A ) pp 157–195, Raven Press, New York.

    Google Scholar 

  • Björklund L, Spenger C, Stromberg I (1997) Tirilazad mesylate increases dopaminergic neuronal survival in the in oculo grafting model. Exp Neurol 148 (1): 324–333.

    PubMed  Google Scholar 

  • Bregman BS (1994) Recovery of function after spinal cord injury: transplantation strategy. In Functional neural transplantation (eds Dunnett SB, Björklund A ) pp 489–530. Raven Press, New York.

    Google Scholar 

  • Brent L (1990) Immunologically privileged sites. In: Pathophysiology of the Blood-Brain Barrier (eds Johansson BB, Owman C, Widner H ) pp 383–402, Elsevier, Amsterdam

    Google Scholar 

  • Brundin P, Isacson O, Björklund A (1985a) Monitoring of cell viability of embryonic tissue and its use as a criterion for intracerebral graft survival. Brain Res 331: 251–259.

    PubMed  CAS  Google Scholar 

  • Brundin P, Nilsson OG, Gage FH, Björklund A (1985b) Cyclosporin A increases the survival of cross-species intrastriatal grafts of embryonic dopamine neurons. Exp Brain Res 60: 204–208.

    PubMed  CAS  Google Scholar 

  • Brundin P, Duan W-M, Sauer H (1994) Functional effects of mesencephalic dopamine neurons and adrenal chromaffin cells grafted to the rodent striatum. In Functional neural transplantation (eds Dunnett SB, Björklund A ) pp 9–46. Raven Press, New York.

    Google Scholar 

  • Brüstle O, Maskos U and McKay RDG (1995) Host-guided midration allows targeted introduction of neurons into the embryonic brain. Neuron 15, 1275–1285.

    PubMed  Google Scholar 

  • Campbell K, Kalén P, Lundberg C, Wictorin K, Mandel RJ, Björklund A (1993) Characterization of GABA release from intrastriatal striatal transplants: Dependence on host-derived afferents. Neuroscience 53: 403–415.

    PubMed  CAS  Google Scholar 

  • Campbell K, Olsson M, Björklund A (1995) Regional incorporation and site -specific differentiation of striatal precursors transplanted to the embryonic forebrain ventricle. Neuron 15, 1259–1273.

    PubMed  CAS  Google Scholar 

  • Castro AJ, Tönder N, Sunde NA, Zimmer J (1988) Fetal neocortical transplants grafted to the cerebral cortex of newborn rats receive afferents from the basal forebrain, locus coeruleus and midline raphe. Exp Brain Res 69: 613–622.

    PubMed  CAS  Google Scholar 

  • Czech KA, Larsson L, Wahlgren L, Bennett W Korsgren O, Widner H (1999) Short-term combination immunosuppressive treatment reduces host responses to porcine mesencephalic xenografts. Transplantation, in prep.

    Google Scholar 

  • Cunningham MG, McKay RD (1993) A hypothermic miniaturized stereotaxic instrument for surgery in newborn rats. J Neurosci Meth 47 (1–2): 105–114.

    CAS  Google Scholar 

  • Das GD, Altman J (1971) Transplanted precursors of nerve cells: their fate in the cerebellum of young rats. Science 173: 637–638.

    PubMed  CAS  Google Scholar 

  • Das GD, Altman J (1972) Studies on the transplantation of developing neural tissue in the mammalian brain. I. Transplantation of cerebellar slabs into the cerebellum of neonate rats. Brain Res 98: 233–249.

    Google Scholar 

  • Duan W-M, Brundin P, Grasbon-Frodl E, Widner H (1996) Methylprednisolone prevents rejection of intrastriatal grafts of xenogeneic embryonic neural tissue in adult rats. Brain Res 712: 199–212.

    PubMed  CAS  Google Scholar 

  • Dunn EM (1917) Primary and secondary findings in a series of attempts to transplant cerebral cortex in the albino rat. J Comp Neurol 27: 565–582.

    Google Scholar 

  • Dunnett SB, Whishaw IQ, Bunch ST, Fine A (1986) Acetylcholine-rich neuronal grafts in the forebrain of rats: effects of environmental enrichment, neonatal noradrenaline depletion, host transplantation site and regional source of embryonic donor cells on graft size and acetylcholineesterase-positive fiber outgrowth. Brain Res 378: 357–373.

    PubMed  CAS  Google Scholar 

  • Dunnett SB, Richards S-J (eds) (1990) Neural transplantation. From molecular basis to clinical applications. Elsevier, Amsterdam.

    Google Scholar 

  • Dunnett SD, Björklund A (1992) Staging and dissection of rat embryos. In Neural transplantation. A practical approach. (eds Dunnett SD, Björklund A) pp 1–19, IRL Press, at Oxford University Press, Oxford.

    Google Scholar 

  • Dunnett SB (1994) Strategies for testing learning and memory abilities in transplanted rats. In Functional neural transplantation (eds Dunnett SB, Björklund A ) pp 217–251, Raven Press, New York.

    Google Scholar 

  • Dunnett SD, Björklund A (1994) Mechanisms of function of neural grafts in the injured brain. In Functional neural transplantation (eds Dunnett SB, Björklund A ) pp 531–567, Raven Press, New York.

    Google Scholar 

  • Dunnett SD, Björklund A (eds) (1994) Functional neural transplantation. Raven Press, New York.

    Google Scholar 

  • Dunnett SD, Björklund A (1997) Basic neural transplantation techniques. I. Dissociated cell suspension grafts of embryonic ventral mesencephalon in the adult rat brain. Brain Res Protoc 1 (1): 91–9.

    CAS  Google Scholar 

  • Fishell G (1995) Striatal precursors adopt cortical identities in response to local cues. Development 121, 803–812.

    PubMed  CAS  Google Scholar 

  • Foster GA, Schultzberg M, Gage FH, Björklund A, Hökfelt T, Nornes H, Cuello AC, Verhofstad AAJ, Visser TJ (1988) Transmitter expression and morphological development of embryonic medullary and mesencephalic raphé neurons after transplantation to the adult rat central nervous system. I. Grafts to the spinal cord. Exp Brain Res 70: 242–255.

    PubMed  CAS  Google Scholar 

  • Franklin KBJ, Paxinos G (1997) The mouse brain in stereotaxic coordinates. Academic press, San Diego.

    Google Scholar 

  • Freed WJ (1985) Transplantation of tissues to the cerebral ventricles: methodological details and rate of graft survival. In Neural grafting in the mammalian CNS (eds Björklund A, Stenevi U ) pp 31–49. Elsevier, Amsterdam.

    Google Scholar 

  • Freeman TB, Widner H (eds) (1998) Cell transplantation for neurological disorders. Toward reconstruction of the human central nervous system. Humana Press, Totowa, New Jersey.

    Google Scholar 

  • Fricker RA, Torres EM, Hume SP, Myers R, Opacka-Juffrey J, Ashworth S, Brooks DJ, Dunnett SB (1997) The effects of donor stage on the survival and function of embryonic striatal grafts in the adult rat brain. II. Correlation between positron emission tomography and reaching behaviour. Neuroscience 79: 711–721.

    PubMed  CAS  Google Scholar 

  • Frodl EM, Sauer H, Lindvall O, Brundin P (1995) Effects of hibernation or cryopreservation on the survival and integration of striatal grafts placed in the ibotenate-lesioned rat caudate-putamen. Cell Transplant 4: 571–577

    PubMed  CAS  Google Scholar 

  • Gage FH, Kempermann G, Palmer TD, Peterson DA, Ray J (1998) Multipotent progenitor cells in the adult dentate gyrus. J Neurobiol, 36 (2): 249–266.

    PubMed  CAS  Google Scholar 

  • Gaiano N, Fishell G (1998) Transplantation as a tool to study progenitors within the vertebrate nervous system. J Neurobiol, 36 (2): 152–161.

    PubMed  CAS  Google Scholar 

  • Grabowski M, Brundin P, Johansson BB (1992) Vascularization of fetal neocortical grafts implanted in brain infarcts in spontaneously hypertensive rats. Neuroscience 51: 673–682.

    PubMed  CAS  Google Scholar 

  • Grasbon-Frodl EM, Nakao N, Brundin P (1996) Lazaroids improve the survival of embryonic mesencephalic donor tissue stored at 4 °C and subsequently used for cultures or intracerebral transplantation. Brain Res Bull 39: 341–347.

    PubMed  CAS  Google Scholar 

  • Hodges H, Sinden JD, Meldrum BS, Gray JA (1994) Cerebral transplantation in models of ischemia. In Functional neural transplantation (eds Dunnett SB, Björklund A ) pp 347–386. Raven Press, New York

    Google Scholar 

  • Kawaja MD, Fisher LJ, Shinstine M, Jinnah HA, Ray J, Chen LS, Gage FH (1992) Grafting genetically modified cells within the rat central nervous system: methodological considerations. In Neural transplantation. A practical approach. (eds Dunnett SD, Björklund A) IRL Press, at Oxford University Press, Oxford.

    Google Scholar 

  • Kolb B, Fantie BD (1994) Cortical graft function in adult and neonatal rats. In Functional neural transplantation (eds Dunnett SB, Björklund A ) pp 415–436. Raven Press, New York.

    Google Scholar 

  • Kopyov OV, Jacques S, Kurth M, Philpott L, Lee A, Patterson M, Duma C, Lieberman, A, Eagle KS (1998) Fetal transplantation for Huntington’s disease: Clinical studies. In: Cell transplantation for neurological disorders. Toward reconstruction of the human central nervous system (eds Freeman TB, Widner H ) pp 95–134, Humana Press, Totowa, New Jersey.

    Google Scholar 

  • LeGros Clark WE (1940) Neuronal differentiation in implanted foetal cortical tissue. J Neurol Psychiat 3: 263–284.

    Google Scholar 

  • Lindvall O (1994) Neural transplantation in Parkinson’s disease. In Functional neural transplantation (eds Dunnett SB, Björklund A ) pp 103–138. Raven Press, New York.

    Google Scholar 

  • Liu A, Joyner AL, Turnbull DH (1998) Alteration of limb and brain patterning in early mouse embryos by ultrasound-guided injection of Shh-expressing cells. Mechanisms of Development 75, 107–115.

    PubMed  CAS  Google Scholar 

  • Lund RD, Rao K, Hankin M, Kunz HW, Gill III TJ (1987) Transplantation of retina and visual cortex to rat brains of different ages. Maturation, connection patterns, and immunological consequences. In Cell and tissue transplantation into the adult brain (eds Azmitia AC, Björklund A) pp 227–241, Ann NY Acad Sci 495, New York.

    Google Scholar 

  • Lund RD, Banarjee R (1992) Immunological considerations in neural transplantation. In Neural transplantation. A practical approach. (eds Dunnett SD, Björklund A) pp 161–176, IRL Press, at Oxford University Press, Oxford.

    Google Scholar 

  • Lund RD, Yee KT (1992) Intracerebral transplantation to immature hosts. In Neural transplantation. A practical approach. (eds Dunnett SD, Björklund A) pp 79–91, IRL Press, at Oxford University Press, Oxford.

    Google Scholar 

  • Marchand R, Lajoie R (1986) Histogenesis of the striatopallidal system in the rat. Neuroscience 17: 573–590.

    PubMed  CAS  Google Scholar 

  • Nakao N, Frodl EM, Duan W-M, Widner H, Brundin P (1994) Lazaroids improve the survival of grafted rat embryonic dopamine neurons. Proc Natl Acad Sci USA 91: 12408–12412.

    PubMed  CAS  Google Scholar 

  • Nikkhah G, Olsson M, Eberhard J, Bentlage C, Cunningham MG, Björklund A (1994a) A micro-transplantation approach for cell suspension grafting in the rat Parkinson model. A detailed account of the methodology. Neuroscience 63: 57–72.

    CAS  Google Scholar 

  • Nikkhah G, Bentlage C, Cunningham MG, Björklund A (1994b) Intranigral fetal dopamine grafts induce behavioural compensation in the rat Parkinson model. The Journal of Neuroscience 14: 3449–3461.

    PubMed  CAS  Google Scholar 

  • Nikkhah G, Eberhard J, Olsson M, Björklund A (1995) Preservation of fetal ventral mesencephalic cells by cool storage: In vitro viability and TH-positive neuron survival after microtransplantation to the striatum. Brain Research 687: 22–34.

    PubMed  CAS  Google Scholar 

  • Nilsson OG, Clarke DJ, Brundin P, Björklund A (1988) Comparison of growth and reinnervation properties of cholinergic neurons grafted to the deafferented hippocampus. J Comp Neurol 268: 204–222.

    PubMed  CAS  Google Scholar 

  • Olson L, Malmfors T (1970) Growth characteristics of adrenergic nerves in the adult rat. Fluorescence histochemical and 3H-noradrenaline uptake studies using tissue transplantations to the anterior chamber of the eye. Acta Physiol Scand Suppl 348: 1–112.

    PubMed  CAS  Google Scholar 

  • Olson L, Seiger A (1972) Early prenatal ontogeny of central monoamine neurons in the rat: fluorescence histochemical observations. Z Anat Entwickl 137: 301–316.

    CAS  Google Scholar 

  • Olsson M, Campbell K, Wictorin K, Björklund A (1995) Projection neurons in fetal striatal transplants are predominantly derived from the lateral ganglionic eminence. Neuroscience 69, 1169–1182.

    PubMed  CAS  Google Scholar 

  • Olsson M, Campbell K, Turnbull D (1997) Specification of mouse telencephalic and mid-hindbrain progenitors following heterotopic ultrasound-guided transplantation. Neuron 19, 761–772.

    PubMed  CAS  Google Scholar 

  • Olsson M, Bjerregaard C, Winkler C, Gates M, Campbell K, Björklund A (1998a) Incorporation of mouse neural progenitors transplanted into the rat embryonic forebrain is developmentally regulated and dependent on regional and adhesive properties. The European Journal of Neuroscience 10, 71–85.

    PubMed  CAS  Google Scholar 

  • Olsson M, Björklund A, Campbell K (1998b) Early specification of striatal projection neurons and interneuronal subtypes in the lateral and medial ganglionic eminence. Neuroscience 84: 867–876.

    PubMed  CAS  Google Scholar 

  • Pakzaban P, Deacon TW, Burns LH, Isacson O (1993) Increased proportion of acetylcholinesterase-rich zones and improved morphological integration in host striatum of fetal grafts derived from the lateral but not medial ganglionic eminence. Exp Brain Research 97: 13–22.

    CAS  Google Scholar 

  • Pakzaban P, Isacson O (1994) Neural xenotransplantation: reconstruction of neuronal circuitry across species barriers. Neuroscience 62 (4): 989–1001.

    PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Second edition. Academic press, Australia.

    Google Scholar 

  • Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates. Compact third edition. Academic press, San Diego.

    Google Scholar 

  • Pedersen EB, Poulsen FR, Zimmer J, Finsen B (1995) Prevention of mouse-rat brain xenograft rejection by a combination therapy of cyclosporin A, prednisolone and azathioprine. Exp Brain Research 106 (2): 181–186

    CAS  Google Scholar 

  • Peschanski M, Isacson O (1988) Fetal homotypic transplants in the excitotoxically neuron depleted thalamus. I. Light microscopy. J Comp Neurol 274: 449–463.

    PubMed  CAS  Google Scholar 

  • Ranson SW (1909) Transplantation of the spinal ganglion into the brain. Quart Bull Northwest Univ Med School 11: 176–178.

    Google Scholar 

  • Sauer H, Brundin P (1991) Effects of cool storage on survival and function of intrastriatal ventral mesencephalic grafts. Restor Neurol Neurosci 2: 123–135.

    PubMed  CAS  Google Scholar 

  • Sauer H, Frodl EM, Kupsch A, ten Bruggencate G, Oertel WH (1992) Cryopreservation, survival and function of intrastriatal fetal mesencephalic grafts in a rat model of Prkinson’s disease. Exp Brain Res 90: 54–62.

    PubMed  CAS  Google Scholar 

  • Schierle GS, Hansson O, Leist M, Nicotera P, Widner H, Brundin P (1999) Caspase inhibition re- duces apoptosis and increases survival of nigral transplants. Nature Medicine 5 (1): 97–100.

    PubMed  CAS  Google Scholar 

  • Seiger A (1985) Preparation of immature central nervous system regions for transplantation. In Neural grafting in the mammalian CNS (eds Björklund Am Stenevi U ) pp 71–77. Elsevier, Amsterdam.

    Google Scholar 

  • Semba K, Fibiger HC (1988) Time of origin of cholinergic neurons in the rat basal forebrain. J Comp Neurol 269: 87–95.

    PubMed  CAS  Google Scholar 

  • Sloan DJ, Baker BJ, Puklavec M, Charlton HM (1990) The effect of site of transplantation and histocompatibility differences on the survival of neural tissue transplanted to the CNS of defined inbred rat strains. Prog Brain Res 82: 141–152.

    PubMed  CAS  Google Scholar 

  • Smart IHM, Sturrock RR (1979) Ontogeny of the neostriatum. In: The neostriatum ( Divac I, Öberg RGE eds) pp 127–146, Pergamon Press, Oxford.

    Google Scholar 

  • Sotelo C, Alvarado-Mallart RM (1987) Reconstruction of defective cerebellar circuitry in adult Purkinje cell degeneration mutant mice by Purkinje cell replacement through transplantation of solid embryonic implants. Neuroscience 20: 1–22.

    PubMed  CAS  Google Scholar 

  • Stenevi U, Kromer LF, Gage FH, Björklund A (1985) Solid neural grafts in intracerebral transplantation cavities. In Neural grafting in the mammalian CNS (eds Björklund A, Stenevi U ) pp 41–49. Elsevier, Amsterdam.

    Google Scholar 

  • Studer L, Tabar V, McKay RDG (1998) Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nature Neurosci, 1 (4): 290–295.

    PubMed  CAS  Google Scholar 

  • Sunde NA, Zimmer J (1983) Cellular histochemical and connective organization of the hippocampus and fascia dentata transplanted to different regions of immature and adult rat brains. Dev Brain Res: 165–191.

    Google Scholar 

  • Swanson LW (1992) Brain maps: structure of the rat brain

    Google Scholar 

  • Thompson WG (1890) Successful brain grafting. NY Med J 51: 701–702.

    Google Scholar 

  • Turnbull DH, Starkosi BG, Harasiewicz KA, Semple JL, From L, Gupta AK, Sauder DN, Foster FS (1995a) A 40–100MHz B-scan ultrasound backscatter microscope for skin imaging. Ultrasound Med Biol 21, 79–88.

    PubMed  CAS  Google Scholar 

  • Turnbull DH, Bloomfield T, Baldwin HS, Foster FS, Joyner AL (1995b) Ultrasound backscatter microscope analysis of early mouse embryonic brain development. Proc. Natl. Acad. Sci. USA 92, 2239–2243.

    PubMed  CAS  Google Scholar 

  • Tönder N, Sorensen T, Zimmer J, Jorgensen MB, Johansson FF, Diemer NH (1989) Neural grafting to ischemic lesions of the adult rat hippocampus. Exp Brain Res 74: 512–526.

    PubMed  Google Scholar 

  • Watts C, Caldwell MA, Dunnett SB (1998) The development of intracerebral cell-suspension implants is influenced by the grafting medium. Cell Transplant 7: 573–583.

    PubMed  CAS  Google Scholar 

  • Wictorin K, Ouimet CC, Björklund A (1989) Intrinsic organization and connectivity of intrastriatal striatal transplants in rats as revealed by DARPP-32 immunohistochemistry: specificity of connections with the lesioned host brain. Eur J Neurosci 1: 690–701.

    PubMed  Google Scholar 

  • Wictorin K (1992) Anatomy and connectivity of intrastriatal striatal transplants. Prog Neurobiol 38: 611–639.

    PubMed  CAS  Google Scholar 

  • Widner H, Brundin P (1988) Immunological aspects of grafting in the mammalian central nervous system. A review and speculative synthesis. Brain Res Rev 13: 287–324.

    CAS  Google Scholar 

  • Widner H (1995). Transplantation of neuronal and non-neuronal cells into the brain. In Immune response in the nervous system (ed Rothwell NJ), pp 189–217, Bios Scientific Publishers.

    Google Scholar 

  • Wood MJA, Charlton HM (1994) Hypothalamic grafts and neuroendocrine function. In Functional neural transplantation (eds Dunnett SB, Björklund A ) pp 451–466. Raven Press, New York.

    Google Scholar 

  • Wood MJA, Sloan DJ, Wood KJ, Charlton HM (1996) Indefinite survival of neural xenografts induced with anti-CD4 monoclonal antibodies. Neuroscience 70 (3): 775–789.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wictorin, K., Olsson, M., Campbell, K., Fricker, R. (1999). Cell and Tissue Transplantation in the Rodent CNS. In: Windhorst, U., Johansson, H. (eds) Modern Techniques in Neuroscience Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58552-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58552-4_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63643-1

  • Online ISBN: 978-3-642-58552-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics