Skip to main content

Manipulation of Physiological Parameters During Hyperthermia

  • Chapter
Thermoradiotherapy and Thermochemotherapy

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

Thermal sensitivity of tumors depends on a number of physiological parameters such as tumor pH and metabolic status. Therefore, efforts to improve the efficacy of hyperthermia treatments have led to attempts to manipulate these various physiological factors either directly or indirectly. The parameters most often studied have been tumor pH and tumor blood flow. Tumor blood flow will influence tumor temperatures achieved during the treatment, as well as oxygen and nutrient delivery to the tumor and waste byproduct removal from the tumor that can ultimately impact on tumor pH. Thus, manipulation of tumor blood flow can affect many physiological parameters in the tumor. This chapter will cover some of the methods and results used to manipulate these physiological parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ashby BS (1966) pH studies in human malignant tumors. Lancet II: 312–315

    Google Scholar 

  • Burney IA, Maxwell RJ, Griffiths JR, Field SB (1991) The potential for prazosin and calcitonin gene-related peptide (CGRP) in causing hypoxia in tumours. Br J Cancer 64: 683–688

    Article  PubMed  CAS  Google Scholar 

  • Chan RC, Babbs CF, Vetter RJ, Lamar CH (1984) Abnormal response of tumor vasculature to vasoactive drugs. J Natl Cancer Inst 72: 145–150

    PubMed  CAS  Google Scholar 

  • Chu GL, Dewey WC (1988) The role of low intracellular pH or extracellular pH in sensitization to hyperthermia. Radiat Res 114: 154–167

    Article  PubMed  CAS  Google Scholar 

  • Chu GL, Wang Z, Hyun WC, Pershadshigh HA, Fulwyler JJ, Dewey WC (1990) The role of intracellular pH and its variance in low pH sensitization of killing by hyperthermia. Radiat Res 122: 288–293

    Article  PubMed  CAS  Google Scholar 

  • Cook JA, Fox MH (1988) Effects of chronic pH 6.6 on growth, intracellular pH, and response to 42.0°C hyperthermia of Chinese Hamster Ovary cells. Cancer Res 48: 2417–2420

    PubMed  CAS  Google Scholar 

  • Cragoe EJ Jr (1987) Drugs for the treatment of traumatic brain injury. Med Res Rev 7: 271–305

    Article  PubMed  CAS  Google Scholar 

  • Dewhirst MW, Prescott DM, Clegg S et al. (1990) The use of hydralazine to manipulate tumor temperatures during hyperthermia. Int J Hyperthermia 6: 971–983

    Article  PubMed  CAS  Google Scholar 

  • Dipette DJ, Ward-Hartley KA, Jain RK (1986) Effect of glucose on systemic hemodynamics and blood flow rate in normal and tumor tissues in rats. Cancer Res 46: 6299–6304

    PubMed  CAS  Google Scholar 

  • Field SB, Burney IA, Needham S, Maxwell RJ, Griffiths JR (1994) From hydralazine to CGRP to man? Int J Hyperthermia 10: 451–455

    Article  PubMed  CAS  Google Scholar 

  • Hahn GM, Shiu EC (1986) Adaptation to low pH modifies thermal and thermochemical responses to mammalian cells. Int J Hyperthermia 2: 379–387

    Article  PubMed  CAS  Google Scholar 

  • Haveman J (1979) The pH of the cytoplasm as an important factor in the survival of in vitro cultured malignant cells after hyperthermia. Effects of carbonylcyanide 3-chlorophenylhydrazone. Eur J Cancer 15: 1281–1288

    Article  PubMed  CAS  Google Scholar 

  • Haveman J, Hahn GM (1981) The role of energy in hyperthermia-induced mammalian cell inactivation: a study of the effects of glucose starvation and an uncoupler of oxidative phosphorylation. J Cell Physiol 107: 237–241

    Article  PubMed  CAS  Google Scholar 

  • Hofer KG, Mivechi NF (1980) Tumor cell sensitivity to hyperthermia as a function of extracellular and intracellular pH. J Natl Cancer Inst 65: 621–625

    PubMed  CAS  Google Scholar 

  • Gerweck LE (1977) Modification of cell lethalilty at elevated temperatures: the pH effect. Radiat Res 70: 224–235

    Article  PubMed  CAS  Google Scholar 

  • Gerweck LE, Rottinger E (1976) Enhancement of mammalian cell sensitivity to hyperthermia by pH alteration. Radiat Res 67: 508–511

    Article  PubMed  CAS  Google Scholar 

  • Griffiths JR (1991) Are cancer cells acidic? Br J Cancer 64: 425–427

    Article  PubMed  CAS  Google Scholar 

  • Jahde E, Volk T, Atema A, Smets LA, Glusenkamp KH, Rajewsky MF (1992) pH in human tumor xenografts and transplanted rat tumors: effect of insulin, inorganic phosphate, and m-iodobenzylguanidine. Cancer Res 52: 6209–6215

    PubMed  CAS  Google Scholar 

  • Jirtle RL (1988) Chemical modification of tumour blood flow. Int J Hyperthermia 4: 355–371

    Article  PubMed  CAS  Google Scholar 

  • Kim JH, Kim SH, Alfievi AA, Young CW (1984) Quercetin, an inhibitor of lactate transport and a hyperthermic sensitizer of HeLa cells. Cancer Res 44: 102–106

    PubMed  CAS  Google Scholar 

  • Kim GE, Lyons JC, Song CW (1991) Effects of amiloride on intracellular pH and thermosensitivity. Int J Radiat Oncol Biol Phys 20: 541–549

    Article  PubMed  CAS  Google Scholar 

  • Krag DN, Storm FK, Morton DL (1990) Induction of transient hyperglycaemia in cancer patients. Int J Hyperthermia 6: 741–744

    Article  PubMed  CAS  Google Scholar 

  • Leeper DB, Engin K, Thistlethwaite AJ, Hitchon HD, Dover JD, Li D-J, Tupchong L (1994) Human tumor extracellular pH as a function of blood glucose concentration. Int J Radiat Oncol Biol Phys 28: 935–943

    Article  PubMed  CAS  Google Scholar 

  • Lyons JC, Kim GE, Song CW (1992) Modification of intracellular pH and thermosensitivity. Radiat Res 129: 79–87

    Article  PubMed  CAS  Google Scholar 

  • Lyons JC, Ross BD, Song CW (1993) Enhancement of hyperthermia effect in vivo by amiloride and DIDS. Int J Radiat Oncol Biol Phys 25: 95–103

    Article  PubMed  CAS  Google Scholar 

  • Mahnensmith RL, Aronson PS (1985) The plasma membrane sodium-hydrogen exchange and its role in physiological and pathophysiological processes. Circ Res 56: 773–788

    Article  PubMed  CAS  Google Scholar 

  • Miyakoshi J, Oda W, Hirata M, Fukuhori N, Inagaki C (1986) Effects of amiloride on thermosensitivity of Chinese hamster cells under neutral and acidic pH. Cancer Res 46: 1840–1843

    PubMed  CAS  Google Scholar 

  • Nielson OS, Overgaard J (1979) Effect of extracellular pH on thermotolerance and recovery of hyperthermic damage in vitro. Cancer Res 39: 2772–2778

    Google Scholar 

  • Prescott DM, Samulski TV, Dewhirst MW, Page RL, Thrall DE, Dodge RK, Oleson JR (1992) Use of nitroprusside to increase tissue temperature during local hyperthermia in normal and tumor-bearing dogs. Int J Radiat Oncol Biol Phys 23: 377–385

    Article  PubMed  CAS  Google Scholar 

  • Prescott DM, Charles HC, Sostman HD et al. (1993) Manipulation of intra-and extracellular pH in spontaneous canine tumours by use of hyperglycaemia. Int J Hyperthermia 9: 745–754

    Article  PubMed  CAS  Google Scholar 

  • Roemer RB, Forsyth K, Oleson JR, Clegg ST, Sim DA (1988) The effect of hydralazine dose on blood perfusion changes during hyperthermia. Int J Hyperthermia 4: 401–415

    Article  PubMed  CAS  Google Scholar 

  • Roos A, Boron WF (1981) Intracellular pH. Physiol Rev 61: 296–434

    PubMed  CAS  Google Scholar 

  • Ruifrok ACC, Konings AWT (1987) Effects of amiloride on hyperthermic cell killing of normal and thermotolerant mouse fibroblast LM cells. Int J Radiat Biol 52: 385–392

    Article  CAS  Google Scholar 

  • Schulz V (1984) Clinical pharmacokinetics of nitroprusside, cyanide, thiosulphate, and thiocyanate. Clin Pharmacokinet 9: 239–251

    Article  PubMed  CAS  Google Scholar 

  • Song CW, Lyons JC, Griffin RJ, Makepeace CM (1993a) Thermosensitization by lowering intracellular pH with EIPA. Radiother Oncol 27: 252–258

    Article  PubMed  CAS  Google Scholar 

  • Song CW, Lyons JC, Griffin RJ, Makepeace CM, Cragoe EJ Jr (1993b) Increase in thermosensitivity of tumor cells by lowering intracellular pH. Cancer Res 53: 1599–1601

    PubMed  CAS  Google Scholar 

  • Song CW, Lyons JC, Makepeace CM, Griffin RJ, Cragoe EJ Jr (1994) Effects of HMA, an analog of amiloride, on the thermosensitivity of tumors in vivo. Int J Radiat Oncol Biol Phys 30: 133–139

    Article  PubMed  CAS  Google Scholar 

  • Struthers AD, Brown MJ, MacDonald DWR, Beacham JL, Stevenson JC, Morris HR, Maclntyre I (1986) Human calcitonin gene related peptide: a potent endogenous vasodilator in man. Clin Sci 70: 389–393

    PubMed  CAS  Google Scholar 

  • Tannock IF, Rotin D (1989) Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res 49: 4373–4384

    PubMed  CAS  Google Scholar 

  • Thistlethwaite AJ, Alexander GA, Moylan DJ, Leeper DB (1987) Modification of human tumor pH by elevation of blood glucose. Int J Radiate Oncol Biol Phys 13: 603–610

    Article  CAS  Google Scholar 

  • Varnes ME, Glazier KG, Gray C (1989) pH-dependent effects of the ionophore nigericin on response of mammalian cells to radiation and heat treatment. Radiat Res 117: 282–292

    Article  PubMed  CAS  Google Scholar 

  • Vaupel PW, Okunieff PG (1988) Role of hypovolemic hemoconcentration in dose-dependent flow decline observed in murine tumors after intraperitoneal administration of glucose or mannitol. Cancer Res 48: 7102–7106

    PubMed  CAS  Google Scholar 

  • Vigne P, Félin C, Audinot M, Borsotto M, Cragoe EJ Jr, Lazdunski M (1984) [3H]Ethylpropylamiloride, a radiolabelled diuretic for the analysis of the Na+/H+ exchange system. Its use with kidney cell membranes. EMBO J 3: 2647–2651

    PubMed  CAS  Google Scholar 

  • von Ardenne M, Kell E (1979) Berechnung des dynamischen Aufheizprozesses in mehrschichtigen Modellgeweben bei Lokalhyperthermie nach dem CMT-Selectotherm-Verfahren. Arch Geschwulstforsch 49: 590–612

    Google Scholar 

  • von Ardenne M, Reitnauer PG (1980) Selective occlusion of cancer tissue capillaries as the central mechanism of the cancer multistep therapy. Jpn J Clin Oncol 10: 31–48

    Google Scholar 

  • Voorhees WD, Babbs CF (1982) Hydralazine-enhanced selective heating of transmissible venereal tumor implants in dogs. Eur J Cancer Clin Oncol 18: 1027–1034

    Article  PubMed  CAS  Google Scholar 

  • Walker HJ, Geniton DJ (1989) Vasodilator therapy and the anesthetist: a review of nitroprusside, labetalol, hydralazine and nitroglycerin. J Am Assoc Nurse Anesthetists 57: 435–444

    CAS  Google Scholar 

  • Ward KA, Jain PK (1988) Response of tumours to hyperglycaemia: characterization, significance and role in hyperthermia. Int J Hyperthermia 4: 223–250

    Article  PubMed  CAS  Google Scholar 

  • Ward KA, Jain RK (1991) Blood flow response to hyperglycemia. In: Vaupel P, Jain RK (eds) Tumor blood supply and metabolic microenvironment: characterization and implications for therapy. Gustav Fischer, Stuttgart, pp 87–107

    Google Scholar 

  • Ward KA, Dipette DJ, Held TN, Jain RK (1991) Effect of i.v. versus i.p. glucose injection on systemic hemodynamics and blood flow rate in normal and tumor tissue in rats. Cancer Res 51: 3612–3616

    PubMed  CAS  Google Scholar 

  • Zhuang YX, Cragoe EJ Jr, Glaser JS, Cassel D (1984) Characterization of potent Na+/H+ exchange inhibitors from the amiloride series in A431 cells. Biochemistry 23: 4481–4488

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Prescott, D.M. (1995). Manipulation of Physiological Parameters During Hyperthermia. In: Seegenschmiedt, M.H., Fessenden, P., Vernon, C.C. (eds) Thermoradiotherapy and Thermochemotherapy. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57858-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57858-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63382-9

  • Online ISBN: 978-3-642-57858-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics