Skip to main content

Mediators of Inflammation and Injury

  • Chapter
Surgery

Abstract

The response to injury or infection in the surgical patient is characterized by diverse endocrine, metabolic, and immunological alterations. If the inciting injury is minor and of limited duration, wound healing and restoration of metabolic and immune homeostasis occur with relatively minimal intervention. By contrast, major insults to the host are associated with greater alterations in endogenous regulatory processes that, without appropriate and timely intervention, impact negatively on survival or full restoration of cellular and organ function. The spectrum of metabolic and immunological dysfunction arising from major injuries or severe infections is complex. Conceptually, it is beneficial to consider the initial response to injury—be it surgical, traumatic, or infectious—as inherently inflammatory, marked by the activation of cellular processes designed to restore or maintain function within tissues while also promoting the eradication of invading microorganisms. The initial proinflammatory processes are followed by antiinflammatory or counterregulatory processes that are equally important in the restoration of homeostasis to the host (Fig. 4.1).1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bone RC. Sir Issac Newton, sepsis, SIRS, CARS. Crit Care Med 1996; 24: 1125–1128.

    PubMed  CAS  Google Scholar 

  2. Sheth SB, Chaganti K, Bastepe M, et al. Cyclic AMP phosphodiesterases in human lymphocytes. Br J Haematol 1997; 99: 784–789.

    PubMed  CAS  Google Scholar 

  3. Pryzwansky KB, Kidao S, Merricks EP. Compartmentalization of PDE-4 and cAMP-dependent protein kinase in neutrophils and macrophages during phagocytosis. Cell Biochem Biophys 1998; 28: 251–275.

    PubMed  CAS  Google Scholar 

  4. Weston MC, Peachell PT. Regulation of human mast cell and basophil function by cAMP. Gen Pharmacol 1998; 31: 715–719.

    PubMed  CAS  Google Scholar 

  5. Robyr D, Wolff e P. Hormone action and chromatin remodelling. Cell Mol Life Sci 1998; 54: 113–124.

    PubMed  CAS  Google Scholar 

  6. Dao-Phan HP, Formstecher P, Lefebvre P. Disruption of the glucocorticoid receptor assembly with heat shock protein 90 by a peptidic antiglucocorticoid. Mol Endocrinol 1997; 11: 962–972.

    PubMed  CAS  Google Scholar 

  7. Casadevall M, Saperas E, Panes J, et al. Mechanisms underlying the antiinflammatory actions of central corticotropin-releasing factor. Am J Physiol 1999; 276: G1016 - G1026.

    PubMed  CAS  Google Scholar 

  8. Turnbull AV, Rivier C. Corticotropin-releasing factor (CRF) and endocrine responses to stress: CRF receptors, binding protein, and related peptides. Proc Soc Exp Biol Med 1997; 215: 1–10.

    PubMed  CAS  Google Scholar 

  9. Mercer JG, Lawrence CB, Moar KM, Atkinson T, Barrett P. Short-day weight loss and effect of food deprivation on hypothalamic NPY and CRF mRNA in Djungarian hamsters. Am J Physiol 1997; 273: R768 - R776.

    PubMed  CAS  Google Scholar 

  10. Agnello D, Bertini R, Sacco S, Meazza C, Villa P, Ghezzi P. Corticosteroid-independent inhibition of tumor necrosis factor production by the neuropeptide urocortin. Am J Physiol 1998; 275: E757 - E762.

    PubMed  CAS  Google Scholar 

  11. DeBold CR, Menefee JK, et al. Proopiomelanocorticotropin gene is expressed in many normal human tissues and in tumors not associated with ectopic adrenocorticotropin syndrome. Mol Endocrinol 1989; 2: 862–867.

    Google Scholar 

  12. Udelsman R, Holbrook NJ. Endocrine and molecular responses to surgical stress. Curr Probl Surg 1994; 31: 653–720.

    PubMed  CAS  Google Scholar 

  13. Brizio-Molteni L, Molteni A, et al. Prolactin, corticotropin, and gonadotropin concentrations following thermal injury in adults. J Trauma 1984; 14: 1–9.

    Google Scholar 

  14. Kraus-Friedmann N. Hormonal regulation of hepatic gluconeogenesis. Physiol Rev 1984; 51: 312–322.

    Google Scholar 

  15. Rock CS, Coyle SM, Keogh CV, et al. Influence of hypercortisolemia on the acute-phase protein response to endotoxin in humans. Surgery (St. Louis) 1992; 112: 467–474.

    CAS  Google Scholar 

  16. Calvano SE, Albert JD, Legaspi A, et al. Comparison of numerical and phenotypic leukocyte changes during constant hydrocortisone infusion in normal humans with those in thermally injured patients. Surgery (St. Louis) 1987; 164: 509–520.

    CAS  Google Scholar 

  17. Bessey PQ, Lowe KA. Early hormonal changes affect the catabolic response to trauma. Ann Surg 1993; 218: 476–491.

    PubMed  CAS  Google Scholar 

  18. Newman WH, Zhang LM, Leeper-Woodford SK, Shaker IJ, Erceg SK, Castresana MR. Inhibition of release of tumor necrosis factor-a from human vascular tissue and smooth muscle cells by glucocorticoids. Crit Care Med 1997; 25: 519–522.

    PubMed  CAS  Google Scholar 

  19. Calvano SE, Barbger AE, Hawes AS, de Riesthal HF, Coyle SM, Lowry SF. Effect of combined cortisol-endotoxin administration on peripheral blood leukocyte counts and phenotype in normal humans. Arch Surg 1992; 127: 181–186.

    PubMed  CAS  Google Scholar 

  20. Hawes AS, Rock CS, Keogh CV, Lowry SF, Calvano SE. In vivo effects of the antiglucocorticoid RU 486 on glucocorticoid and cytokine responses to Escherichia coli endotoxin. Infect Immun 1992; 2641–2647.

    Google Scholar 

  21. Barber AE, Coyle SM, Marano MA, et al. Glucocorticoid therapy alters hormonal and cytokine responses to endotoxin in man. J Immunol 1993; 150: 1999–2006.

    PubMed  CAS  Google Scholar 

  22. Van der Poll T, Barber AE, Coyle SM, Lowry SF. Hypercortisolemia increases plasma interleukin-l0 concentrations during human endotoxcmia-a clinical research center study. J Clin Endocrinol Metab 1996; 81: 3604–3606.

    PubMed  Google Scholar 

  23. Swope MD, Lolis E. Macrophage migration inhibitory factor: cytokine, hormone, or enzyme? Rev Physiol Biochem Pharmacol 1999; 139: 1–32.

    PubMed  CAS  Google Scholar 

  24. Jackson I. Thyrotropin-releasing hormone. N Engl J Med 1982; 306: 245–250.

    Google Scholar 

  25. Calvano SE, Chiao J, et al. Changes in free and total levels of plasma cortisol and thyroxine following thermal injury in man. J Burn Care Rehabil 1984; 5: 143–149.

    Google Scholar 

  26. Ullrich A, Gray A, Tam AW, et al. Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J 1986; 5: 2503–2512.

    PubMed  CAS  Google Scholar 

  27. Clemmons DR, Underwood LE. Nutritional regulation of IGF1 and IGF binding proteins. Annu Rev Nutr 1991; 11: 393–412.

    PubMed  CAS  Google Scholar 

  28. Coates CL, Burwell RG, Carlin SA, et al. Somatomedin activity in plasma from burned patients with observations on plasma cortisol. Burns 1981; 7: 425–433.

    Google Scholar 

  29. Thompson WA, Coyle SM, et al. The metabolic effects of continuous infusion of insulin-like growth factor (IGF-l) in parenterally fed men. Surg Forum 1991; 42: 23–25.

    Google Scholar 

  30. Harris AG. Future medical prospects for sandostatin. Metabolism 1990; 39: 5180–5185.

    Google Scholar 

  31. Knoferl MW, Angele MK, Diodato MD, et al. Surgical ovariectomy produces immunodepression following trauma hemorrhage and increases mortality from subsequent sepsis. Surg Forum 1999; 50: 235–237.

    Google Scholar 

  32. Wichmann MW, Zellweger R, DeMaso CM, et al. Enhanced immune responses in females as opposed to decreased responses in males following hemorrhagic shock. Cytokine 1996; 8: 853–863.

    PubMed  CAS  Google Scholar 

  33. Levy EM, McIntosh T, et al. Elevation of circulatory beta-endorphin levels with concomitant depression of immune parameters after traumatic injury. J Trauma 1986; 26: 246–251.

    PubMed  CAS  Google Scholar 

  34. Shavit Y, Lewis JW, et al. Opioid peptides mediate the suppressive effect of stress on natural killer cell cytotoxicity. Science 1984; 223: 188–190.

    PubMed  CAS  Google Scholar 

  35. Deitch EA, Xo D, et al. Opioids modulate neutrophil lymphocyte function: thermal injury alters plasma beta-endorphin levels. Surgery (St. Louis) 1988; 104: 41–48.

    CAS  Google Scholar 

  36. Spink J, Cohen J. Synergy and specificity in induction of gene activity by proinflammatory cytokines: potential therapeutic targets. Shock 1997; 7: 405–412.

    PubMed  CAS  Google Scholar 

  37. Tracey KJ, Fong Y, Hesse DG, et al. Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteremia. Nature (Lond) 1987; 330: 662–664.

    CAS  Google Scholar 

  38. Guirao X, Lowry SF. Biologic control of injury and inflammation: much more than too little or too late. World J Surg 1996; 20: 437–446.

    PubMed  CAS  Google Scholar 

  39. Lin E, Lowry SF. The human response to endotoxin. Sepsis 1998; 2: 255–262.

    Google Scholar 

  40. Van Berge Henegouwen MI, van der Poll T, van Deventer SJH, Gouma DJ. Peritoneal cytokine release after elective gastrointestinal surgery and postoperative complications. Am J Surg 1998; 175: 311–316.

    PubMed  Google Scholar 

  41. Lin E, Calvano SE, Lowry SF. Cytokine response in abdominal surgery. In: Schein M, Wise L, eds. Cytokines and the Abdominal Surgeon. Austin: Landes, 1998: 17–34.

    Google Scholar 

  42. Enayati P, Brennan MF, Fong Y. Systemic and liver cytokine activation. Arch Surg 1994; 124: 1159–1164.

    Google Scholar 

  43. Van der Poll, Lowry SF. Tumor necrosis factor in sepsis: mediator of multiple organ failure or essential part of host defense? Shock 1995; 3: 1–12.

    PubMed  Google Scholar 

  44. Van der Poll, Lowry SF. Endogenous mechanisms regulating TNF and IL-1 during sepsis. In: Vincent JL, ed. Yearbook of Intensive Care and Emergency Medicine. Berlin: Springer-Verlag, 1995: 385–397.

    Google Scholar 

  45. Dinarello CA. Interleukin-1 and interleukin-1 antagonism. Blood 1991; 77: 1627–1652.

    PubMed  CAS  Google Scholar 

  46. Fong Y, Lowry SF. Cytokines and the cellular response to injury and infection. In: Wilmore DW, Cheung LY, Harken AH, Holcroft JW, Meakins JL, eds. Surgery, Vol. 15. New York: Scientific American, 1996: 1–21.

    Google Scholar 

  47. Schafer M, Carter L, Stein C. Interleukin-1 beta and corticotropin-releasing factor inhibit pain by releasing opioids from immune cells in immune tissue. Proc Natl Acad Sci USA 1994; 91: 4219–4223.

    PubMed  CAS  Google Scholar 

  48. Ohlsson K, Bjork P, Bergenfeldt M, Hageman R, Thompson RC. Interleukin-1 receptor antagonist reduces mortality from endotoxic shock. Nature (Lond) 1990; 348: 550–552.

    CAS  Google Scholar 

  49. Abraham E, Regan RF. The effects of hemorrhage and trauma on interleukin-2 production. Arch Surg 1983; 120: 1341–1346.

    Google Scholar 

  50. Oka M, Hirazawa K, Yamamoto K, et al. Induction of Fas-mediated apoptosis on circulating lymphocytes by surgical stress. Ann Surg 1996; 223: 434–440.

    PubMed  CAS  Google Scholar 

  51. Keegan AD, Ryan JJ, Paul WE. IL-4 regulates growth and differentiation by distinct mechanisms. Immunologist 1996; 4: 194–198.

    CAS  Google Scholar 

  52. Mangan DF, Wahl SM. Differential regulation of human monocyte programmed cell death (apoptosis) by chemotactic factors and proinflammatory cytokines. J Immunol 1991; 147: 3408–3412.

    PubMed  CAS  Google Scholar 

  53. Xing Z, Gauldie J, Cox G, et al. IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses. J Clin Invest 1998; 101: 311–320.

    PubMed  CAS  Google Scholar 

  54. Biffl WL, Moore EE, Moore FA, et al. Interleukin-6 delays neutrophil apoptosis. Arch Surg 1996; 131: 24–30.

    PubMed  CAS  Google Scholar 

  55. Tilg H, Trehu E, Atkins MB. Interleukin-6 (IL-6) as an antiinflammatory cytokine: induction of circulating IL-1 receptor antagonist and soluble tumor necrosis factor receptor p55. Blood 1994; 83: 113–118.

    PubMed  CAS  Google Scholar 

  56. Patrick DA, Moore FA, Moore EE, et al. The inflammatory profile of interleukin-6, interleukin-8, and soluble intercellular adhesion molecule-1 in postinjury multiple organ failure. Am J Surg 1996; 172: 425–431.

    Google Scholar 

  57. Luster, AD. Chemokines-chemotactic cytokines that mediate inflammation. New Engl J Med 1998; 338: 436–445.

    PubMed  CAS  Google Scholar 

  58. Gerard C, Bruyns C, Marchant A, et al. Interleukin 10 reduces the release of tumor necrosis factor and prevents lethality-in experimental endotoxemia. J Exp Med 1993; 177: 547–550.

    PubMed  CAS  Google Scholar 

  59. Marshall JD, Aste-Amezaga M, Chehimi SS, Murphy M, Olsen H, Trinchieri G. Regulation of human IL-18 mRNA expression. Clin Immunol 1999; 90: 15–21.

    PubMed  CAS  Google Scholar 

  60. Van der Poll T, Marchant A, Buurman WA, et al. Endogenous IL-10 protects mice from death during septic peritonitis. J Immunol 1995; 155: 5397–5401.

    PubMed  Google Scholar 

  61. Steinhauser ML, Hogaboam CM, Lukacs NW, Strieter RM, Kunkel SL. Multiple roles for IL-12 in a model of acute septic peritonitis. J Immunol 1999; 162: 5437–5443.

    PubMed  CAS  Google Scholar 

  62. O’Sulleabhain C, O’Sullivan ST, Kelly JL, et al. Interleukin-12 treatment restores normal resistance to bacterial challenge after burn injury. Surgery (St. Louis) 1996; 120: 290–296.

    Google Scholar 

  63. Lauw FN, Dekkers PE, to Velde AA, et al. Interleukin-12 induces sustained activation of multiple host inflammatory mediator systems in chimpanzees. J Infect Dis 1999; 179: 646–652.

    PubMed  CAS  Google Scholar 

  64. Carson WE, Yu H, Dierksheide J, et al. A fatal cytokine-induced systemic inflammatory response reveals a critical role for NK cells. J Immunol 1999; 162: 4943–4951.

    PubMed  CAS  Google Scholar 

  65. Chomarat P, Banchereau J. Interleukin-4 and interleukin-13: their similarities and discrepancies. Int Rev Immunol 1998, 17: 152.

    Google Scholar 

  66. Manna SK, Aggarwal BB. Interleukin-4 down-regulates both forms of tumor necrosis factor receptor and receptor-mediated apoptosis, NF-kappaB, AP-1, and c-Jun N-terminal kinase. Cornparison with interleukin-13. J Biol Chem 1998; 273: 33333–33341.

    PubMed  CAS  Google Scholar 

  67. Etter H, Althaus R, Eugster HP, Santamaria-Babi LF, Weber L, Moser R. IL-4 and IL-13 downregulate rolling adhesion of leukocytes to IL-1 or TNF-alpha-activated endothelial cells by limiting the interval of E-selectin expression. Cytokine 1998, 10: 395–403.

    PubMed  CAS  Google Scholar 

  68. Alleva DG, Kaser SB, Monroy MA, Fenton MJ, Beller DI. IL-15 functions as a potent autocrine regulator of macrophage profnflammatory cytokine production: evidence for differential receptor subunit utilization associated with stimulation or inhibition. J Immunol 1997; 159: 2941–2951.

    PubMed  CAS  Google Scholar 

  69. Bulfone-Paus S, Ungureanu D, Pohl T, et al. Interleukin-15 protects from lethal apoptosis in vivo. Nat Med 1997; 3: 1124–1128.

    PubMed  CAS  Google Scholar 

  70. McDonald PP, Russo MP, Ferrini S, Cassatella MA. Interleukin15 (IL-15) induces NF-kappaB activation and IL-8 production in human neutrophils. Blood 1998; 92: 4828–4835.

    PubMed  CAS  Google Scholar 

  71. Musso T, Calosso L, Zucca M, et al. Interleukin-15 activates proinflammatory and antimicrobial functions in polymorphonuclear cells. Infect Immun 1998; 66: 2640–2647.

    PubMed  CAS  Google Scholar 

  72. Puren AJ, Fantuzzi G, Dinarello CA. Gene expression, synthesis, and secretion of interleukin-18 and interleukin-l/3 are differentially regulated in human blood mononuclear cells and mouse spleen cells. Proc Natl Acad Sci USA 1999; 96: 2256–2261.

    PubMed  CAS  Google Scholar 

  73. Bohn E, Sing A, Zumbihl R, et al. IL-18 (IFN-y-inducing factor) regulates early cytokine production in, and promotes resolution of, bacterial infection in mice. J Immunol 1998; 160: 299–307.

    PubMed  CAS  Google Scholar 

  74. Hoshino K, Tsutsui H, Kawai T, et al. Generation of IL-18 receptor-deficient mice: evidence for IL-1 receptor-related protein as an essential IL-18 binding receptor. J Immunol 1999; 162: 5041–5044.

    PubMed  CAS  Google Scholar 

  75. Kohka H, Yoshino T, Iwagaki H, et al. Interleukin-18/interferony-inducing factor, a novel cytokine, up-regulates ICAM-1 (CD54) expression in KG-1 cells. J Leukocyte Biol 1998; 64: 519–527.

    PubMed  CAS  Google Scholar 

  76. Tsutsui H, Matsui K, Kawada N, et al. IL-18 accounts for both TNF-a-and Fas ligand-mediated hepatotoxic pathways in endotoxin-induced liver injury in mice. J Immunol 1997, 159: 3961–3967.

    PubMed  CAS  Google Scholar 

  77. Oberholzer A, Steckholzer U, Okamura H, Kurimoto M, Trentz O, Ertel W. Increased circulating levels of interleukin-18 during severe sepsis in humans. Surg Forum 1998; 49: 88–90.

    CAS  Google Scholar 

  78. Heinzel FP, Rerko DM, Ling P, et al. Interleukin-12 is produced in vivo during endotoxemia and stimulates synthesis of gamma interferon. Infect Immunol 1994; 62: 4244–4249.

    CAS  Google Scholar 

  79. Dinarello CA. IL-18: a TH-1 inducing, proinflammatory cytokine and new member of the IL-1 family. J Allergy Clin Immunol 1999; 103: 11–24.

    PubMed  CAS  Google Scholar 

  80. Barbul A, Regan MB. The regulatory role of T lymphocytes in wound healing. J Trauma 1990; 30: 597–5102.

    Google Scholar 

  81. Keel M, Ungethum U, Steckholzer U, et al. Interleukin-10 counterregulates proinflammatory cytokine-induced inhibition of neutrophil apoptosis during severe sepsis. Blood 1997; 90: 3356–3363.

    PubMed  CAS  Google Scholar 

  82. Ertel W, Keel M, Infanger M, Ungethum U, Steckholzer U, Trentz O. Circulating mediators in serum of injured patients with septic complications inhibit neutrophil apoptosis through upregulation of protein-tyrosine phosphorylation. J Trauma 1998; 44: 767–775.

    PubMed  CAS  Google Scholar 

  83. Fanning NF, Kell MR, Shorten GD, et al. Circulating granulocyte macrophage colony-stimulating factor in plasma of patients with the systemic inflammatory response syndrome delays neutrophil apoptosis through inhibition of spontaneous reactive oxygen species generation. Shock 1999; 11: 167–174.

    PubMed  CAS  Google Scholar 

  84. Goodman ER, Stricker P, Velavicius M, et al. Role of granulocyte-macrophage colony-stimulating factor and its receptor in the genesis of acute respiratory distress syndrome through an effect on neutrophil apoptosis. Arch Surg 1999; 134: 1049–1054.

    PubMed  CAS  Google Scholar 

  85. Decker D, Schondorf M, Bidlingmaier F, Hirner A, von Ruecker AA. Surgical stress induces a shift in the type-1/type-2 T helper cell balance, suggesting down-regulation of cell-mediated and up-regulation of antibody-mediated immunity commensurate to the trauma. Surgery (St. Louis) 1996; 119: 316–325.

    CAS  Google Scholar 

  86. Zedler S, Bone RC, Baue AE, Donnersmarck GH, Faist E. T-cell reactivity and its predictive role in immunosuppression after burns. Crit Care Med 1999; 27: 66–72.

    PubMed  CAS  Google Scholar 

  87. Berguer R, Bravo N, Bowyer M, Egan C, Knolmayer T, Ferrick D. Major surgery suppresses maximal production of helper T-cell type 1 cytokines without potentiating the release of helper T-cell type 2 cytokines. Arch Surg 1999; 134: 540–544.

    PubMed  CAS  Google Scholar 

  88. Lin E, Calvano SE, Lowry SF. Disordered apoptosis as a mechanism for adverse outcome in critical illness. In: Vincent JL, ed. Yearbook of Intensive Care and Emergency Medicine. Berlin: Springer-Verlag, 1997: 91–99.

    Google Scholar 

  89. Lin E, Calvano SE, Lowry SF. The biologic control of systemic inflammatory response. Curr Opin Crit Care 1997; 3: 299–307.

    Google Scholar 

  90. Lin E, Calvano SE, Lowry SF. Tumor necrosis factor receptors in systemic inflammation. In: Vincent JL, ed. Update in Intensive Care and Emergency Medicine. Immune Response in Critical Illness. Berlin: Springer-Verlag, 1999; 365–384.

    Google Scholar 

  91. Ksontini R, MacKay SLD, Moldawer LL. Revisiting the role of tumor necrosis factor a and the response to surgical injury and inflammation. Arch Surg 1998; 133: 558–567.

    PubMed  CAS  Google Scholar 

  92. Van Zee KJ, Stackpole SA, Montegut WJ, et al. A human tumor necrosis factor (TNF) a mutant that binds exclusively to the p55 TNF receptor produces toxicity in the baboon. J Exp Med 1994; 179: 1185–1191.

    PubMed  Google Scholar 

  93. Welborn MB, van Zee K, Edwards PD, et al. A human tumor necrosis factor p75 receptor agonist stimulates in vitro T cell proliferation but does not produce inflammation or shock in the baboon. J Exp Med 1996; 184: 165–171.

    PubMed  CAS  Google Scholar 

  94. Weiss T, Grell M, Hessabi S, et al. Enhancement of TNF receptor p60-mediated cytotoxicity by TNF receptor p80. J Immunol 1998; 158: 2398–2404.

    Google Scholar 

  95. Liu ZG, Hsu HL, Goeddel DV, Karin M. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis, while NF-KB activation prevents cell death. Cell 1996; 87: 565–576.

    PubMed  CAS  Google Scholar 

  96. Anrather J, Csizmadia V, Brostjan C, Soares JP, Bach FH, Winkler H. Inhibition of bovine endothelial cell activation in vitro by regulated expression of a transdominant inhibitor of NF-KB. J Clin Invest 1997; 99: 763–772.

    PubMed  CAS  Google Scholar 

  97. Bohrer H, Qiu F, Zimmermann T, et al. The role of NF-KB in the mortality of sepsis. J Clin Invest 1997; 100: 972–985.

    PubMed  CAS  Google Scholar 

  98. Zong WX, Edelstein LC, Chen C, Bash J, Gelinas C. The pro-survival Bel-2 homolog Bfl-1/A1 is a direct transcriptional target of NF-KB that blocks TNF-a-induced apoptosis. Genes Dev 1999; 13: 382–387.

    PubMed  CAS  Google Scholar 

  99. Moulding DA, Quayle JA, Hart CA, Edwards SW. Mcl-1 expression in human neutrophils: regulation by cytokines and correlation with cell survival. Blood 1998; 92: 2495–2502.

    PubMed  CAS  Google Scholar 

  100. Jiminez MF, Watson RW, Parodo J, et al. Dysregulated expression of neutrophil apoptosis in the systemic inflammatory response syndrome. Arch Surg 1997; 132: 1263–1270.

    Google Scholar 

  101. Lin E, Calvano SE, Coyle S, Rumalla V, Kumar A, Lowry SF. Physiologic hypercortisolemia in humans modulates neutrophl CD95 signal transduction. Surg Forum 1999; 50: 288–290.

    Google Scholar 

  102. Ksontini R, Colagiovanni DB, Josephs MD, et al. Disparate roles for TNF-alpha and Fas ligand in convanavalin A-induced hepatitis. J Immunol 1998; 160: 4082–4089.

    PubMed  CAS  Google Scholar 

  103. Kunstel G, Leist M, Uhlig S, et al. ICE-protease inhibitors block mutine liver injury and apoptosis caused by CD95 or by TNF-alpha. Immunol Lett 1997; 55: 5–10.

    Google Scholar 

  104. Rodriguez I, Matsuura K, Ody C, Nagata S, Vassalli P. Systemic injection of a tripeptide inhibits the intracellular activation of CPP32-like proteases in vivo and fully protects mice against Fas-mediated fulminant liver destruction and death. J Exp Med 1996; 184: 2067–2072.

    PubMed  CAS  Google Scholar 

  105. Van der Poll T, Calvano SE, Kumar A, et al. Endotoxin induces downregulation of tumor necrosis factor receptors on circulating monocytes and granulocytes in humans. Blood 1995; 86: 2754–2759.

    PubMed  Google Scholar 

  106. Calvano SE, van der Poll T, Coyle SM, et al. Monocyte tumor necrosis factor receptor levels as a predictor of risk in human sepsis. Arch Surg 1996; 131: 434–437.

    PubMed  CAS  Google Scholar 

  107. Rumalla V, Calvano SE, Spotnitz AJ, Krause TJ, Lin E, Lowry SF. Alterations in immunocyte tumor necrosis factor receptor and apoptosis in preoperative patients with congestive heart failure. Surg Forum 1999; 50: 120–122.

    CAS  Google Scholar 

  108. Calvano SE, Coyle S, Barbosa K, et al. Multivariate analysis of 9 disease-associated variables for outcome prediction in patients with sepsis. Arch Surg 1998; 133: 1347–1350.

    PubMed  CAS  Google Scholar 

  109. Lin E, Katz JA, Calvano SE, et al. The influence of human endotoxemia on CD95-induced apoptosis. Arch Surg 1998; 133: 1322–1327.

    PubMed  CAS  Google Scholar 

  110. Wissink S, van Heerde EC, van der Burg B, van der Saag PT. A dual mechanism mediates repression of NF-KB activity by glucocorticoids. Mol Endocrinol 1998; 12: 355–363.

    PubMed  CAS  Google Scholar 

  111. Brostjan C, Anrather J, Csizmadia V, Natarajan G, Winkler H. Glucocorticoids inhibit E-selectin expression by targeting NF-?B and not ATF/c-Jun. J Immunol 1997; 158: 3836–3844.

    PubMed  CAS  Google Scholar 

  112. Ayala A, Herson CD, Lehman DL, DeMaso CM, Ayala CA, Chaudry IH. The induction of accelerated thymic programmed cell death during polymicrobial sepsis: control by corticosteroids but not tumor necrosis factor. Shock 1995; 3: 259–267.

    PubMed  CAS  Google Scholar 

  113. Zubiaga AM, Munoz E, Huber BT. IL-4 and IL-2 selectively rescue Th cell subsets from glucocorticoid-induced apoptosis. J Immunol 1992; 149: 107–112.

    PubMed  CAS  Google Scholar 

  114. Liles WC, Dale DC, Klebanoff SJ. Glucocorticoids inhibit apoptosis of human neutrophils. Blood 1995; 86: 3181–3188.

    PubMed  CAS  Google Scholar 

  115. Barber AE, Coyle SM, Marano MA, et al. Glucocorticoid therapy alters hormonal and cytokine responses to endotoxin in man. J Immunol 1993; 150: 1999–2006.

    PubMed  CAS  Google Scholar 

  116. Van der Poll T, Barber AE, Coyle SM, Lowry SF. Hypercortisolemia increases plasma interleukin-l0 concentrations during human endotoxemia-a clinical research center study. J Clin Endocrinol Metab 1996; 81: 3604–3606.

    PubMed  Google Scholar 

  117. Kawamura T, Inada K, Nara N, Wakusawa R, Endo S. Influence of methylprednisolone on cytokine balance during cardiac surgery. Crit Care Med 1999; 27: 545–548.

    PubMed  CAS  Google Scholar 

  118. Van der Poll T, Lowry SF. Epinephrine inhibits endotoxininduced IL-113 production: roles of tumor necrosis factor-a and IL-10. Am J Physiol 1997; 273: R1885 - R1890.

    PubMed  Google Scholar 

  119. Van der Poll T, Lowry SF. Lipopolysaccharide-induced interleukin-8 production by human whole blood is enhanced by epinephrine and inhibited by hydrocortisone. Infect Immun 1997; 65: 2378–2381.

    PubMed  Google Scholar 

  120. Van der Poll T, Coyle SM, Barbosa K, Braxton CC, Lowry SF. Epinephrine inhibits tumor necrosis factor-a and potentiates interleukin-10 production during human endotoxemia. J Clin Invest 1996; 97: 713–719.

    PubMed  Google Scholar 

  121. Walden DL, McCutchan HJ, Enquist EG, et al. Neutrophils accumulate and contribute to skeletal muscle dysfunction after ischemia-reperfusion. Am j Physiol 1990; 259: H1809 - H1812.

    PubMed  CAS  Google Scholar 

  122. Lin E, Lowry SF, Calvano SE. The systemic response to injury. In: Schwartz SI, ed. Principles of Surgery, 7th Ed. New York: McGraw-Hill, 1998: 3–51.

    Google Scholar 

  123. Barroso-Aranda J, Schmid-Schönbein GW, Zwiefach BW, et al. Granulocytes and no-reflow phenomenon in irreversible hemorrhagic shock. Circ Res 1988; 63: 437–447.

    PubMed  CAS  Google Scholar 

  124. Jerome SN, Smith CW, Korthuis RJ. CD18-dependent adherence reactions play an important role in the development of the noreflow phenomenon. Am J Physiol 1993; 264: H479 - H483.

    PubMed  CAS  Google Scholar 

  125. Carden EL, Smith JK, Korthuis RJ. Neutrophil-mediated microvascular dysfunction in postischemic canine skeletal muscle: role of granulocyte adherence. Circ Res 1990; 66: 1436–1444.

    PubMed  CAS  Google Scholar 

  126. Klausner JM, Paterson IS, Valeri CR, et al. Limb ischemia-induced increase in permeability is mediated by leukocytes and leukotrienes. Ann Surg 1988; 208: 755–760.

    PubMed  CAS  Google Scholar 

  127. Vedder NB, Winn RK, Rice CL, et al. Inhibition of leukocyte adherence by anti-CD18 monoclonal antibody attenuates reperfusion injury in the rabbit ear. Proc Natl Acad Sci USA 1990; 87: 2643–2646.

    PubMed  CAS  Google Scholar 

  128. Eichacker PQ, Farese A, Hoffman WD, Banks S, Mouginis T, Natanson C. Leukocyte CD1 lb/CD18 antigen-directed monoclonal antibody improves early survival and decreases hypoxemia in dogs challenged with tumor necrosis factor. Am Rev Respir Dis 1992; 145: 1023–1029.

    PubMed  CAS  Google Scholar 

  129. Patrick DA, Moore FA, Moore EE, Biffl WL, Sauaia A, Barnett CC. The inflammatory profile of interleukin-6, interleukin-8, and soluble intercellular adhesion molecule-1 in postinjury multiple organ failure. Am J Surg 1996; 172: 425–431.

    Google Scholar 

  130. Eppihimer MJ, Wolitzky BA, Anderson DC, Labow MA, Granger DN. Heterogeneity of E- and P-selectin expression in vivo. Circ Res 1996; 79: 560–569.

    PubMed  CAS  Google Scholar 

  131. Read MA, Whitley MZ, Williams AJ, Collins T. NF-KB and IKBa: an inducible regulatory system in endothelial activation. J Exp Med 1994; 179: 503–512.

    PubMed  CAS  Google Scholar 

  132. Anrather J, Csizmadia V, Brostjan C, Soares JP, Bach FH, Winkler H. Inhibition of bovine endothelial cell activation in vitro by regulated expression of a transdominant inhibitor of NF-KB. J Clin Invest 1997; 99: 763–772.

    PubMed  CAS  Google Scholar 

  133. Bevilacqua MP, Pober JS, Mendrick DL, Cotran RS, Gimbrone MA. Identification of an inducible endothelial-leukocyte adhesion molecule. Proc Natl Acad Sci USA 1987; 84: 9238–9242.

    PubMed  CAS  Google Scholar 

  134. Lawrence MB, Springer TA. Neutrophils roll on E-selectin. J Immunol 1993; 151: 6338–6346.

    PubMed  CAS  Google Scholar 

  135. Lo SK, Lee S, Ramos RA, et al. Endothelial-leukocyte adhesion molecule 1 stimulates the adhesive activity of leukocyte integrin CR3 (CD1lb/CD18, Mac-1, amß2) on human neutrophils. J Exp Med 1991; 173: 1493–1500.

    PubMed  CAS  Google Scholar 

  136. Butcher EC. Leukocyte-endothelial cell recognition-three or more) steps to specificity and diversity. Cell 1991; 67: 1033–1036.

    PubMed  CAS  Google Scholar 

  137. Schleiffenbaum BE, Spertini O, Tedder TF. Soluble L-selectin is present in human plasma at high levels and retains functional activity. J Cell Biol 1992; 119: 229–238.

    PubMed  CAS  Google Scholar 

  138. Walcheck B, Kahn J, Fisher JM, et al. Neutrophil rolling altered by inhibition of L-selectin shedding in vitro. Nature (Lond) 1996; 380: 720–723.

    CAS  Google Scholar 

  139. Ley K, Bullard D, Arbones ML, et al. Sequential contribution of L- and P-selectin to leukocyte rolling in vivo. J Exp Med 1995; 181: 669–675.

    PubMed  CAS  Google Scholar 

  140. Lim YC, Snapp K, Kansas GS, Camphausen R, Ding H, Luscinskas FW. Important contributions of P-selectin glycoprotein ligand-l-mediated secondary capture to human monocyte adhesion to P-selectin, E-selectin, and TNF-a-activated endothelium under flow in vitro. J Immunol 1998; 161: 2501–2508.

    PubMed  CAS  Google Scholar 

  141. Kanwar S, Steeber DA, Tedder TF, Hickey MJ, Kubes P. Overlapping roles for L-selectin and P-selectin in antigen-induced immune responses in the microvasculature. J Immunol 1999; 162: 2709–2716.

    PubMed  CAS  Google Scholar 

  142. Kansas GS. Selectins and their ligands: current concepts and controversies. Blood 1996; 88: 3259–3287.

    PubMed  CAS  Google Scholar 

  143. Gopalan PK, Smith CW, Lu H, Berg EL, McIntire LV, Simon SI. Neutrophil CD18-dependent arrest on intercellular adhesion molecule 1 (ICAM-i) in shear flow can be activated through Lselectin. J Immunol 1997; 158: 367–375.

    PubMed  CAS  Google Scholar 

  144. Walcheck B, Moore KL, McEver RP, Kishimoto TK. Neutrophilneutrophil interactions under hydrodynamic shear stress involve L-selectin and PSGL-1. J Clin Invest 1996; 98: 1081–1087.

    PubMed  CAS  Google Scholar 

  145. Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J 1992; 6: 3051–3064.

    PubMed  CAS  Google Scholar 

  146. Geller DA, Lowenstein C, Shapiro RA, et al. Molecular cloning and expression of inducible nitric oxide synthase from human hepatocytes. Proc Natl Acad Sci USA 1993; 90: 3491–3495.

    PubMed  CAS  Google Scholar 

  147. Buga GM, Singh R, Pervin S, et al. Arginase activity in endothelial cells: inhibition by NG-hydroxy-L-arginine during high-output NO production. Am J Physiol 1996; 271: H1988 - H1998.

    PubMed  CAS  Google Scholar 

  148. Geller DA, Nussler AK, DiSilvio M, et al. Cytokines, endotoxin, and glucocorticoids regulate the expression of inducible nitric oxide synthase in hepatocytes. Proc Natl Acad Sci USA 1993; 90: 522–526.

    PubMed  CAS  Google Scholar 

  149. Luscher TF. The endocrine endothelium. In: Becker KL, et al., eds. Principles and Practice of Endocrinology and Metabolism, 2nd Ed. Philadelphia: Lippincott, 1996: Chapter 174: 1491–1498.

    Google Scholar 

  150. Koller J, Mair P, et al. Endothelin and big endothelin concentrations in injured patients. N Engl J Med 1991; 325: 1518–1524.

    PubMed  CAS  Google Scholar 

  151. Diez FL, Nieto ML, Fernandez-Gallardo S, et al. Occupancy of platelet receptors for platelet-activating factor in patients with septicemia. J Clin Invest 1989; 83: 1733–1740.

    Google Scholar 

  152. Thompson WA, Coyle SM, et al. The metabolic effects of PAF antagonism in endotoxemic man. Arch Surg 1994; 29: 72–76.

    Google Scholar 

  153. Moore JM, Earnest MA, DiSimone AG, et al. A PAF receptor antagonist, BN52021, attenuates thromboxane release and improves survival in lethal canine endotoxemia. Circ Shock 1991; 35: 53–59.

    PubMed  CAS  Google Scholar 

  154. Botha AJ, Moore FA, et al. Sequential systemic platelet-activating factor and interleukin 8 primes neutrophils in patients with trauma at risk of multiple organ failure. Br J Surg 1996; 83: 1407–1415.

    PubMed  CAS  Google Scholar 

  155. Jindal S. Heat shock proteins: applications in health and disease. Trends Biotechnol 1996; 14: 17–25.

    PubMed  CAS  Google Scholar 

  156. Udelsman R, Blake MJ, et al. Molecular response to surgical stress: specific and simultaneous heat shock proteins induction in the adrenal cortex, aorta, and vena cava. Surgery (St. Louis) 1991; 110: 1125–1131.

    CAS  Google Scholar 

  157. Blake MJ, Udelsman R, et al. Stress-induced heat shock protein 70 expression in adrenal cortex: an adrenocorticotropic hormone-sensitive, age-dependent response. Proc Natl Acad Sci USA 1991; 88: 9873–9879.

    PubMed  CAS  Google Scholar 

  158. Brigham KL, Meyrick B, et al. Antioxidants protect cultured bovine lung endothelial cells from injury from endotoxin. J Appl Physiol 1987; 63: 840–845.

    PubMed  CAS  Google Scholar 

  159. Chiba T, Takahashi S, et al. Fas-mediated apoptosis is modulated by intracellular glutathione in human T cells. Eur J Immunol 1996; 26: 1164–1169.

    PubMed  CAS  Google Scholar 

  160. Robertson RP. Prostaglandins and other arachidonic acid metabolites. In: Becker KL, et al., eds. Principles and Practice of Endocrinology and Metabolism, 2nd Ed. Philadelphia: Lippincott, 1996: 1466–1472.

    Google Scholar 

  161. Grbic JT, Mannick JA, et al. The role of prostaglandin E2 in immune suppression following injury. Ann Surg 1991; 214: 253–260.

    PubMed  CAS  Google Scholar 

  162. Lefer AM. Eicosanoids as mediators of ischemia and shock. Fed Proc 1985; 44: 275–279.

    PubMed  CAS  Google Scholar 

  163. Caromona RH, Tsao RC, et al. The role of prostacyclin and thromboxane in sepsis and septic shock. Arch Surg 1984; 119: 189–194.

    Google Scholar 

  164. Kinsella JE, Lokesh B. Dietary lipids, eicosanoids and the immune system. Crit Care Med 1990; 18: S94–5113.

    PubMed  CAS  Google Scholar 

  165. Kremer JM, Jubiz W, Michalek A, et al. Fish oil fatty acid supplementation in active rheumatoid arthritis: a double-blinded, controlled, crossover study. Ann Intern Med 1987;406: 497–503.

    Google Scholar 

  166. Endres S, Ghorbani R, Kelley VE, et al. The effect of dietary supplementation with n-3 polyunsaturated fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells. N Engl J Med 1989; 320: 265–271.

    PubMed  CAS  Google Scholar 

  167. Trocki O, Heyd TJ, Waymack JP, Alexander JW. Effects of fish oil on postbum metabolism and immunity. J Parenter Enteral Nutr 1987; 11: 521–528.

    CAS  Google Scholar 

  168. Sierra P, Ling PR, Istfan NW, Bistrian BR. Fish oil feeding improves muscle glucose uptake in tumor necrosis factor-treated rats. Metabolism 1995; 44: 1365–1370.

    PubMed  CAS  Google Scholar 

  169. Lo CJ, Terasaki M, Garcia R, Helton S. Fish oil-supplemented feeding does not attenuate warm liver ischemia and reperfusion injury in the rat. J Surg Res 1997; 71: 54–60.

    PubMed  CAS  Google Scholar 

  170. Mancuso P, Whelan J, DeMichele SJ, Snider CC, Guszcza JA, Karlstad MD. Dietary fish oil and fish and borage oil suppress intrapulmonary proinflammatory eicosanoid biosynthesis and attenuate pulmonary neutrophil accumulation in endotoxic rats. Crit Care Med 1997; 25: 1198–1206.

    PubMed  CAS  Google Scholar 

  171. Hughes DA, Pinder AC, Piper Z, Johnson IT, Lund EK. Fish oil supplementation inhibits the expression of major histocompatibility complex class II molecules and adhesion molecules on human monocytes. Am J Clin Nutr 1996; 63: 267–272.

    PubMed  CAS  Google Scholar 

  172. Hartl WH, Herndon DN, Wolfe RR, et al. Kinin/prostaglandin system: its therapeutic value in surgical stress. Crit Care Med 1990; 18: 1167–1174.

    PubMed  CAS  Google Scholar 

  173. Rodell TC. The kallikrein/kinin system and kinin antagonists in trauma. Immunopharmacology 1996; 33: 279–288.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lin, E., Lowry, S.F., Calvano, S.E. (2001). Mediators of Inflammation and Injury. In: Norton, J.A., et al. Surgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57282-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57282-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63239-6

  • Online ISBN: 978-3-642-57282-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics