Skip to main content

Synaptische Erregung und Hemmung

  • Chapter
Neurowissenschaft

Part of the book series: Springer-Lehrbuch ((SLB))

  • 1359 Accesses

Zusammenfassung

Die Zellmembran und der von ihr abgegrenzte Innenraum der Zelle sind die Träger der Aktionsund elektrotonischen Potentiale. Die außerhalb der Zelle während dieser Potentialänderungen fließenden Ströme haben geringe Dichte (Abb. 4–18), und außerhalb der Zelle, nahe der Membran gemessene Potentialänderungen während eines Aktionspotentials erreichen kaum 100 µ.V Amplitude. Diese geringen Potentialänderungen oder Ströme können benachbarte Zellen in der Regel nicht beeinflussen. Das Nervensystem ist jedoch ein Netzwerk von Neuronen, deren Hauptaufgabe der Austausch von Informationen ist. Der Informationsträger ist das Aktionspotential, und für kurze Entfernungen sind es auch elektrotonische Potentialänderungen. Diese Potentialänderungen können an spezialisierten Membrankontakten von zwei Zellen, elektrischen Synapsen, mit einer gewissen Schwächung von Zelle zu Zelle weitergegeben werden.An einem zweiten Typ von Zell-Zell-Kontakten, den chemischen Synapsen, wird die Potentialänderung der präsynaptischen Zelle in die Ausschüttung eines chemischen Signalstoffes, eines Überträgerstoffes oder Transmitters umgesetzt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Weiterführende Lehrbücher

  1. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1990) Molekularbiologie der Zelle, 2. Aufl. VCh, Weinheim

    Google Scholar 

  2. Cooke I, Lipkin M (1972) Cellular neurophysiology, a source book. Holt, Rinehart & Winston, New York

    Google Scholar 

  3. Hille B (1992) Ionic channels of excitable membranes, 2nd edn. Sinauer, Sunderland

    Google Scholar 

  4. Kandel ER, Schwartz JH, Jessell TM (1991) Principles of neural science, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  5. Nicholls J, Martin AR, Wallace BG (1992) From neuron to brain, 3rd edn. Sinauer, Sunderland

    Google Scholar 

  6. Schmidt RF, Thews G (Hrsg) (1995) Physiologie des Menschen, 26. Aufl. Springer, Berlin

    Google Scholar 

Einzel- und Übersichtsarbeiten

  1. Adelsberger H, Brunswieck S, Dudel J (1998) Block by picrotoxin of a GABAergic chloride channel expressed on crayfish muscle after axotomy. Europ J Neurosci 10:179–187

    Article  CAS  Google Scholar 

  2. Atwood HL, Govind CK (1990) Activity-dependent and age-dependent recruitment and regulation of synapses in identified crustacean neurons. J Exp Biol 153:105–127

    Google Scholar 

  3. Bormann J (1988) Electrophysiology of GABAA and GABAB receptor subtypes: TINS 11:112–116

    PubMed  CAS  Google Scholar 

  4. Colquhoun D, Ogden DC (1988) Activation of ion channels in the frog end-plate by high concentrations of acetylcholine. J Physiol (Lond) 395:131–159

    CAS  Google Scholar 

  5. Colquhoun D, Sakmann B (1985) Fast events in singlechannel currents activated by acetylcholine and its analysis at the frog neuromuscular end-plate. J Physiol (Lond) 369:501–557

    CAS  Google Scholar 

  6. Dudel J (1965) The mechanism of presynaptic inhibition at the crayfish neuromuscular junction. Pflugers Arch 248:66–80

    Article  Google Scholar 

  7. Dudel J (1983) Transmitter release triggered by a local depolarisation in motor nerve terminals of the frog: role of calcium entry and of depolarisation. Neurosci Lett 41:133–138

    Article  PubMed  CAS  Google Scholar 

  8. Dudel J (1984) Control of quantal transmitter release at frogs motor nerve terminals. I. Dependence on amplitude and duration of depolarisation. Pflugers Arch 402:225–234

    Article  PubMed  CAS  Google Scholar 

  9. Dudel J (1986) Dependence of double-pulse facilitation on amplitude and duration of the depolarisation pulses at frog’s motor nerve terminals. Pflugers Arch 406:449–457

    Article  PubMed  CAS  Google Scholar 

  10. Dudel J, Franke C, Hatt H (1990) Rapid activation, desensitization and resensitization of synaptic channels of crayfish muscle after glutamate pulses. Biophys J 57:533–545

    Article  PubMed  CAS  Google Scholar 

  11. Dudel J, Kuffler SW (1961) Presynaptic inhibition at the crayfish neuromuscular junction. J Physiol (Lond) 155:543–562

    CAS  Google Scholar 

  12. Dudel J, Rudel R (1969) Voltage controlled contractions and current-voltage relations of crayfish muscle fibers in chloride-free solutions. Pflugers Arch 308:291–314

    Article  PubMed  CAS  Google Scholar 

  13. Franke C, Hatt H, Dudel J (1986) The inhibitory chloride channel activated by glutamate as well as γ-aminobutyric acid (GABA). Single channel recordings from crayfish muscle. J Comp Physiol [A] 159:591–609

    Article  CAS  Google Scholar 

  14. Franke C, Költgen D, Hatt H, Dudel J (1992) Activation and desensitization of embryonic-like receptor channels in mouse muscle by acetylcholine concentration steps. J Physiol (Lond) 451:145–158

    CAS  Google Scholar 

  15. Franke C, Parnas H, Hovav G, Dudel J (1993) A molecular scheme for the reaction between acetylcholine and nicotonic channels. Biophys J 64:339–356

    Article  PubMed  CAS  Google Scholar 

  16. Furness JB, Bornstein JC, Murphy R, Pompolo S (1992) Roles of peptides in transmission in the enteric nervous system. TINS 15:66–71

    PubMed  CAS  Google Scholar 

  17. Garthwaite J (1991) Glutamate, nitric oxide and cellcell signaling in the nervous system. TINS 14:60–67

    PubMed  CAS  Google Scholar 

  18. Heckmann M, Hallermann S, Dudel J (2000) The pattern of burst types of muscular nicotinic receptors/ channels (α2ßγσ) is independent of agonist type and concentration, (submitted)

    Google Scholar 

  19. Hirst GDS, Bramich NJ, Edwards FR, Klemm M (1992) Transmission at autonomic neuroeffector junctions. TINS 15:40–46

    PubMed  CAS  Google Scholar 

  20. Jan LY, Jan YN (1982) Peptidergic transmission in sympathetic ganglia of the frog. J Physiol (Lond) 327:219–246

    CAS  Google Scholar 

  21. Katz B, Thesleff S (1957) A study of the ‘desensitization’ produced by acetylcholine at the motor endplate. J Physiol (Lond) 138:63–80

    CAS  Google Scholar 

  22. Lamb TD, Pugh EN (1992) G-protein cascades: gain and kinetics. TINS 15:291–298

    PubMed  CAS  Google Scholar 

  23. Linden DJ, Connor JA (1991) Participation of synaptic PKC in cerebellar longterm depression in culture. Science 245:1556–1559

    Google Scholar 

  24. Linder NE, Gilman AG (1992) G-proteins. Sci Am 267:36–43

    Google Scholar 

  25. Llinás RR (1982) Calcium in synaptic transmission. Sci Am 10:38–48

    Google Scholar 

  26. Lu Z, Smith DO (1991) Adenosin 5’-triphosphat increases acetylcholine channel opening frequency in rats sceletal muscle. J Physiol (Lond) 436:45–56

    CAS  Google Scholar 

  27. Martina M, Vida I, Jonas P (2000) Distal initiation and active propagation of action potentials in interneuron dendrites. Science 287:295–300

    Article  PubMed  CAS  Google Scholar 

  28. O’Dell T, Howkins RD, Kandel ER, Arancio O (1991) Tests of the roles of two diffusible substances in longterm potentiation: evidence for nitric oxide as a possible early retrograde messenger. Proc Natl Acad Sci USA 88:11285–11289

    Article  PubMed  Google Scholar 

  29. Papahill PA, Lnenicka GA, Atwood HL (1987) Longterm facilitation and low-frequency depression in a crayfish phasic motor neuron. J Comp Physiol [A] 161:367–375

    Article  Google Scholar 

  30. Parnas H, Flashner M, Spira ME (1989) Sequential model to describe the nicotinic synaptic current. Biophys J 55:875–884

    Article  PubMed  CAS  Google Scholar 

  31. Parnas H, Parnas I, Segel LA (1990) On the contribution of mathematical models to the understanding of neurotransmitter release. Int Rev Neurobiol 32:1–50

    Article  PubMed  CAS  Google Scholar 

  32. Soejima M, Noma A (1984) Mode of regulation of the ACh-sensitive K-channel by the muscarinic receptor in rabbit atrial cells. Pflügers Arch 400:424–431

    Article  PubMed  CAS  Google Scholar 

  33. Spruston N, Schiller G, Stuart B, Sakmann B (1995) Activity dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. Science 268:297–300

    Article  PubMed  CAS  Google Scholar 

  34. Trautwein W, Cavalie A (1985) Cardiac calcium channels and their control by neurotransmitters and drugs. J Am Coll Cardiol 6:1409–1416

    Article  PubMed  CAS  Google Scholar 

  35. Uhl G (1992) Neurotransmitter transporters (plus), a promising new gene family. TINS 15:265–268

    PubMed  CAS  Google Scholar 

  36. Wernig A (1972) Changes in statistical parameters during facilitation at the crayfish neuromuscular junction. J Physiol (Lond) 226:751–759

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dudel, J. (2001). Synaptische Erregung und Hemmung. In: Dudel, J., Menzel, R., Schmidt, R.F. (eds) Neurowissenschaft. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56497-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56497-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62534-3

  • Online ISBN: 978-3-642-56497-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics