Skip to main content

Classification Based on the Support Vector Machine, Regression Depth, and Discriminant Analysis

  • Conference paper
Compstat

Abstract

The minimum number of misclassifications achievable with affine hyperplanes on a given set of labeled points is a key quantity in both statistics and computational learning theory. We compare the modern approaches the regression depth method and the support vector machine with discrimimant analysis. Summarizing, the regression depth method using currently available algorithms yields often better classifications results for small to moderate data sets, say for sample sizes less than 1000 and dimension up to 10, whereas the support vector machine is often more appropriate for larger or higher dimensional data mining problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Christmann, A., Fischer, P., Joachims, T. (2002). Comparison between the regression depth method and the support vector machine to approximate the minimum number of misclassifications. To appear in: Computational Statistics

    Google Scholar 

  • Christmann, A. and Rousseeuw, P.J. (2001). Measuring overlap in logistic regression. Computational Statistics and Data Analysis, 37, 65–75

    Article  MathSciNet  MATH  Google Scholar 

  • Hastie, T., Tibshirani, R., Friedman, J. (2001). The Elements of Statistical Learning. Data Mining, Inference and Prediction New York: Springer.

    Google Scholar 

  • Höffgen, K.U., Simon, H.-U., van Horn, K.S. (1995). Robust Trainability of Single Neurons.J. Computer and System Sciences,50, 114–125.

    Article  MATH  Google Scholar 

  • Joachims, T. (1999). Making large-Scale SVM Learning Practical. In: B. Schölkopf, C. Burges, A.Smola (ed.),Advances in Kernel Methods - Support Vector LearningMIT-Press

    Google Scholar 

  • Meyer, D. (2001). Support Vector Machines. The Interface to libsvm in package e1071 Online-Documentation of the package e1071 for “R”.

    Google Scholar 

  • Rousseeuw, P.J. and Hubert, M. (1999). Regression Depth. J. Amer. Statist. Assoc, 94, 388–433.

    Article  MathSciNet  MATH  Google Scholar 

  • Rousseeuw, P.J. and Struyf, A. (1998). Computing location depth and regres-sion depth in higher dimensions. Statistics and Computing, 8, 193–203.

    Article  Google Scholar 

  • Schölkopf, B. and Smola, A.J. Learning with Kernels. Support Vector Ma- chines Regularization, Optimization, and Beyond. MIT Press, 2002.

    Google Scholar 

  • Vapnik, V. (1998). Statistical Learning Theory Wiley, New York.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Christmann, A., Fischer, P., Joachims, T. (2002). Classification Based on the Support Vector Machine, Regression Depth, and Discriminant Analysis. In: Härdle, W., Rönz, B. (eds) Compstat. Physica, Heidelberg. https://doi.org/10.1007/978-3-642-57489-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57489-4_30

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-1517-7

  • Online ISBN: 978-3-642-57489-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics