Skip to main content

The Algorithms Behind GAIO — Set Oriented Numerical Methods for Dynamical Systems

  • Conference paper
Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems

Abstract

In a given dynamical system there are essentially two different types of information which could be of practical interest: on the one hand there is the need to describe the behavior of single trajectories in detail. This information is helpful for the analysis of transient behavior and also in the investigation of geometric properties of dynamical systems. On the other hand, if the underlying invariant set is generated by complicated dynamics then the computation of single trajectories may give misleading results. In this case there still exists important set related information covering both topological and statistical aspects of the underlying dynamical behavior. Within the DFG-Schwerpunkt we have focussed on the development of set oriented methods for the numerical approximation of

  • invariant sets (e.g. invariant manifolds, global attractors, chain recurrent sets)

  • (natural) invariant measures

  • almost invariant sets

The basic concept is a subdivision algorithm which is similar in spirit to the well known cell mapping techniques but with the crucial difference that the numerical effort mainly depends on the complexity of the dynamics rather than on the dimension of the underlying state space. First, the invariant set is covered by boxes and then the dynamical behavior on the set is approximated by a Markov chain based on transition probabilities between elements of this covering. The algorithms have been implemented in the software package GAIO (Global Analysis of Invariant Objects), and in this article we describe both the related numerical techniques together with their theoretical foundations and how to use them within GAIO. We will also discuss details concerning the implementation such as adaptive versions of the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Dellnitz, G. Froyland, and S. Serti. On the isolated spectrum of the Perron-Frobenius operator. Nonlinearity, 13(4):1171–1188, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Dellnitz, M. Golubitsky, and M. Nicol. Symmetry of attractors and the Karhunen-Loéve decomposition, pages 73108. Number 100 in Applied Mathematical Sciences. Springer-Verlag, 1994.

    Google Scholar 

  3. M. Dellnitz and A. Hohmann. The computation of unstable manifolds using subdivision and continuation. In H.W. Broer, S.A. van Gils, I. Hoveijn, and F. Takens, editors, Nonlinear Dynamical Systems and Chaos, pages 449–459. Birkhäuser, PNLDE 19, 1996.

    Google Scholar 

  4. M. Dellnitz and A. Hohmann. A subdivision algorithm for the computation of unstable manifolds and global attractors. Numerische Mathematik, 75:293–317, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Dellnitz, A. Hohmann, O. Junge, and M. Rumpf. Exploring invariant sets and invariant measures. CHAOS: An Interdisciplinary Journal of Nonlinear Science, 7(2):221, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Dellnitz and O. Junge. On the approximation of complicated dynamical behavior. SIAM J. Numer. Anal., 36(2):491–515, 1999.

    Article  MathSciNet  Google Scholar 

  7. M. Dellnitz, O. Junge, M. Rumpf, and R. Strzodka. The computation of an unstable invariant set inside a cylinder containing a knotted flow. In Proceedings of Equadiff ′99, Berlin, 2000.

    Google Scholar 

  8. P. Deuflhard, M. Dellnitz, O. Junge, and Ch. Schütte. Computation of essential molecular dynamics by subdivision techniques, pages 98–115. Number 4 in Lecture Notes in Computational Science and Engineering. Springer-Verlag, 1998.

    Google Scholar 

  9. J. Ding and A. Zhou. Finite approximations of Frobenius-Perron operators. A solution of Ulam’s conjecture to multi-dimensional transformations. Physica D, 92(1-2):61–68, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  10. R.W. Easton. Geometric Methods for Discrete Dynamical Systems. Number 50 in Oxford engineering science. Oxford University Press, New York, 1998.

    Google Scholar 

  11. M. Eidenschink. Exploring Global Dynamics: A Numerical Algorithm Based on the Conley Index Theory. PhD thesis, Georgia Institute of Technology, 1995.

    Google Scholar 

  12. Euclid. Elements. Book X, (first Proposition).

    Google Scholar 

  13. G. Froyland. Finite approximation of Sinai-Bowen-Ruelle measures of Anosov systems in two dimensions. Random & Computational Dynamics, 3(4):251–264, 1995.

    MathSciNet  MATH  Google Scholar 

  14. G. Froyland. Approximating physical invariant measures of mixing dynamical systems in higher dimensions. Nonlinear Analysis, Theory, Methods, & Appl.ications, 32(7):831–860, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  15. G. Froyland and M. Dellnitz. Detecting and locating near-optimal almostinvariant sets and cycles. In preparation.

    Google Scholar 

  16. R. Guder, M. Dellnitz, and E. Kreuzer. An adaptive method for the approximation of the generalized cell mapping. Chaos, Solitons and Fractals, 8(4):525–534, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Guder and E. Kreuzer. Control of an adaptive refinement technique of generalized cell mapping by system dynamics. J. Nonl. Dyn., 20(1):21–32, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  18. O. Junge. Mengenorientierte Methoden zur numerischen Analyse dynamischer Systeme. PhD thesis, University of Paderborn, 1999.

    Google Scholar 

  19. O. Junge. Rigorous discretization of subdivision techniques. In Proceedings of Equadiff ′99, Berlin, 2000.

    Google Scholar 

  20. G. Keller and C. Liverani. Stability of the spectrum for transfer operators. Preprint, 1998.

    Google Scholar 

  21. H. Keller and G. Ochs. Numerical approximation of random attractors. In Stochastic dynamics, pages 93–115. Springer, 1999.

    Google Scholar 

  22. R.Z. Khas’minskii. Principle of averaging for parabolic and elliptic differential equations and for Markov processes with small diffusion. Theory of Probability and its Applications, 8(1):1–21, 1963.

    Article  Google Scholar 

  23. Y. Kifer. Random Perturbations of Dynamical Systems, volume 16 of Progress in Probability and Statistics. Birkhäuser, Boston, 1988.

    Book  Google Scholar 

  24. A. Lasota and M.C. Mackey. Chaos, Fractals, and Noise. Stochastic Aspects of Dynamics, volume 97 of Applied Mathematical Sciences. Springer-Verlag, New York, second edition, 1994.

    Google Scholar 

  25. T.-Y. Li. Finite approximation for the Frobenius-Perron operator. A solution to Ulam’s conjecture. Journal of Approximation Theory, 17:177–186, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  26. K. Mehlhorn. Data Structures and Algorithms. Springer, 1984.

    Google Scholar 

  27. G. Osipenko. Construction of attractors and filtrations. In K. Mischaikow, M. Mrozek, and P. Zgliczynski, editors, Conley Index Theory, pages 173–191. Banach Center Publications 47, 1999.

    Google Scholar 

  28. C. Robinson. Dynamical Systems: Stability, Symbolic Dynamics, and Chaos. CRC, Boca Raton, 1995.

    MATH  Google Scholar 

  29. M. Rumpf and A. Wierse. GRAPE, eine objektorientierte Visualisierungs-und Numerikplattform. Informatik, Forschung und Entwicklung, 7:145–151, 1992.

    Google Scholar 

  30. Ch. Schütte. Conformational Dynamics: Modelling, Theory, Algorithm, and Application to Biomolecules. Habilitation thesis, Freie Universität Berlin, 1999.

    Google Scholar 

  31. E.C. Zeeman. Stability of dynamical systems. Nonlinearity, 1:115–155, 1988.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dellnitz, M., Froyland, G., Junge, O. (2001). The Algorithms Behind GAIO — Set Oriented Numerical Methods for Dynamical Systems. In: Fiedler, B. (eds) Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56589-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56589-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62524-4

  • Online ISBN: 978-3-642-56589-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics