Skip to main content

Complex Geometry and String Theory

  • Chapter
Several Complex Variables V

Part of the book series: Encyclopaedia of Mathematical Sciences ((EMS,volume 54))

  • 764 Accesses

Abstract

String theory is a rather new field of theoretical physics. It appeared only twenty years ago to describe phenomenology of strong interactions of elementary particles, and until recently, it has been developing rather slowly. This is because string theory has encountered a number of difficulties that were not easy to overcome; in particular, this theory contained the so-called anomalies that hindered construction of self-consistent string theory. Especially, anomalies led to the breakdown of symmetry properties of this theory after its quantization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alekseev, A., Shatashvili, S. 1988 Path integral quantization of the coadjoint orbits of the Virasoro group and 2-d gravity. Preprint LOMI E-16–88. Leningrad: LOMI (Russian).

    Google Scholar 

  2. Alessandrini, V., Amati, D. 1971 Properties of dual multiloop amplitudes. Nuovo Cimento A 4, 793–844.

    Article  MathSciNet  Google Scholar 

  3. Alvarez-Gaume, L., Bost, J.-B., Moore, G., Nelson, P., Vafa, C. 1987 Bosonization for higher genus Riemann surfaces. Commun. Math. Phys. 112, 503–552. Zb1.647.14019

    Article  MathSciNet  MATH  Google Scholar 

  4. Alvarez-Gaume, L., Witten, E. 1985 Gravitational anomalies. Nucl. Phys. B 234,269–305.

    Article  MathSciNet  Google Scholar 

  5. Arakelov, S.Yu.Intersection theory for divisors on the arithmetical surface. Izv. Akad. Nauk SSSR. Ser. Math. 38, 1179–1192. Engl. transl.: Math. USSR, Izv. 8 (1974), 1164–1180 (1976). Zb1.355.14002

    MathSciNet  Google Scholar 

  6. Arbarello, E., Cornalba, M., Griffiths, P., Harris, J. 1986 Geometry of Algebraic Curves. Berlin: Springer-Verlag. Zb1.559.14017

    Google Scholar 

  7. Atick, J., Sen, A. 1987a Covariant one-loop fermion emission amplitudes in closed string theories. Nucl. Phys. B 286,189–201.

    Article  MathSciNet  Google Scholar 

  8. Atick, J., Sen, A. 1987b Spin field correlators on an arbitrary genus Riemann surface and nonrenormalization theorems in string theories. Phys. Lett. B 186,339–346.

    Article  MathSciNet  Google Scholar 

  9. Beilinson, A.A., Manin, Yu.I. 1986 The Mumford form and the Polyakov measure in string theory. Commun. Math. Phys. 107, 359–376. Zb1.604.14016

    Article  MathSciNet  Google Scholar 

  10. Belavin, A.A., Knizhnik, V.G. 1986 Algebraic geometry and the geometry of quantum strings. Phys. Lett. B 168, 201–206. Zb1.693.58043

    Article  MathSciNet  MATH  Google Scholar 

  11. Belavin, A.A., Knizhnik, V.G., Morozov, A.Yu., Perelomov, A.M. 1986 Two-and three-loop amplitudes in the bosonic string theory. Phys. Lett. B 177,324–328.

    Article  MathSciNet  Google Scholar 

  12. Bers, L. 1972 Uniformization, moduli and Kleinian groups. Bull. Lond. Math. Soc. 4, 257–300. Zb1.257.32012

    Article  MathSciNet  MATH  Google Scholar 

  13. Bismut, J.-M., Freed, D. 1986a The analysis of elliptic families. 1. Commun. Math. Phys. 106, 159–176. Zb1.657.58037

    Article  MathSciNet  MATH  Google Scholar 

  14. Bismut, J.-M., Freed, D. 1986b The analysis of elliptic families. 2. Commun. Math. Phys. 107, 103–163. Zb1.657.58038

    Article  MathSciNet  MATH  Google Scholar 

  15. Bost, J.B. 1987 Fibres déterminants, déterminants régularisés et mesures sur les espaces de modules des courbes complexes. Sémin. Bourbaki, 39ème année. Exp. No. 676, Astérisque 152/153, 113–149. Zb1.655.32021

    MathSciNet  Google Scholar 

  16. Candelas, P., Horowitz, G., Strominger, A., Witten, E. 1985 Vacuum configurations for superstrings. Nucl. Phys. B 256, 46–65.

    Article  MathSciNet  Google Scholar 

  17. Chern, S.S. 1956 Complex Manifolds. Chicago: University of Chicago. Zb1.88,378

    Google Scholar 

  18. Clemens, C.H. 1980 A Scrapbook of Complex Curve Theory. New York, London: Plenum Press. Zb1.456.14016

    MATH  Google Scholar 

  19. David, F. 1988 Conformal field theory, coupled to 2-d gravity in the conformal gauge. Mod. Phys. Lett. A 3, 819–826.

    Article  Google Scholar 

  20. Deligne, P. 1987 Le déterminant de la cohomologie. Contemp. Math. 67, 93–177. Zb1.629.14008

    Article  MathSciNet  Google Scholar 

  21. Deligne, P., Mumford, D. 1969 The irreducibility of the space of curves of given genus. Inst. Hautes Etud. Sci., Publ. Math. 36, 75–109. Zb1.181,488

    Article  MathSciNet  MATH  Google Scholar 

  22. Distler, J., Kawai, H. 1989 Conformal field theory and 2-D quantum gravity or who’s afraid of Joseph Liouville? Nucl. Phys. B 321, 509.

    Article  MathSciNet  Google Scholar 

  23. Faltings, G. 1984 Calculus on arithmetic surfaces. Ann. Math., II. Ser. 119, 387–424. Zb1.559.14005

    Article  MathSciNet  MATH  Google Scholar 

  24. Farkas, H., Kra, I. 1980 Riemann Surfaces. Berlin: Springer-Verlag. Zb1.475.30001

    Book  MATH  Google Scholar 

  25. Fay, J.D. 1973 Theta-functions on Riemann surfaces. Lect. Notes Math. 352. Zb1.281.30013

    Google Scholar 

  26. Friedan, D., Martinec, E., Shenker, S. 1986 Conformal invariance, super-symmetry and string theory. Nucl. Phys. B 271, 93–165.

    MathSciNet  Google Scholar 

  27. Gerasimov, A., Marshakov, A., Morozov, A.Yu., Olshanetsky (= Olshanetskij, M.A.), M.A., Shatashvili, S. 1990 Wess-Zumino-Witten model as a theory of free fields. Int. J. Mod. Phys.A 5, 2495–2589.

    Article  MathSciNet  Google Scholar 

  28. Goto, T. 1971 Relativistic quantum mechanics of one-dimensional mechanical continuum and subsidiary conditions of dual resonance model. Prog. Theor. Phys. 46, 1560–1569.

    Article  MathSciNet  MATH  Google Scholar 

  29. Green, M., Schwarz, J. 1984 Anomaly cancellations in supersymmetric D-10 gauge theory and super-string theory. Phys. Lett. B 149, 117–122.

    Article  MathSciNet  Google Scholar 

  30. Green, M., Schwarz, J. 1985 Infinity cancellations in SO(32) superstring theory. Phys. Lett. B 151, 21–27.

    Article  MathSciNet  Google Scholar 

  31. Green, M., Schwarz, J., Witten, E. 1987 Superstring theory, Vol. 1, Vol. 2. Cambridge. Cambridge University Press. Zb1.619.53002

    MATH  Google Scholar 

  32. Griffiths, P., Harris, J. 1978 Principles of Algebraic Geometry. New York: Wiley-Interscience Publication. Zb1.408.14001

    MATH  Google Scholar 

  33. Gross, D., Harvey, J., Martinec, E., Rohm, R. 1985 Heterotic string theory. The free heterotic string. Nucl. Phys. B 256, 253–291.

    Article  MathSciNet  Google Scholar 

  34. Gross, D., Harvey, J. 1986 Heterotic string theory. The interacting heterotic string. Nucl. Phys. B 267, 267–305.

    Article  MathSciNet  Google Scholar 

  35. Igusa, J.I. 1972 Theta Functions. Berlin: Springer-Verlag. Zb1.251.14016

    Book  MATH  Google Scholar 

  36. Kallosh, R., Morozov, A.Yu. 1988 The Green-Schwarz action and loop calculations in superstrings. Int. J. Mod. Phys. A 3, 1943–1958.

    Article  MathSciNet  Google Scholar 

  37. Knizhnik, V.G. 1986 Analytic fields on Riemann surfaces. Phys. Lett. B 180, 247–254. Zb1.656.58043

    Article  MathSciNet  MATH  Google Scholar 

  38. Knizhnik, V.G., Polyakov, A.M., Zamolodchikov, A. 1988 Fractional structure of 2-d gravity. Mod. Phys. Lett. A 3, 819–826.

    Article  MathSciNet  Google Scholar 

  39. Losev, A. 1989 Once more on β, γ-systems. Phys. Lett. B 226, 62.

    Article  MathSciNet  Google Scholar 

  40. Manin, Yu.I. 1986 String statistical sum can be expressed through theta-functions. ZhETP Lett. 161, 161–163 (Russian).

    MathSciNet  Google Scholar 

  41. Moore, G. 1986 Modular forms and two-loop string physics. Phys. Lett. B 176, 369–373.

    Article  MathSciNet  Google Scholar 

  42. Morozov, A.Yu. 1988 Two-loop statistical sum of superstring. Yad. Fiz. 48, 869–885 (Russian).

    Google Scholar 

  43. Morozov,A.Yu.,Olshanetskij,M.A. 1988 Statistical sum of the bosonic string, compactified on an orbifold. Nuci. Phys. B 299,389–406.

    Article  Google Scholar 

  44. Mumford, D. 1977 Stability of projective varieties. Enseign. Math. I. Ser. 23, 39–110. Zb1.363.14003

    MathSciNet  MATH  Google Scholar 

  45. Mumford, D. 1983,1984 Tata Lectures on Theta. I, II. Boston: Birkhäuser. Zb1.509.14049, Zb1.549.14014

    Google Scholar 

  46. Nambu, Y. 1970 Lectures at Copenhagen Summer Symposium. Copenhagen: NORDITA.

    Google Scholar 

  47. Polyakov, A.M. 1981a Quantum geometry of bosonic string. Phys. Lett. B 103, 207–210.

    Article  MathSciNet  Google Scholar 

  48. Polyakov, A.M. 1981b Quantum geometry of fermionic string. Phys. Lett. B 103, 211–214.

    Article  MathSciNet  Google Scholar 

  49. Quillen, D. Determinants of Cauchy—Riemann operators on a Riemann surface. Funkts. Anal. Prilozh. 19, 37–41. Engl. transl.: Funct. Anal. Appl. 19, 31–34 (1985). Zb1.603.32016

    Google Scholar 

  50. Schumacher, G. 1990 The theory of Teichmüller spaces. In: Several Complex Variables VI. Encyc. Math. Sci. 69, Berlin: Springer-Verlag.

    Google Scholar 

  51. Schwarz, J. 1985 Superstrings: The First Fifteen Years. Vol. 1 and 2. Singapore: World Scientific.

    Google Scholar 

  52. Semikhatov, A.M. 1989 ZhETP Lett. 49, 181–185 (Russian).

    MathSciNet  Google Scholar 

  53. Shapiro, J. 1970 Electroweak analogue for the Virasoro model. Phys. Lett. B 33, 361–362.

    Google Scholar 

  54. Smit, D.-J. 1988 String theory and algebraic geometry of moduli spaces. Commun. Math. Phys. 114,645–685.

    Article  MathSciNet  MATH  Google Scholar 

  55. Verlinde, E., Verlinde, H. 1987 Multiloop calculations in covariant superstring theory. Phys. Lett. B 192,95–102.

    Article  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Morozov, A.Y., Perelomov, A.M. (1993). Complex Geometry and String Theory. In: Khenkin, G.M. (eds) Several Complex Variables V. Encyclopaedia of Mathematical Sciences, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58011-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58011-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63433-8

  • Online ISBN: 978-3-642-58011-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics