Skip to main content

Heterotrophic Microbes, Microbial and Enzymatic Activity in Antarctic Soils

  • Chapter

Part of the book series: Ecological Studies ((ECOLSTUD,volume 154))

Abstract

Defining the soil microbial community or its activity is often like a fight against Servante's windmills. Despite the many methods which are available for describing individual figures of this 'black box', many uncertainties remain in this important ecological compartment. Today's methodologies still do not allow us to obtain the full picture of the microbial world. The approach to understanding the microorganism's role has to consider several restrictions, e.g. the number of organisms that are actually involved in metabolic processes, or the amount of available substrates for metabolic processes which cannot be determined as overall parameters. The figures obtained by individual methods thus cannot describe 'the microbial activity'but have to be considered as a certain underestimation or overestimation — depending on the methods applied. An underestimation depends on the reliability of data on total fluxes of matter as well as on the relationships between groups of organisms (Jackson and Volk 1970). Nevertheless, several methods have been applied so far to meet the ecological purpose and to describe the system at an acceptable level — within the limits of the test conditions (Smith and Swift 1983; Raven 1990).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ajwa HA, Dell CJ, Rice CW (1999) Changes in enzyme activities and microbial biomass of tallgrass prairie soil as related to burning and nitrogen fertilization. Soil Biol Biochem 31:769–777

    Article  CAS  Google Scholar 

  • Azmi OR, Seppelt RD (1998) The broad-scale distribution of microfungi in the Windmill Islands region, continental Antarctica. Polar Biol 19:92–100

    Article  Google Scholar 

  • Bailey AD, Wynn-Williams DD (1982) Soil microbial studies at Signy Island, South Orkney Islands. Br Antarct Surv Bull 51:167–191

    Google Scholar 

  • Baublis JA, Wharton RA, Volz PA (1991) Diversity of micro-fungi in an Antarctic dry valley. J Basic Microbiol 31:3–12

    Article  PubMed  CAS  Google Scholar 

  • Beyer L, Sieling K, Pingpank K (1999) The impact of a low humus level in arable soils on microbial properties, soil organic matter quality and crop yield. Biol Fert Soils 28:156–161

    Article  CAS  Google Scholar 

  • Beyer L, Bölter M (2000) Chemical and biological properties, formation, occurrence and classification of spodic Cryosols in a terrestrial ecosystem of East Antarctica (Wilkes Land). Catena 39:95–119

    Article  CAS  Google Scholar 

  • Beyer L, Bölter M, Seppelt RD (2000) Nutrient and thermal regime, microbial biomass, and vegetation of Antarctic soils in the Windmill Islands Region of East Antarctica (Wilkes Land). Arct Antarct Alp Res 32:30–39

    Article  Google Scholar 

  • Billen G, Joiris C, Wijnant P, Gillian G (1980) Concentration and microbiological utilisation of small organic molecules in the Scheldt Estuary, the Belgian coastal zone of the North Sea and the English Channel. Estuarine Coast Mar Sci 11:279–294

    Article  CAS  Google Scholar 

  • Billings WD, Peterson KM, Shaver GR, Trent AW (1977) Root growth, respiration, and carbon dioxide evolution in an arctic tundra soil. Arct Alp Res 9:129–137

    Article  CAS  Google Scholar 

  • Block W (1984) Terrestrial microbiology, invertebrates and ecosystems. In: Laws RM (ed) Antarctic ecology, vol 1, Academic Press, London, pp 163–236

    Google Scholar 

  • Bölter, M (1981) DOC-turnover and microbial biomass production. Kieler Meeresforsch Sdh 5: 304–310

    Google Scholar 

  • Bölter M (1989) Microbial activity in soils from Antarctica (Casey Station, Wilkes Land). Proc NIPR Symp Polar Biol 2:146–153

    Google Scholar 

  • Bölter M (1990a) Microbial ecology of soils from Wilkes Land, Antarctica. I. The bacterial population and its activity in relation to dissolved organic matter. Proc NIPR Symp Polar Biol 3:104–109

    Google Scholar 

  • Bölter, M (1990b) Microbial ecology of soils from Wilkes Land (Antarctica). II. Patterns of microbial activity and related organic and inorganic matter. Proc NIPR Symp Polar Biol 3:120–132

    Google Scholar 

  • Bölter, M (1990 c) Evaluation — by cluster analysis — of descriptors for the establishment of significant subunits in Antarctic soils. Ecol Modell 50:79–94

    Article  Google Scholar 

  • Bölter M (1991) Microbial mineralization in soils and on plant material from Antarctica. In: Weller G, Wilson CL, Severin BAB (eds) Int Conference on the Role of the polar regions in global change. Proceedings of a Conference held 11-15 June 1990 at the University of Alaska Fairbanks, Vol II, Geophysical Institute University of Alaska, Fairbanks, pp 418–422

    Google Scholar 

  • Bölter M (1992a) Vergleichende Untersuchungen zur mikrobiellen Aktivität in Böden und an Kryptogamen aus der kontinentalen und maritimen Antarktis (Casey, Wilkes Land, und Arctowski, King George Island). Habilschrift, Univ Kiel, pp 1–203

    Google Scholar 

  • Bölter M (1992b) Environmental conditions and microbiological properties from soils and lichens from Antarctic (Casey Station, Wilkes land). Polar Biol 11:591–599

    Article  Google Scholar 

  • Bölter M (1993a) Effects of carbohydrates and leucine on growth of bacteria from Antarctic soils (Casey Station, Wilkes Land). Polar Biol 13:297–306

    Article  Google Scholar 

  • Bölter M (1993b) Organic matter and its availability to microorganisms in Antarctic soils. In: Gilichinski D (ed) 1st Int Conf Cryopedol (Cryosols: the effects of cryogenesis on the processes and peculiarities of soil formation). Russ Acad Sciences, Pushchino, pp 189–199

    Google Scholar 

  • Bölter M (1994) Estimations of microbial biomass by direct and indirect methods with special respect to monitoring programs. Proc NIPR Symp Polar Biol 7:198–208

    Google Scholar 

  • Bölter M (1995) Distribution of bacterial numbers and biomass in soils and on plants from King George Island (Arctowski Station, Maritime Antarctica). Polar Biol 15:115–124

    Article  Google Scholar 

  • Bölter M (1996) Analysis of soil microbial communities (autotrophs and heterotrophs) from King George Island (Arctowski Station). Proc NIPR Symp Polar Biol 9:283–298

    Google Scholar 

  • Bölter M (1997a) Soil properties and distributions of invertebrates and bacteria from King George Island (Arctowski Station), maritime Antarctic. Polar Biol 18:295–304

    Article  Google Scholar 

  • Bölter M (1997b) Microbial communities in soils and on plants from King George Island (Arctowski Station, Maritime Antarctic). In: Battaglia B, Valencia J, Walton DWH (eds) Antarctic communities: species, structure and survival. Cambridge University Press, Cambridge, pp 162–169

    Google Scholar 

  • Bölter M (1998) Structure of bacterial communities in Arctic permafrost soils (Tajmyr Peninsula, Siberia) In: Glowacki P, Bednarek J (eds) Polish Polar Studies, 25th Intern Polar Symp, Warszawa 1998. Inst Geophys Pol Acad Sci, Warszawa, pp 61–66

    Google Scholar 

  • Bölter M, Kappen L, Meyer M (1989) The influence of microclimatic conditions on potential photosynthesis of Usnea sphacelata — a model. Ecol Res 4:297–307

    Article  Google Scholar 

  • Bölter M, Möller R, Dzomla W (1993) Determination of bacterial biomass with epifluorescence microscopy: comparison of size distributions from image analysis and size classifications. Micron 24:31–40

    Article  Google Scholar 

  • Bölter M, Blume H-P, Kappen L (1995) Bodenbiologische Untersuchungen in der maritimen und kontinentalen Antarktis (King George Island und Windmill Islands). I. Umweltparameter und anorganische Nährstoffe. Polarforschung 65:41–61

    Google Scholar 

  • Bölter M, Blume HP, Schneider D, Beyer L (1997) Soil properties and distribution of invertebrates and bacteria from King George Island (Arctowski Station), maritime Antarctic. Polar Biol 18:295–304

    Article  Google Scholar 

  • Bölter M, Seppelt RD, Beyer L, Pingpank K (2000) Studies on floristic diversity, soil organic matter, and soil microbes from the Windmill Islands, East Antarctica. Bibl Lichenol 75:421–432

    Google Scholar 

  • Bowman JP, Cavanagh J, Austin J, Sanderson K (1996) Novel Psychrobacter species from Antarctica ornithogenic soils. Int J Syst Bacteriol 46:841–848

    Article  PubMed  CAS  Google Scholar 

  • Boyd WL (1967) Ecology and physiology of soil microorganisms in polar regions. JARE Sci Rep, Proc Symp Pacific Antarct Sci, Spec Issue 1:265–275

    Google Scholar 

  • Broady P (1979) A preliminary survey of the terrestrial algae of the Antarctic Peninsula and South Georgia. Br Antarct Surv Bull 48:47–70

    Google Scholar 

  • Bunnell FL, MacLean SF Jr, Brown J (1975) Barrow, Alaska, USA. In: Rosswall T, Heal OW (eds) Structure and function of tundra ecosystems. Ecol Bull (Stockholm) 20:73–124

    Google Scholar 

  • Burket JZ, Dick RP (1998) Microbial and soil parameters in relation to N mineralization in soils of diverse genesis under differing management systems. Biol Fert Soils 27:430–438

    Article  CAS  Google Scholar 

  • Cameron RE, King J, David CN (1970) Microbiology, ecology and microclimatology of soil sites in dry valleys of southern Victoria land, Antarctica In: Holdgate MW (ed) Antarctic ecology, vol 2. Academic Press, London, pp 702–716

    Google Scholar 

  • Czekanowska E, Zabawski J (1988) Soil actinomycetes of the Admiralty Bay area at King George Island, Antarctic. In: Jahn A, Pereyma J, Szczepankiewicz-Szmyrka A (eds) XVth Polar Symp. Wroclaw Univ Publ House, Wroclaw, pp 279–288

    Google Scholar 

  • Chapman BE, Roser DJ, Seppelt RD (1994) 13C NMR analysis of Antarctic cryptogam extracts. Antarct Sci 6:295–305

    Article  Google Scholar 

  • Christie P (1987) Nitrogen in two contrasting Antarctic bryophyte communities. J Ecol 75:73–93

    Article  CAS  Google Scholar 

  • Christie P, Nicolson TH (1983) Are mycorrhizas absent from the Antarctic? Trans Br Mycol Soc 80:557–560

    Article  Google Scholar 

  • Corpe WA, Winters H (1972) Hydrolytic enzymes of some periphytic bacteria. Can J Microbiol 18:1483–1490

    Article  PubMed  CAS  Google Scholar 

  • Czarnecki B, Bialasiewicz D (1987) Fungi as a component of the aerosphere in the H. Arctowski Polar Station and its vicinity (King George Island, South Shetland Islands). Pol Polar Res 8: 53–158

    Google Scholar 

  • Davey A (1983) Effects of abiotic factors on nitrogen fixation by blue-green algae in Antarctica. Polar Biol 2:95–100

    Article  CAS  Google Scholar 

  • Davis RC (1980) Peat respiration and decomposition in Antarctic terrestrial moss communities. Biol J Linnean Soc 14:39–49

    Article  Google Scholar 

  • Davis RC (1981) Structure and function of two Antarctic terrestrial moss communities. Ecol Monogr 51:125–143

    Article  Google Scholar 

  • Dawson R, Schramm W, Bölter M (1985) Factors influencing the production, decomposition and distribution of organic and inorganic matter in Admiralty Bay, King George Island. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic Nutrient Cycles and Food Webs. Springer, Berlin Heidelberg New York, pp 109–114

    Google Scholar 

  • Del Frate G, Caretta G (1990) Fungi isolated from Antarctic material. Polar Biol 11:1–7

    Article  Google Scholar 

  • Deng SP, Tabatabai MA (1997) Effect of tillage and residue management on enzyme activities in soils: III. Phosphatases and arylsulfatase. Biol Fert Soils 24:141–146

    Article  CAS  Google Scholar 

  • Feller G, Narinx E, Arpigny JL, Zekhnini Z, Swings J, Gerday C (1994) Temperature dependence of growth, enzyme secretion and activity of psychrophilic Antarctic bacteria. Appl Microbiol Biotechnol 41:477–479

    Article  CAS  Google Scholar 

  • Fenice M, Selbmann L, Zucconi L, Onofri S (1997) Production of extracellular enzymes by Antarctic fungal strains. Polar Biol 17:275–280

    Article  Google Scholar 

  • Fletcher LD, Kerry EJ, Weste GM (1985) Microfungi of McRobertson and Enderby Lands, Antarctica. Polar Biol 4:81–88

    Article  Google Scholar 

  • French DD, Smith VR (1986) Bacterial populations in soils of a Subantarctic island. Polar Biol 6:75–82

    Article  Google Scholar 

  • Fry JC (1988) Determination of biomass. In: Austin, B (ed) Methods in aquatic bacteriology. Wiley, Chichester, pp 27–72

    Google Scholar 

  • Gallikowski C, Hirsch P (1988) Preliminary characterization and identification of 1984/1985 continental Antarctic soil microorganisms of Linnaeus Terrace (Altitude 1600 m; McMurdo Dry Valleys). Polarforschung 58:93–101

    Google Scholar 

  • Greenfield LG (1992) Precipitation nitrogen at maritime Signy Island and continental Cape Bird, Antarctica. Polar Biol 11:649–653

    Article  Google Scholar 

  • Greenfield L, Wilson G (1981) University of Canterbury, Antarctica Expedition, Report No 19. University of Canterbury, Christchurch, pp 1–47

    Google Scholar 

  • Grobler DC, Torien DF, Smith VR (1987) Bacterial activity in soils of a sub-Antarctic island. Soil Biol Biochem 19:485–490

    Article  CAS  Google Scholar 

  • Hagström A, Larsson U, Hörstedt P, Nordmark S (1979) Frequency of dividing cells, a new approach to the determination of bacterial growth rates in aquatic environments. Appl Environ Microbiol 37:805–812

    PubMed  Google Scholar 

  • Heal OW, Flanagan PW, French DD, Maclean SF (1981) Decomposition and accumulation of organic matter. In: Bliss, LC, Heal, OW, Moore, JJ (eds) Tundra ecosystems: a comparative analysis. Cambridge University Press, Cambridge, pp 587–633

    Google Scholar 

  • Heatwole H, Saenger P, Spain A, Kerry E, Donelan J (1989) Biotic and chemical characteristics of some soils from Wilkes Land, Antarctica. Antarct Sci 1:225–234

    Article  Google Scholar 

  • Ino Y (1985) Comparative study of the effects of temperature on net photosynthesis and respiration in lichens from the Antarctic and subalpine zones in Japan. Bot Mag Tokyo 98:41–53

    Article  Google Scholar 

  • Jackson WA, Volk RJ (1970) Photorespiration. Annu Rev Plant Physiol 21:385–432

    Article  CAS  Google Scholar 

  • Jenkinson DS, Powlson DS, Wedderburn RW 1976 The effects of biocidal treatments on metabolism in soil. III. The relationship between soil biovolume, measured by optical microscopy, and the flush of decomposition caused by fumigation. Soil Biol Biochem 8: 89–202

    Google Scholar 

  • Kandeler E, Eder G (1993) Effect of cattle slurry in grassland on microbial biomass and on activities of various enzymes. Biol Fert Soils 16:249–254

    Article  CAS  Google Scholar 

  • Kandeler E, Kampichler C, Horak O (1996) Influence of heavy metals on the functional diversity of soil microbial communities. Biol Fert Soils 23:299–306

    Article  CAS  Google Scholar 

  • Kandeler E, Tscherko D, Spiegel H (1999) Long-term monitoring of microbial biomass, N-mineralisation and enzyme activities of a Chernozem under different tillage. Biol Fert Soils 28:343–351

    Article  CAS  Google Scholar 

  • Kappen L (1985) Lichen-habitats as micro-oases in the Antarctic — the role of temperature. Polarforschung 55:49–54

    Google Scholar 

  • Kennedy AD (1993) Water as a limiting factor in the Antarctic terrestrial environment: a biogeographical synthesis. Arct Alp Res 25:308–315

    Article  Google Scholar 

  • Kerry E (1990a) Effects of temperature on growth rates of fungi from sub-Antarctic Macquarie Island and Casey, Antarctica. Polar Biol 10:293–299

    Google Scholar 

  • Kerry E (1990b) Microorganisms colonizing plants and soil subjected to different degrees of human activity, including petroleum contamination, in the Vestfold Hills and MacRobertson Land, Antarctic. Polar Biol 10:423–430

    Google Scholar 

  • Klose S, Moore JM, Tabatabai MA (1999) Arylsulfatase activity of microbial biomass in soils as affected by cropping systems. Biol Fert Soils 29:46–54

    Article  CAS  Google Scholar 

  • Ladd JN (1985) Soil enzymes. In: Vaughan, D, Malcolm, RE (eds) Soil organic matter and biological activity, vol 1.Nijhoff/Junk, Dordrecht, pp 175–22

    Chapter  Google Scholar 

  • Lewis Smith RI (1985) Nutrient cycling in relation to biological productivity in Antarctic and Sub-Antarctic terrestrial and freshwater ecosystems. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer, Berlin Heidelberg New York, pp 138–155

    Google Scholar 

  • Lewis Smith RI (1986) Plant ecological studies in the fellfield ecosystem near Casey Station, Australian Antarctic Territory, 1985-1986. Br Antarct SurvBull 72:81–91

    Google Scholar 

  • Line MA (1988) Microbial flora of some soils of Mawson base and the Vestfold Hills, Antarctica. Polar Biol 8:421–427

    Article  Google Scholar 

  • McRae CF, Hocking AD, Seppelt RD (1999) Penicillium species from terrestrial habitats in the Windmill Islands, East Antarctica, including a new species, Penicillium antarcticum. Polar Biol 21:97–111

    Article  Google Scholar 

  • Melick DR, Seppelt RD (1992) Loss of soluble carbohydrates and changes in freezing point of Antarctic bryophytes after leaching and repeated freeze-thaw cycles. Antarct Sci 4:399–404

    Article  Google Scholar 

  • Melick DR, Seppelt RD (1994) Seasonal investigation of soluble carbohydrates and pigment levels in Antarctic bryophytes and lichens. Bryologist 97:98–105

    Article  Google Scholar 

  • Melick DR, Bölter M, Möller R (1994) Rates of soluble carbohydrate utilization in soils from the Windmill Islands Oasis, Wilkes Land, continental Antarctica. Polar Biol 14:59–64

    Article  Google Scholar 

  • Meyer-Reil L-A 1978 Uptake of glucose by bacteria in the sediment. Mar Biol 44:293–298

    Article  Google Scholar 

  • Montemartini Corte A, Gestro C (1994) Fungi from mud of Antarctic ponds. In: Battaglia, B, Bisol, PM, Varotto, V (eds) Proceedings of the 2nd Meeting on Antarctic Biology, Padova, 26-28 February 1992. Edizioni Universitairie Patavine, Padova, pp 33–42

    Google Scholar 

  • Moore TR (1986) Carbon dioxide evolution from sub-Arctic peatlands in eastern Canada. Arct Alp Res 18:189–193

    Article  Google Scholar 

  • Morita RY, Moyer CL (1989) Bioavailability of energy and the starvation of cells. In: Hattori, T, Ishida, Y, Maruyama, Y, Morita, RY and Uchida, A (eds) Recent advances in microbial ecology. Japan Scientific Societies Press, Tokyo, pp 75–79

    Google Scholar 

  • Morley CR, Trofymow JA, Coleman DC, Cambardella C (1983) Effects of freeze-thaw stress on bacterial populations in soil microcosms. Microb Ecol 9:329–340

    Article  Google Scholar 

  • Myrcha A, Pietr SJ, Tatur A (1985) The role of pygoscelid penguin rookeries in nutrient cycles at Admiralty Bay King George Island. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycle, food webs. Springer, Berlin Heidelberg New York, pp 156–162

    Google Scholar 

  • Myrcha A, Ochyra R, Tatur A (1991) Site of Special Scientific Interest no. 8, Western shore of Admiralty Bay, King George Island, South Shetland Islands. In: Klekowski, RZ, Opalinski KW (eds) First Polish-Soviet Antarctic Symp 'Arctowski 85'. Institute of Ecology Publ Office, Warsaw, pp 157–168

    Google Scholar 

  • Nakatsubo T, Ino Y (1986) Nitrogen cycling in an Antarctic ecosystem. 1. Biological nitrogen fixation in the vicinity of Syowa Station. Mem Natl Inst Pol Res Ser E 37:1–10

    Google Scholar 

  • Onofri S, Tosi S, Persiani AM, Maggi O, Riess S, Zucconi L (1994) Mycological researches in Victoria Land terrestrial ecosystems. In: Battaglia B, Bisol PM, Varotto V (eds) Proceedings of the 2nd Meeting on Antarctic Biology, Padova, 26-28 February 1992. Edizioni Universitairie Patavine, Padova, pp 19–32

    Google Scholar 

  • Parker LW, Miller J, Steinberger Y, Whitford WC (1983) Soil respiration in a Chihuahuan desert rangeland. Soil Biol Biochem 15:303–309

    Article  Google Scholar 

  • Paul EA, Clark FE (1989) Soil microbiology and biochemistry. Academic Press, London Petz W (1997) Ecology of the active soil microfauna (Protozoa, Metazoa) of Wilkes Land, East Antarctica Polar Biol 18:33–44

    Google Scholar 

  • Pietr SJ (1986) The physiological groups of microorganisms in different soils at Admiralty Bay region (King George Island, South Shetland Islands, Antarctica) Pol Polar Res 7:395–406

    Google Scholar 

  • Pietr SJ (1993) Soil microorganisms In: Rakusa-Suszczewski S (ed) The maritime Antarctic coastal ecosystem of Admiralty Bay. Dept of Antarctic Biology, PAS, Warsaw, pp 167–172

    Google Scholar 

  • Pietr SJ, Tatur A, Myrcha A (1983) Mineralization of penguin excrements in the Admiralty Bay region (King George Island, South Shetlands, Antarctica). Pol Polar Res 4:97–112

    Google Scholar 

  • Pietr SJ, Fischer Z, Tyrawska D, Bajan C (1995): Biological processes of organic matter degradation in Karkonosze soils. In: Fischer Z (ed) Ecological problems of alpine part of Karkonosze. Dzieknów Lesny Institute of Ecology Publ Office, Warsaw, pp 131–168

    Google Scholar 

  • Poole DK, Miller PC (1982) Carbon dioxide flux from three Arctic tundra types in northcentral Alaska, USA. Arct Alp Res 14:27–32

    Article  CAS  Google Scholar 

  • Pugh GJF, Allsopp A (1982) Microfungi on Signy Island, South Orkney Islands. Br Antarct Surv Bull 57:55–67

    Google Scholar 

  • Ramsay AJ (1983) Bacterial biomass in ornithogenic soils of Antarctica. Polar Biol 1:221–225

    Article  Google Scholar 

  • Ramsay AJ, Stannard RE (1986) Numbers and viability of bacteria in ornithogenic soils of Antarctica. Polar Biol 5:195–198

    Article  Google Scholar 

  • Raven JR (1990) Use of isotopes in estimating respiration and photorespiration in microalgae. Mar Microb Food Webs 4:59–86

    Google Scholar 

  • Ray MK, Shivaji S, Shyamala Rao N, Bhargava PM (1989) Yeast strains from Schirmacher Oasis, Antarctica. Polar Biol 9:305–309

    Article  Google Scholar 

  • Roser DJ, Melick DR, Seppelt RD (1992a) Reductions in the polyhydric alcohol content of lichens as an indicator of environmental pollution. Antarct Sci 4:185–189

    Google Scholar 

  • Roser DJ, Melick DR, Ling HU, Seppelt RD (1992b) Polyol and sugar content of terrestrial plants from continental Antarctica. Antarct Sci 4:413–420

    Google Scholar 

  • Roser DJ, Seppelt RD, Ashbolt N (1993) Microbiology of ornithogenic soils from the Windmill Islands, Budd Coast, Continental Antarctica: microbial biomass distribution. Soil Biol Biochem 25:165–175

    Article  Google Scholar 

  • Roser DJ, Seppelt RD, Nordstrom O (1994) Soluble carbohydrate and organic acid content of soils and associated microbiota from the Windmill islands, Budd Coast, Antarctica. Antarct Sci 6:53–59

    Article  Google Scholar 

  • Shivaji S, Shyamala Rao N, Saisree L Reddy GSN, Seshu Kumar G, Bhargava PM (1989) Isolates of Arthrobacter from soils of Schirmacher Oasis, Antarctica. Polar Biol 10:225–229

    Google Scholar 

  • Siebert J, Hirsch P (1988) Characterisation of 15 selected coccal bacteria isolated from Antarctic and soil samples from McMurdo-Dry Valleys (South Victoria Land). Polar Biol 9:37–44

    Article  PubMed  CAS  Google Scholar 

  • Skartveit A, Ryden BE, Kärenlampi L (1975) Climate and hydrology of some Fennoscandian tundra ecosystems. In: Wielgolaski FE (ed) Fennoscandian tundra ecosystems. Part 1. Plants and microorganisms. Springer, Berlin Heidelberg New York, pp 41–56

    Chapter  Google Scholar 

  • Smith HG, Tearle PV (1985) Aspects of microbial and protozoan abundances in Signy Island fellfields. Br Antarct Surv Bull 68:83–90

    Google Scholar 

  • Smith KA, Swift RS (1983) General isotope techniques. In: Smith KA (ed) Soil analysis. Marcel Dekker, New York, pp 229–298

    Google Scholar 

  • Smith MJ, Walton DWH (1985) Statistical analysis of the relationships among viable microbial populations, vegetation, and environment in a sub-Antarctic tundra. Microbiol Ecol 11:245–257

    Article  Google Scholar 

  • Stemmer M, Gerzabek MH, Kandeler E (1999) Invertase and xylanase activity of bulk soil and particle-size fractions during maize straw decomposition. Soil Biol Biochem 31:9–18

    Article  CAS  Google Scholar 

  • Sun SH, Huppert M, Cameron RE (1978) Identification of some fungi from soil and air of Antarctica. Antarct Res Ser 30, American Geophysical Union, Washington, DC, pp 1–26

    Google Scholar 

  • Tearle PV (1987) Cryptogamic carbohydrate release and microbial response during spring freeze-thaw cycles in Antarctic fellfield soils. Soil Biol Biochem 19:381–390

    Article  CAS  Google Scholar 

  • Tscherko D, Kandeler E, Beyer L, Bölter M, Blume H-P (2002) Microbial biomass and enzyme activity of soil transects in maritime Antarctica (King-George Island, West Antarctica). Arct Antarct Alp Res (in press)

    Google Scholar 

  • Tubaki K (1961) On some fungi isolated from Antarctic materials. Biological results of the Japanese Antarctic Research Expedition. Seto Mar Biol Laborat Spec Publ 14:3–9

    Google Scholar 

  • Tubaki K, Asano I (1965) Additional species of fungi isolated from Antarctic materials. Jap Ant Res Exp Sci Rep, Ser E 27:1–12

    Google Scholar 

  • Upton AC, Nedwell DB (1989) Nutritional flexibility of oligotrophic and copiotrophic Antarctic bacteria with respect to organic substrates. FEMS Microbiol Ecol 62:1–6

    Article  CAS  Google Scholar 

  • Vestal JR (1988a) Biomass of the cryptoendolithic microbiota from the Antarctic desert. Appl Environ Microbiol 54:957–959

    PubMed  CAS  Google Scholar 

  • Vestal JR (1988b) Carbon metabolism of the cryptoendolithic microbiota from the Antarctic desert. Appl Environ Microbiol 54:960–965

    PubMed  CAS  Google Scholar 

  • Vincent WF (1988) Microbial ecosystems of Antarctica. Cambridge University Press, Cambridge

    Google Scholar 

  • Vishniac H (1993) The microbiology of Antarctic soils In: Friedmann, EI (ed) Antarctic microbiology. Wiley-Liss, New York, pp 297–341

    Google Scholar 

  • Vishniac HS, Hempfling WP (1979) Cryptococcus vishniacii sp. nov., an Antarctic yeast. Intern J Syst Bacteriol 29:153–158

    Article  Google Scholar 

  • Walton DWH (1982) The Signy Island terrestrial reference sites: XV. Micro-climatic monitoring, 1972-74. Br Antarct Surv Bull 55: 111–126

    Google Scholar 

  • Wicklow, DT (1968) Aspergillus fumigatus Fresenius isolated from ornithogenic soil collected at Hallett Station, Antarctica. Can J Microbiol 14:717–719

    Article  PubMed  CAS  Google Scholar 

  • Wiliams PG, Roser DJ, Seppelt RD (1994) Mycorrhizas of hepatics in continental Antarctica. Mycol Res 98:34–36

    Article  Google Scholar 

  • Wynn-Williams DD (1980) Seasonal fluctuations in microbial activity in Antarctic moss peat. Biol J Linnean Soc 14:11–28

    Article  Google Scholar 

  • Wynn-Williams DD (1982) Simulation of seasonal changes in microbial activity of maritime Antarctic peat. Soil Biol Biochem 14:1–12

    Article  CAS  Google Scholar 

  • Wynn-Williams DD (1984) Comparative respirometry of peat decomposition on a latitudinal transect in the maritime Antarctic. Polar Biol 3:173–181

    Article  Google Scholar 

  • Wynn-Williams DD (1985a) Photofading retardant for epifluorescence microscopy in soil micro-ecological studies. Soil Biol Biochem 17:739–746

    Article  Google Scholar 

  • Wynn-Williams DD (1985b) The Signy Island terrestrial reference sites: XVII. Peat O2uptake in a moss carpet relative to edaphic and microbial factors. Br Antarct Surv Bull 68:61–69

    Google Scholar 

  • Wynn-Williams DD (1988) Microbial colonization of Antarctic fellfield soils. Proc 4th Int Symp Microb Ecol, Ljubljana, pp 191–200

    Google Scholar 

  • Wynn-Williams DD (1993) Microbial processes and initial stabilization of fellfield soils In: Miles J, Walton DWH (eds) Primary succession on land. Blackwell, Oxford, pp 17–32

    Google Scholar 

  • Zabawski, J, Piasecki, J (1981) Studies of soil microflora of King George Island. In: Maliszewska, E (ed) Microbiological transformations of nitrogen compounds in soil under various ecological conditions. Institute of Cultivation Fertilization and Pedology, Pulawy, pp 131–138

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bölter, M., Kandeler, E., Pietr, S.J., Seppelt, R.D. (2002). Heterotrophic Microbes, Microbial and Enzymatic Activity in Antarctic Soils. In: Beyer, L., Bölter, M. (eds) Geoecology of Antarctic Ice-Free Coastal Landscapes. Ecological Studies, vol 154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56318-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56318-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62674-6

  • Online ISBN: 978-3-642-56318-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics