Skip to main content

Peripheral Artery Physiology and Pathophysiology: Special Considerations

  • Chapter
Pan Vascular Medicine

Abstract

Peripheral circulation usually refers to the vasculature of the upper and lower extremities. Apart from bones and joints, the two systems supplied by the peripheral circulation are skeletal muscle and skin. All considerations made below assume an unimpaired cardiac function and venous return.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bertuglia S, Colantuoni A, Intaglietta M (1994) Effects of l-NMMA and indomethacin on arteriolar vasomotion in skeletal muscle microcirculation of conscious and anesthetized hamsters. Micro- Vasc Res 48: 68–84

    CAS  Google Scholar 

  2. Berwanger CS, Jeremy JY, Stansby G (1995) Homocysteine and vascular disease. Br J Surg 82: 726–731

    CAS  PubMed  Google Scholar 

  3. Blann AD (1993) Von Willebrand factor and the endothelium in vascular disease. Br J Biomed Sci 50: 125

    CAS  PubMed  Google Scholar 

  4. Blann AD, McCollum CN (1994) Circulating endothelial cell/leukocyte adhesion molecules in atherosclerosis. Thromb Hemost 72: 151–154

    CAS  Google Scholar 

  5. Blann AD, Wai T, Maxell SRJ et al (1994) Increased levels of the soluble adhesion molecule E-selectin in essential hypertension. J Hypertens 12: 925

    CAS  PubMed  Google Scholar 

  6. Blann AD, Wang JM, Wilson PB et al (1996) Serum levels of the TGV-βr are increased in atherosclerosis. Atherosclerosis 120: 221–226

    CAS  PubMed  Google Scholar 

  7. Böger RH, Bode-Böger SM, Frölich JC (1996) The L-arginine-nitric oxide pathway: role in atherosclerosis and therapeutic implications. Atherosclerosis 127: 1–11

    PubMed  Google Scholar 

  8. Bollinger A (1979) Funktionelle Angiologie. Thieme, Stuttgart

    Google Scholar 

  9. Bollinger A, Hoffmann U, Seifert H (1989) Flux motion in peripheral ischemia. Prog Appl Microcirc 15: 87–92

    Google Scholar 

  10. Bollinger A, Hoffmann U, Franzeck UK (1991) Evaluation of flux motion in man by the laser Doppler technique. Bloodvessels 28: 21–26

    Google Scholar 

  11. Bongard O, Fagrell B (1990) Variations in laser Doppler flux and flow motion patterns in the dorsal skin of the human foot. Microvasc Res 39: 212–222

    CAS  PubMed  Google Scholar 

  12. Borgström P, Bruttig B, Lindbom L, Intaglietta M, Arfors KE (1990) Microvascular responses in rabbit skeletal muscle after fixed volume hemorrhage. Am J Physiol 259: H190-H196

    Google Scholar 

  13. Boulanger C, Lüscher TF (1990) Release of endothelin from the porcine aorta. Inhibition by endothelium-derived nitric oxide. J Clin Invest 85: 587–590

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Bredt DS, Hwang PM, Snyder SH (1990) Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347: 768–770

    CAS  PubMed  Google Scholar 

  15. Burcher E, Atterhög JH, Pernow B, Rosell S (1977) Cardiovascular effects of substance P: effects on the heart and regional blood flow in the dog. In: von Euler US, Pernow B (eds) Substance P. Raven, New York, pp 261–268

    Google Scholar 

  16. Buschmann I, Schaper W (2000) The pathophysiology of the collateral circulation (arteriogenesis). J Pathol 190: 338–342

    CAS  PubMed  Google Scholar 

  17. Casino PR, Kilcoyne CM, Quyyumi AA et al (1993) The role of nitric oxide in endothelium-dependent vasodilation of hypercholes-terolemic patients. Circulation 88: 2541–2547

    CAS  PubMed  Google Scholar 

  18. Chen CW, Lee CH, Hsuie TR, Chang HY (1997) Vasomotion in rat diaphragm microcirculation at rest and during stepwise arterial pressure reduction. Acta Physiol Scand 161: 281–288

    CAS  PubMed  Google Scholar 

  19. Cirillo R, Salvatico E, Aliev G, Prosdocimi M (1992) Effect of clori-cromene during ischemia and reperfusion of rabbit hindlimb: evidence for an involvement of leukocytes in reperfusion-mediat-ed tissue and vascular injury. J Cardiovasc Pharmacol 20: 969–975

    CAS  PubMed  Google Scholar 

  20. Ciuffetti G, Mannarino E, Pasualini L et al (1988) The hemorrheo-logical role of cellular factors in peripheral vascular disease. VASA 17: 168–170

    CAS  PubMed  Google Scholar 

  21. Coffman JD (1988) Pathophysiology and evaluation of obstructive arterial disease. Herz 13: 343–350

    CAS  PubMed  Google Scholar 

  22. Colantuoni A, Bertuglia S, Intaglietta M (1985) Variations of rhythmic diameter changes in the arterial microvascular bifurcations. Pflugers Arch 403: 289–295

    CAS  PubMed  Google Scholar 

  23. Cooke JP (1997) The pathophysiology of peripheral arterial disease, rational targets for drug intervention. Vasc Med 2: 227–230

    CAS  PubMed  Google Scholar 

  24. Creager MA, Cooke JP, Mendelsohn ME et al (1990) Impaired vasodilation of forearm resistance vessels in hypercholesterolemic humans. J Clin Invest 86: 228–234

    CAS  PubMed Central  PubMed  Google Scholar 

  25. da Silva A, Hild R, Nobbe F et al (1998) Periphere arterielle Ver-schlußkrankheit auf der Basis der chronischen arteriosclerosis obliterans. In: Rieger H, Schoop W (eds) Klinische Angiologie. Springer, Berlin Heidelberg New York, pp 413–470

    Google Scholar 

  26. Davies PF, Volin MV, Joseph L et al (1997) Endothelial responses to hemodynamic shear stress: spatial and temporal considerations. In: Born GVR, Schwartz CJ (eds) Vascular endothelium. Schattauer, Stuttgart, pp 167–176

    Google Scholar 

  27. Del Maschio A, Evangelista V, Rajtar G et al (1990) Platelet activation by polymorphonuclear leukocytes exposed to chemotactic agents. Am J Physiol 258: H870-H879

    Google Scholar 

  28. Del Zoppo GJ, Hallenbeck JM (2000) Advances in the vascular pathophysiology of ischemic stroke. Thromb Res 98: 73–81

    CAS  PubMed  Google Scholar 

  29. Drexler H (1997) Endothelial dysfunction — clinical implications. Prog Cardiovasc Dis 39: 287–324

    CAS  PubMed  Google Scholar 

  30. Elliot TG, Cockcroft JR, Groop PH et al (1993) Inhibition of nitric oxide synthesis in forearm vasculature of insulin-dependent diabetic patients: blunted vasoconstriction in patients with micro-abuminuria. Clin Sci 85: 687–693

    Google Scholar 

  31. Ernst E, Hammerschmidt DE, Bagge U et al (1987) Leukocytes and the risk of ischemic diseases. JAMA 257: 2318–2324

    CAS  PubMed  Google Scholar 

  32. Faber JE, Harris PD, Wiegman DL (1982) Anesthetic depression of microcirculation, central hemodynamics, and respiration in decerebrate rats. Am J Physiol 243: H837-H843

    Google Scholar 

  33. Fernandez-Ortiz A, Fuster V (1996) Pathophysiology of ischemic syndromes. In: Loscalzo J, Creager MA, Dzau VJ (eds) Vascular medicine, 2nd edn. Little Brown, Boston, pp 333–347

    Google Scholar 

  34. Folkow B, Neil E (1971) Circulation. Oxford University Press, New York

    Google Scholar 

  35. Furchgott RF, Zawaddzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 228: 373–376

    Google Scholar 

  36. Gerstberger R, Meyer JU, Rettig R, Printz M, Intaglietta M (1987) Regulatory role of vasoactive peptides in subcutaneous skin microcirculation of the hamster. Int J Microcirc Clin Exp 7: 3–14

    Google Scholar 

  37. Goto K (1997) Endothelin: from basic to pathophysiological research. In: Rubanyi GM, Dzau VJ (eds) The endothelium in clinical practice Dekker, New York, pp 125–148

    Google Scholar 

  38. Grainger DJ, Kemp PR, Metcalfe JC et al (1995) The serum concentration of active transforming growth factor-β is severely depressed in advanced atherosclerosis. Nat Med 1: 74–79

    CAS  PubMed  Google Scholar 

  39. Granger HJ, Meininger GA, Borders JL et al (1984) Microcirculation of skeletal muscle. In: Mortillaro NA (ed) The physiology and pharmacology of the microcirculation, vol 2. Academic, Orlando, pp 182–265

    Google Scholar 

  40. Griffith TM, Edwards DH (1993) Mechanisms underlying chaotic vasomotion in isolated resistance arteries: roles of calcium and EDRF. Biorheology 30: 333–347

    CAS  PubMed  Google Scholar 

  41. Gute DC, Ishida T, Yarimizu K, Korthuis RJ (1998) Inflammatory responses to ischemia and reperfusion in skeletal muscle. Mol Cell Biochem 179: 169–187

    CAS  PubMed  Google Scholar 

  42. Halperin JL, Creager MA (1996) Arterial obstructive diseases of the extremities. In: Loscalzo J, Creager MA, Dzau VJ (eds) Vascular medicine, 2nd edn. Little Brown, Boston, pp 825–852

    Google Scholar 

  43. Hansen PR (1998) Inflammatory alterations in the myocardial microcirculation. J Mol Cell Cardiol 30: 2555–2559

    CAS  PubMed  Google Scholar 

  44. Harlan JM (1985) Leukocyte-endothelial interactions. Blood 65: 513–525

    CAS  PubMed  Google Scholar 

  45. Harris AG, Leiderer R, Peer F, Messmer K (1996) Skeletal muscle microvascular and tissue injury after varying durations of ischemia. Am J Physiol 271: H2388-H2398

    Google Scholar 

  46. Haynes WG, Webb DJ (1994) Contribution of endogenous generation of endothelin-1 to basal vascular tone. Lancet 344: 852–854

    CAS  PubMed  Google Scholar 

  47. Haynes WG, Webb DJ (1998) Endothelin as a regulator of cardiovascular function in health and disease. J Hypertens 16: 1081–1098

    CAS  PubMed  Google Scholar 

  48. Heiss HW, Rieger H (1998) Akuter Extremitätenarterienverschluß. In: Rieger H, Schoop W (eds) Klinische Angiologie. Springer, Berlin Heidelberg New York, pp 395–412

    Google Scholar 

  49. Jackson WF, Mülsch A, Busse R (1991) Rhythmic smooth muscle activity in hamster aortas is mediated by continuous release of NO from the endothelium. Am J Physiol 260: H248-H253

    Google Scholar 

  50. Jackson WF, Busse R (1991) Elevated guanosine 3′ : 5′-cyclic monophosphate mediates the depression of nitrovasodilator reactivity in endothelium-intact blood vessels. Naunyn-Schmiedebergs Arch Pharmacol 344: 345–350

    CAS  PubMed  Google Scholar 

  51. Johnson PC (1986) Autoregulation of blood flow. Circ Res 59: 483–495

    CAS  PubMed  Google Scholar 

  52. Kadono T, Kikuchi K, Kubo M et al (1996) Serum concentrations of basic fibroblast growth factor in collagen diseases. J Am Acad Dermatol 35: 392–397

    CAS  PubMed  Google Scholar 

  53. Kavanaugh A, Oppenheimer-Marks N (1992) The role of the vascular endothelium in the pathogenesis of vasculitis. In: LeRoy EC (ed) Systemic vasculitis: the biological basis. Marcel Dekker, New York, PP 27ff

    Google Scholar 

  54. Kiowski W, Lüscher TF, Linder L et al (1991) Endothelin-1-induced vasoconstriction in humans. Reversal by calcium channel blockade but not by nitrovasodilators or endothelin-derived relaxing factor. Circulation 83: 469–475

    CAS  PubMed  Google Scholar 

  55. Koller A, Sun D, Kaley G (1993) Role of shear stress and endothelial prostaglandins in flow- and viscosity-induced dilation of arterioles in vitro. Circ Res 72: 1276–1284

    CAS  PubMed  Google Scholar 

  56. Lerman A, Burnett JC (1992) Intact and altered endothelium in regulation of vasomotion. Circulation 86 [Suppl 6]: III12-III19

    Google Scholar 

  57. Lewis T (1929) Experiments relating to the peripheral mechanism involved in spasmodic arrest of the circulation in the fingers, a variety of Raynaud’s disease. Heart 15: 7

    Google Scholar 

  58. Linder L, Kiowski W, Bühler FR et al (1990) Indirect evidence for release of endothelium-derived relaxing factor in human forearm circulation in vivo. Blunted response in essential hypertension. Circulation 81: 1762–1767

    CAS  PubMed  Google Scholar 

  59. Lip GYH, Blann AD (1995) Von Willebrand factor and its relevance to cardiovascular disorders. Br Heart J 74: 580–583

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Loutzenhiser R, Epstein M, Hayashi K, Horton C (1990) Direct visualization of effects of endothelin on the renal microvasculature. Am J Physiol 258: F6i-F68

    Google Scholar 

  61. Lucke C, Brucks S, Bentrup A, Hartung D, Elberich M, Klein H, Schmidt JA (1997) Scintigraphic quantification and objective criteria for changes in leg perfusion under prostaglandin E1 in patients with peripheral arterial occlusive disease (abstract). Eur Heart J 18 [Suppl] : 183

    Google Scholar 

  62. Lucke C, Kollmann A, Prinzen M, Mlasowsky B, Klein HU, Schmidt JA (1998) Veränderungen der Makro- und Mikrozirkulation am Bein unter arterieller Infusion vasoaktiver Substanzen bei gesunden Probanden — ein neues Modell. Z Kardiol 87 [Suppl 1]: 140

    Google Scholar 

  63. McLenachan JM, Vita J, Fish RD et al (1990) Early evidence of endothelial vasodilator dysfunction at coronary branch points. Circulation 81: 1169–1173

    Google Scholar 

  64. Menger MD, Vollmar B (1994) In vivo analysis of microvascular reperfusion injury in striated muscle and skin. Microsurgery 15: 383–389

    CAS  PubMed  Google Scholar 

  65. Meyer JU, Lindbom L, Intaglietta M (1987) Coordinated diameter oscillations at arteriolar bifurcations in skeletal muscle. Am J Physiol 253: H568-H573

    Google Scholar 

  66. Meyer JU, Borgström P, Intaglietta M (1989) Is vasomotion due to microvascular pacemaker cells? Prog Appl Microcirc 15: 41–48

    Google Scholar 

  67. Milner P, Ralevic V, Hopwood M, Feher E, Lincoln J, Kirkpatrick KA, Burnstock G (1989) Ultrastructural localization of substance P and choline acetyltransferase in endothelial cells of rat coronary artery and release of substance P and acetylcholine during hypoxia. Experientia 45: 121–125

    CAS  PubMed  Google Scholar 

  68. Nagel T, Resnick N, Atkinson WJ et al (1994) Shear stress selectively upregulates intercellular adhesion molecule-1 expression in cultured human vascular endothelial cells. J Clin Invest 94: 885–891

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Nash GB, Thomas PRS, Dormandy JA (1988) Abnormal flow properties of white cells in patients with severe ischemia of the leg. Br Med J 296: 1699–1701

    CAS  Google Scholar 

  70. Öhlén A (1988) Neuropeptides in skeletal muscle microcirculation. Thesis, Stockholm

    Google Scholar 

  71. Öhlén A, Lindbom L, Staines W, Hökfelt T, Cuello AC, Fischer JA, Hedqvist P (1987) Substance P and calcitonin gene-related peptide: immunohistochemical localization and microvascular effects in rabbit skeletal muscle. Naunyn-Schmiedebergs Arch Pharmacol 336: 87–93

    PubMed  Google Scholar 

  72. Öhlén A, Thureson-Klein A, Lindbom L, Hökfelt T, Hedqvist P (1988) Substance P and NPY innervation of microvessels in the rabbit tenuissimus muscle. Microvasc Res 36: 117–129

    PubMed  Google Scholar 

  73. Ohta I, Ohta A, Shibata M, Kamiya A (1988) Oxygen transport to tissue recurrent blood flow supply by grouped capillaries in skeletal muscle with or without facilitated diffusion. In: Mochizuki M, Honig CR, Koyama T, Goldstick TK, Bruley DF (eds) Oxygen transport to tissue . Plenum, New York

    Google Scholar 

  74. O’Rourke ST, Vanhoutte PM (1996) Vascular pharmacology. In: Loscalzo J, Creager MA, Dzau VJ (eds) Vascular medicine, 2nd edn. Little Brown, Boston, pp 117–140

    Google Scholar 

  75. Panza JA, Quyyumi AA, Brush JE et al (1990) Abnormal endothe-lium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med 323: 22–27

    CAS  PubMed  Google Scholar 

  76. Pohl U, Holtz J, Busse R et al (1986) Crucial role of endothelium in the vasodilator response to increased flow in vivo. Hypertension 8: 37–47

    CAS  PubMed  Google Scholar 

  77. Quaschning T, Ruschitzka FT, Maier W et al (2000) Die Rolle des Endothels bei der Entstehung und Behandlung von Gefäßerkrankungen. Internist 41: 355–362

    CAS  PubMed  Google Scholar 

  78. Pearson JD (1993) Markers of endothelial perturbation and damage. Br J Rheumatol 32: 651–652

    CAS  PubMed  Google Scholar 

  79. Rangemark C, Wennmalm A (1992) Endothelium-dependent and -independent vasodilation and reactive hyperemia in healthy smokers. J Cardiovasc Pharmacol 20 [Suppl 12]: S198-S201

    Google Scholar 

  80. Rassoul F, Richter V, Janke C, Purschwitz K, Klotzer B, Geisel J, Herrmann W (2000) Plasma homocysteine and lipoprotein profile in patients with peripheral arterial occlusive disease. Angiology 51: 189–196

    CAS  PubMed  Google Scholar 

  81. Raynaud M (1862) De l’asphyxie locale et de la gangrène symétrique des extrémités. Thèse, Faculté de Médecine, Paris

    Google Scholar 

  82. Ross R (1986) The pathogenesis of atherosclerosis. N Engl J Med 314: 488–500

    CAS  PubMed  Google Scholar 

  83. Rubanyi GM, Romero JC, Vanhoutte PM (1986) Flow-induced release of endothelium-derived relaxing factor. Am J Physiol 231: H405-H407

    Google Scholar 

  84. Schaper W, Buschmann I (1999) VEGF and therapeutic opportunities in cardiovascular diseases. Curr Opin Biotechnol 10: 541–543

    CAS  PubMed  Google Scholar 

  85. Scheffler A, Rieger H (1992) Spontaneous oscillations of laser Doppler skin blood flux in peripheral arterial occlusive disease. Int J Microcirc Clin Exp 11: 249–261

    CAS  PubMed  Google Scholar 

  86. Schiffrin EL, Intengan HD, Thibault G et al (1997) Clinical significance of endothelin in cardiovascular disease. Curr Opin Cardiol 12: 354–367

    CAS  PubMed  Google Scholar 

  87. Schmidt JA, Bracht C, Leyhe A, von Wichert P (1990) Transcutaneous measurement of oxygen and carbon dioxide (tcPO2 and tcPCO2) during treadmill exercise in patients with arterial occlusive disease (AOD) — stages I and II. Angiology 41: 547–552

    CAS  PubMed  Google Scholar 

  88. Schmidt JA, Intaglietta M, Borgström P (1992) Periodic hemodynamics in skeletal muscle during local arterial pressure reduction. J Appl Physiol 73: 1077–1083

    CAS  PubMed  Google Scholar 

  89. Schmidt JA, Borgstöm P, Bruttig SP, Fronek A, Intaglietta M (1993) Vasomotion as a flow-dependent phenomenon. Prog Appl Microcirc 20: 34–51

    Google Scholar 

  90. Schmidt JA, Borgström P, Intaglietta M (1993) Neurogenic modulation of periodic hemodynamics in rabbit skeletal muscle. J Appl Physiol 75: 1216–1221

    CAS  PubMed  Google Scholar 

  91. Schmidt JA, Borgström P, Firestone GP, von Wichert P, Intaglietta M, Fronek A (1993) Periodic hemodynamics (flow motion) in peripheral arterial occlusive disease. J Vasc Surg 18: 207–215

    CAS  PubMed  Google Scholar 

  92. Schmidt JA, Breit GA, Borgström P, Intaglietta M (1995) Periodic hemodynamics in skeletal muscle, studied with multiple laser Doppler flow-probes. Int J Microcirc 15: 28–36

    CAS  Google Scholar 

  93. Schmidt JA (1996) Periodic hemodynamics in health and disease. Landes/Chapman and Hall, New York, Springer, Berlin Heidelberg New York

    Google Scholar 

  94. Schmidt JA, Lucke C, Brucks S, Klauck M, von Bierbrauer A (1997) TcPO2 measurement during treadmill exercise in naftidrofuryl-treated patients with peripheral arterial occlusive disease — stage II (abstract). Proceedings of the 16th Jahrestagung der deutschen Gesellschaft für klinische Mikrozirkulation und Hämorrheologie, p 29

    Google Scholar 

  95. Schmidt-Lucke C, Reinhold D, Prinzen M, Mlasowsky B, Kollmann A, Klein HU, Ansorge S, Schmidt-Lucke JA (1999) The cytoprotec-tive action of transforming growth factor beta 1 (TGF-β1) to maintain vascular reactivity does not involve vascular endothelial growth factor (VEGF) in heavy smokers (abstract). Proceedings of the Jahrestagung der Gesellschaft für Mikrozirkulation und Vaskuläre Biologie, p 121

    Google Scholar 

  96. Schmidt-Lucke C, Reinhold D, Prinzen M, Mlasowsky B, Kollmann A, Klein HU, Ansorge S, Schmidt-Lucke JA (1999) Vascular endothelial growth factor (VEGF) correlates with endothelial dysfunction in healthy smoking and non-smoking individuals (abstract). Bas Res Cardiol 94: 370

    Google Scholar 

  97. Schretzenmayr A (1933) Über kreislaufregulatorische Vorgänge in den großen Arterien bei der Muskelarbeit. Pflugers Arch 232: 743–748

    Google Scholar 

  98. Segal SS, Bény JL (1991) Acetylcholine hyperpolarizes arterioles without dye coupling between smooth muscle and endothelial cells (abstract). Proceedings of the fifth world congress for Microcirculation, Louisville, KY, p 591

    Google Scholar 

  99. Segal SS, Beny JL (1992) Intracellular recording and dye transfer in arterioles during blood flow control. Am J Physiol 263: H1-H7

    Google Scholar 

  100. Shepherd JT (1983) Circulation to skeletal muscle. In: Shepherd JT, Abboud FM (eds) Handbook of physiology, sect 2. The cardiovascular system, vol III, part I. American Physiological Society, Bethesda, MD, pp 319–370

    Google Scholar 

  101. Shimokawa H, Vanhoutte PM (1989) Impaired endothelium-de-pendent relaxation to aggregating platelets and related vasoactive substances in porcine coronary arteries in hypercholesterolemia and atherosclerosis. Circ Res 64: 900–914

    CAS  PubMed  Google Scholar 

  102. Shyy JY, Lin MC, Han J et al (1995) The cis-acting phorbol ester “12-O-tetradecanoylphorbol 13-acetate”-responsive element is involved in shear stress-induced monocyte chemotactic protein 1 gene expression. Proc Natl Acad Sci USA 15: 8069–8073

    Google Scholar 

  103. Smiesko V, Kozik J, Dolezel S (1985) Role of endothelium in the control of arterial diameter by blood flow. Blood Vessels 22: 247–251

    CAS  PubMed  Google Scholar 

  104. Thulesius O (1991) Pathophysiology of cold hypersensitivity. In: Cooke ED, Nicolaides AN, Porter JM (eds) Raynaud’s syndrome. Med Orion, London, pp 21–29

    Google Scholar 

  105. Thulesius O (1991) The role of the endothelium in vascular spasm. In: Cooke ED, Nicolaides AN, Porter JM (eds) Raynaud’s syndrome. Med Orion, London, pp 15–19

    Google Scholar 

  106. Topper JN, Gimbrone MA Jr (1999) Blood flow and vascular gene expression: fluid shear stress as a modulator of endothelial pheno-type. Mol Med Today 5: 40–46

    CAS  PubMed  Google Scholar 

  107. Tsai AG, Intaglietta M (1993) Evidence of flow motion induced changes in local tissue oxygenation. Int J Microcirc Clin Exp 12: 75–88

    CAS  PubMed  Google Scholar 

  108. Tsao PS, Buitrago R, Chang H et al (1995) Effect of diabetes on monocyte-endothelial interactions and endothelial superoxide production in fructose-induced insulin-resistant and hypertensive rats (abstract). Circulation 92 [Suppl I]: I-558

    Google Scholar 

  109. Vallance P, Leone A, Calver A et al (1992) Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 339: 572–575

    CAS  PubMed  Google Scholar 

  110. Vanhoutte PM, Houston DS (1985) Platelets, endothelium and vasospasm. Circulation 72: 728–734

    CAS  PubMed  Google Scholar 

  111. Vollmar B, Preissler G, Menger MD (1994) Hemorrhagic hypotension induces arteriolar vasomotion and intermittent capillary perfusion in rat pancreas. Am J Physiol 267: H1936-H1940

    Google Scholar 

  112. Von Bierbrauer A, Ehlenz K, Herzog P, Cassel W, von Wichert P (1995) Plasma endothelin concentration during cold provocation in primary Raynaud’s syndrome. Dtsch Med Wochenschr 120: 902–906

    Google Scholar 

  113. Weber C, Erl W, Pietsch A et al (1994) Antioxidants inhibit monocyte adhesion by suppressing nuclear factor kappa B mobilization and induction of vascular cell adhesion molecule-1 in endothelial cells stimulated to generate radicals. Atheroscler Thromb 14: 1665–1673

    CAS  Google Scholar 

  114. Wiedemann MP, Tuma RF, Mayrovitz HN (1981) Factors involved in the regulation of blood flow. In: Wiedemann MP, Tuma RF, Mayrovitz HN (eds) An introduction to microcirculation. Academic, New York, pp 99–139

    Google Scholar 

  115. Witzleb E (1980) Funktionen des Gefäßsystems. In: Schmidt RF, Thews G (eds) Physiologie des Menschen, 20th edn. Springer, Berlin Heidelberg New York, pp 435–499

    Google Scholar 

  116. Xu D, Emoto N, Giad A et al (1994) ECE 1: a membrane-bound metalloprotease that catalyzes the proteolytic activation of big endothelin-1. Cell 78: 473–485

    CAS  PubMed  Google Scholar 

  117. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y et al (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332: 411–415

    CAS  PubMed  Google Scholar 

  118. Zeiher AM, Schächinger V, Minners J (1995) Long-term cigarette smoking impairs endothelium-dependent coronary arterial vasodilator function. Circulation 92: 1094–1100

    CAS  PubMed  Google Scholar 

  119. Zweifach BW, Lipowsky HH (1984) Pressure-flow relations in blood and lymph microcirculation. In: Renkin EM, Michel CC (eds) Handbook of physiology. Sect 2: The cardiovascular system. Vol 4, Parts 1 and 2: Microcirculation. (American Physiological Society) Oxford University Press, Oxford

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmidt-Lucke, C., Schmidt-Lucke, J.A. (2002). Peripheral Artery Physiology and Pathophysiology: Special Considerations. In: Lanzer, P., Topol, E.J. (eds) Pan Vascular Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56225-9_82

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56225-9_82

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62565-7

  • Online ISBN: 978-3-642-56225-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics