Skip to main content

Integrable Singular Integral Evolution Equations

  • Chapter
Important Developments in Soliton Theory

Part of the book series: Springer Series in Nonlinear Dynamics ((SSNONLINEAR))

Abstract

Integro-differential evolution equations (IDEE’s) appear in several areas of applied Science. For instance, in a fluid dynamical context, equation

$$\begin{array}{*{20}{c}} {{{u}_{t}} + au{{u}_{x}} + \int\limits_{{ - \infty }}^{\infty } {dx\prime K(x - x\prime ){{u}_{{x\prime }}}(x\prime ,t) = 0,} } & {K(x): = \int\limits_{{ - \infty }}^{\infty } {\tfrac{{dk}}{{2\pi }}c(k){{e}^{{ikx}}}} } \\ \end{array}$$
(1.1)

is a simple mathematical model combining the breaking term uux of shallow water theory with a linear dispersion w(k) = kc(k) [1]. As observed in [2],[3], in a fluid of total depth D characterized by a thin termocline located at depth d and in a long wave regime, the dispersion takes the form [4]

$$c(k) = {{c}_{0}}(1 - \frac{{kd}}{2}(\coth (kD) - \frac{1}{{kD}}))$$
(1.2)

and gives rise to the IDEE

$${{u}_{t}} + ({{c}_{0}} + \frac{d}{{2D}}){{u}_{x}} + au{{u}_{x}} + \frac{d}{{4D}}P\int\limits_{{ - \infty }}^{\infty } {dx\prime \coth (\frac{\pi }{{2D}}(x\prime - x)){{u}_{{x\prime x\prime }}}(x\prime ,t) = 0,}$$
(1.3)

where the symbol P∫ denotes principal value integrals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. G. B. Witham, Proc. R. Soc. A 299,6 (1967); Linear and nonlinear waves, Wiley, New York, 1974.

    Google Scholar 

  2. R. I. Joseph, J. Phys. A101, 1225 (1977).

    Google Scholar 

  3. T. Kubota, D. R. Ko and D. Dodds, H. Hydronaut. 12, 157 (1978).

    Article  Google Scholar 

  4. R. I. Joseph and R. Egri, J. Phys A 11, L97 (1978).

    Article  ADS  MATH  Google Scholar 

  5. O. M. Phillips, The dynamics of the upper ocean, Cambridge Univ. Press, Cambridge, 1966.

    MATH  Google Scholar 

  6. D. J. Korteweg and G. De Vries, Philos. Mag. Ser. 5, 39, pp422 (1876).

    Google Scholar 

  7. T. B. Benjamin, J. Fluid Mech. 29, 559 (1967).

    Article  ADS  MATH  Google Scholar 

  8. H. Ono, J. Phys. Soc. Jap. 39, 1082 (1975).

    Article  Google Scholar 

  9. C. S. Gardner, J. M. Green, M. D. Kruskal and R. M. Miura, Phys. Rev. Lett. 10, 1095 (1967); Comm. Pure Appl. Math. 27, 97 (1974).

    Google Scholar 

  10. M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, Vol.4, SIAM, Philadelphia, PA, 1981.

    Book  MATH  Google Scholar 

  11. S. P. Novikov, S. V. Manakov, L. P. Pitaeskii and S. V. Zakllarov, Theory of Solitons, The Inverse Scattering Method, Contemporary Soviet Mathematics, Consultant Bureau, New York and London, 1984.

    Google Scholar 

  12. F. Calogero and A. Degasperis, Spectral Transform and Solitons, North - Holland, Amsterdam, 1982.

    MATH  Google Scholar 

  13. A. C. Newell, Solitons in Mathematics and Physics, Vol.45, SIAM, Phyladelphia, PA, 1985.

    Book  Google Scholar 

  14. B. G. Konopelchenko, Nonlinear integrable equations, Lecture Notes in Physics, Springer Verlag, Berlin, 1987.

    Book  MATH  Google Scholar 

  15. V. E. Zakharov and A. B. Shabat, Sov. Phys. JETP 34, 62 (1972).

    MathSciNet  ADS  Google Scholar 

  16. M. Wadati, J. Phys. Soc. Jap. 32, 1681 (1972).

    Article  Google Scholar 

  17. B. B. Kadomtsev and V. I. Petviashvili, Sov. Phys. Doklady 15, 539 (1970).

    ADS  MATH  Google Scholar 

  18. S. V. Manakov, Physics 3D, 420 (1981).

    MathSciNet  ADS  Google Scholar 

  19. A. S. Fokas and M. J. Ablowitz, Stud. Appl. Math. 69, 211 (1983).

    MathSciNet  MATH  Google Scholar 

  20. M. J. Ablowitz, D. Bar Yaacov and A. S. Fokas, Stud. Appl. Math. 89,135 (1983).

    MathSciNet  Google Scholar 

  21. R. I. Joseph, J. Math. Phys. 18, 2251 (1977).

    Article  ADS  MATH  Google Scholar 

  22. J. D. Meiss and N. R. Pereira, Phys. Fluids 21, 700 (1978).

    Article  ADS  MATH  Google Scholar 

  23. Y. Matsuno, J. Phys. A 12, 619 (1979); Bilinear transformation method, Academic Press, New York, 1984.

    Google Scholar 

  24. J. Satsuma and Y. Ishimori, J. Phys. Soc. Jap. 40, 681 (1979).

    ADS  Google Scholar 

  25. H. H. Chen and Y. C. Lee, Phys. Rev. Lett. 43, 264 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  26. H. H. Chen, Y. C. Lee and N. R. Pereira, Phys. Fluids 22,187 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  27. T. L. Bock and M. D. Kruskal, Phys. Lett. 74A, 173 (1979).

    MathSciNet  ADS  Google Scholar 

  28. J. Satsuma, M. J. Ablowitz and Y. Kodama, Phys. Lett. 73A, 283 (1979).

    MathSciNet  ADS  Google Scholar 

  29. Y. Kodama, J. Satsuma and M. J. Ablowitz, Phys. Rev. Lett. 48, 687 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  30. Y. Kodama, M. J. Ablowitz and J. Satsuma, J. Math. Phys. 23, 564 (1982).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. V. E. Zakharov and A. B. Shabat, Funct. Anal. Appl. 13, 166 (1979).

    MathSciNet  Google Scholar 

  32. A. S. Fokas and P. M. Santini, J. Math. Phys. 29, 604 (1988).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. P. M. Santini, Inverse Problems 5, 203 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. O. Ragnisco and P. M. Santini, Inverse Problems 6, 441 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. A. S. Fokas and B. Fuchssteiner, Phys. Lett. 80A, 341, (1981).

    MathSciNet  ADS  Google Scholar 

  36. B. Kuppershmidt, Libertas Math. 1, 125 (1981).

    MathSciNet  Google Scholar 

  37. D. R. Lebedev and A. O. Radul, Comm. Math. Phys. 91, 543 (1983).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. P. Costantin, P. D. Lax and A. Majda, Comm. Pure Appl. Math. 38, 715 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  39. M. J. Ablowitz, A. S. Fokas and M. D. Kruskal, Phys. Lett. 120A, 215 (1987).

    MathSciNet  ADS  Google Scholar 

  40. M. J. Ablowitz, A. S. Fokas, J. Satsuma and H. Segur, J. Phys. A15, 781 (1982).

    MathSciNet  ADS  Google Scholar 

  41. J. Satsuma, J. Phys. Soc. Jap. 50, 1423 (1981).

    Article  Google Scholar 

  42. A. S. Fokas and M. J. Ablowitz, Stud. Appl. Math. 68, 1 (1983).

    Google Scholar 

  43. P. M. Santini, M. J. Ablowitz and A. S. Fokas, J. Math. Phys. 25, 892 (1984).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. A. Degasperis and P. M. Santini, Phys. Lett. 98A, 240 (1983).

    MathSciNet  ADS  Google Scholar 

  45. A. Degasperis, P. M. Santini and M. J. Ablowitz, J. Math. Phys. 20, 2469 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  46. I. Gohberg and M. G. Krein, Usp. Mat. Nauk. 13, 2 (1958).

    MathSciNet  Google Scholar 

  47. M. J. Ablowitz, D. J. Kaup, A. C. Newell and II. Segur, Stud. Appl. Math. 53, 249 (1974).

    MathSciNet  Google Scholar 

  48. A. Degasperis, in Nonlinear evolution equations: integrability and spectral methods, ed. A. Degasperis, A. P. Fordy and M. Lakslunanan, Manchester Univ. Press, 1990.

    Google Scholar 

  49. A. Degasperis, P. M. Santini and M. J. Ablowitz, The initial value problem for a nonlocal generalization of the AKNS class, Preprint Dip. Fisica, Univ. Roma I, 1992.

    Google Scholar 

  50. P. M. Santini, M. J. Ablowitz and A. S. Fokas, J. Math. Phys. 28, 2310 (1987).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. Y. Matsuno, Phys. Lett. 119A, 229 (1986); 120A, 187 (1987); J. Phys. A20, 3587 (1987).

    Google Scholar 

  52. Y. Matsuno, J. Math. Phys 32, 120 (1991).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. J. Satsuma and M. J. Ablowitz, in Nonlinear partial differential equations in engineering and applied science, ed. R. L. Stenberg, A. J. Kalinoski and J. S. Papadakis, M. Dekker, New York, 1980.

    Google Scholar 

  54. J. Satsuma, Thiab R. Tapa and M. J. Ablowitz, J. Math. Phys 25, 900 (1984).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  55. A. Degasperis, D. Lebedev, M. Olshanetsky, S. Pakuliak, A. Perelomov and P. M. Santini, Comm. Math. Phys. 141 133 (1991).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  56. A. Degasperis, D. Lebedev, M. Olshanetsky, S. Pakuliak, A. Perelomov and P. M. Santini, Generalized intermediate long wave hierarchy in zero curvature representation with noncommutative spectral parameter, Preprint MPI 63, Max Planck Inst., 1991.

    Google Scholar 

  57. D. Lebedev, A. Orlov, S. Pakuliak and A. Zabrodin, Nonlocal integrable equations as reductions of the Toda hierarchy, Preprint Bonn Univ., ISSN 0172 (1991).

    Google Scholar 

  58. Y. Matsuno, J. Math. Phys. 29, 49 (1980); 30, 241 (1989).

    Google Scholar 

  59. Y. Matsuno, J. Math. Phys. 31, 2904 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  60. V. B. Matveev and M. A. Sall, Dokl. Akad. Nauk. SSSR 281, 533 (1981).

    MathSciNet  Google Scholar 

  61. A. I. Bobenko, V. B. Matveev and M. A. Sall, Sov. Phys. Dokl. 27, 610 (1982).

    ADS  MATH  Google Scholar 

  62. P. M. Santini, Inverse Problems 6, 99 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  63. F. Calogero, Lett. Nuovo Cimento 14, 433 (1975).

    Google Scholar 

  64. P. J. Olver, J. Math. Phys. 18, 1212 (1977).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  65. B. Fuchssteiner, Nonlinear Anal. 3, 849 (1979).

    Article  MathSciNet  Google Scholar 

  66. A. S. Fokas and B. Fuchssteiner, Lett. Nuovo Cimento 28, 299 (1980).

    Article  MathSciNet  Google Scholar 

  67. B. Fuchssteiner and A. S. Fokas, Physics 4D, 47 (1981).

    MathSciNet  ADS  Google Scholar 

  68. F. Magri, J. Math. Phys. 19, 1156 (1978); in Nonlinear evolution equations and dynamical systems, ed. M. Boiti, F. Pempinelli and G. Soliani, Lecture Notes in Physics, Vol. 120, Berlin, Springer 1980.

    Google Scholar 

  69. I. M. Gel’fand and I. Dorfman,Funct. Anal. Appl. 13, 13 (1979); 14, 71 (1980).

    Google Scholar 

  70. B. Fuchssteiner, Progr. Theor. Phys. 70, 150 (1983).

    Article  MathSciNet  Google Scholar 

  71. W. Oevel and B. Fuchssteiner, Phys. Lett. 88A, 323 (1982).

    MathSciNet  ADS  Google Scholar 

  72. A. S. Fokas and P. M. Santini, Stud. Appl. Math. 75, 179 (1986).

    MathSciNet  MATH  Google Scholar 

  73. P. M. Santini and A. S. Fokas, Comm. Math. Phys. 115, 375 (1988).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  74. A. S. Fokas and P. M. Santini, Comm. Math. Phys. 116, 449 (1988).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  75. F. Magri, C. Morosi and G. Tondo, Comm. Math. Phys. 115, 1 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  76. C. Morosi and G. Tondo, Comm. Math. Phys. 122, 91 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  77. B. G. Konopelchenko, Inverse Problems 4, 795, 1988.

    ADS  Google Scholar 

  78. M. Bruschi, D. Levi and O. Ragnisco, Lett. Nuovo Cimento 33, 284 (1982).

    Article  MathSciNet  Google Scholar 

  79. S. J. Orfanidis, Phys. Rev. D18, 3828 (1978).

    MathSciNet  ADS  Google Scholar 

  80. F. Magri and C. Morosi, Geometrical characterization of integrable Hamiltonian systems through the theory of Poisson-Nijenhuis manifolds, Quaderno S19, Dip. di Matematica, Univ. di Milano, 1984.

    Google Scholar 

  81. F. Magri, C. Morosi and O. Ragnisco, Comm. Math. Phys. 99, 115 (1985).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Santini, P.M. (1993). Integrable Singular Integral Evolution Equations. In: Fokas, A.S., Zakharov, V.E. (eds) Important Developments in Soliton Theory. Springer Series in Nonlinear Dynamics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58045-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58045-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63450-5

  • Online ISBN: 978-3-642-58045-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics