Skip to main content

Coronary Artery Function in Diabetes Mellitus

  • Chapter
Pan Vascular Medicine
  • 17 Accesses

Abstract

Cardiovascular disease continues to be the leading cause of mortality in diabetic patients, accounting for nearly 80% of all deaths [1]. Indeed, while the last three decades have witnessed a decline in mortality from coronary heart disease (CHD) in the overall population, CHD remains rampant in the diabetic population and is responsible for over 75% of all cardiovascular deaths [2]. This excess CHD risk is evident in both type 1 and type 2 diabetes, affects women to a greater degree than men, and essentially abolishes the gender differential in the prevalence of CHD [3]. In addition, recent data indicate that in middle-aged patients without CHD, diabetes confers the same coronary risk as preexisting coronary artery disease [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. American Diabetes Association (1989) Role of cardiovascular risk factors in prevention and treatment of macrovascular disease in diabetes. Diabetes Care 12:573–579

    Google Scholar 

  2. Gu K, Cowie CC, Harris MI (1999) Diabetes and decline in heart disease mortality in US adults. JAMA 281:1291–1297

    Article  CAS  PubMed  Google Scholar 

  3. Sowers JR (1998) Diabetes mellitus and cardiovascular disease in women. Arch Intern Med 158:617–621

    Article  CAS  PubMed  Google Scholar 

  4. Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M (1998) Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 339:229–234

    Article  CAS  PubMed  Google Scholar 

  5. Kannel WB, McGee DL (1979) Diabetes and glucose tolerance as risk factors for cardiovascular disease: the Framingham study. Diabetes Care 2:120–126

    Article  CAS  PubMed  Google Scholar 

  6. Barrett-Connor E, Wingard DL (1983) Sex differential in ischemic heart disease mortality in diabetics: a prospective population-based study. Am J Epidemiol 118:489–496

    CAS  PubMed  Google Scholar 

  7. Yarom R, Zirkin H, Stammler G, Rose AG (1992) Human coronary microvessels in diabetes and ischaemia. Morphometric study of autopsy material. J Pathol 166:265–270

    Article  CAS  PubMed  Google Scholar 

  8. Sutherland CG, Fisher BM, Frier BM, Dargie HJ, More IA, Lindop GB (1989) Endomyocardial biopsy pathology in insulin-dependent diabetic patients with abnormal ventricular function. Histopathology 14:593–602

    Article  CAS  PubMed  Google Scholar 

  9. Factor SM, Okun EM, Minase T (1980) Capillary microaneurysms in the human diabetic heart. N Engl J Med 302:384–388

    Article  CAS  PubMed  Google Scholar 

  10. Nahser PJ Jr, Brown RE, Oskarsson H, Winniford MD, Rossen JD (1995) Maximal coronary flow reserve and metabolic coronary vasodilation in patients with diabetes mellitus. Circulation 91:635–640

    Article  PubMed  Google Scholar 

  11. Nitenberg A, Valensi P, Sachs R, Dali M, Aptecar E, Attali JR (1993) Impairment of coronary vascular reserve and ACh-induced coronary vasodilation in diabetic patients with angiographically normal coronary arteries and normal left ventricular systolic function. Diabetes 42:1017–1025

    Article  CAS  PubMed  Google Scholar 

  12. Pitkanen OP, Nuutila P, Raitakari OT et al (1998) Coronary flow reserve is reduced in young men with IDDM. Diabetes 47:248–254

    Article  CAS  PubMed  Google Scholar 

  13. Yokoyama I, Momomura S, Ohtake T et al (1997) Reduced myocardial flow reserve in non-insulin-dependent diabetes mellitus. J Am Coll Cardiol 30:1472–1477

    Article  CAS  PubMed  Google Scholar 

  14. Akasaka T, Yoshida K, Hozumi T et al (1997) Retinopathy identifies marked restriction of coronary flow reserve in patients with diabetes mellitus. J Am Coll Cardiol 30:935–941

    Article  CAS  PubMed  Google Scholar 

  15. Di Carli MF, Bianco-Batlles D, Landa ME et al (1999) Effects of autonomic neuropathy on coronary blood flow in patients with diabetes mellitus. Circulation 100:813–819

    Article  PubMed  Google Scholar 

  16. Meyer C, Schwaiger M (1997) Myocardial blood flow and glucose metabolism in diabetes mellitus. Am J Cardiol 80:94A–101A

    Article  Google Scholar 

  17. Di Carli MF, Bianco-Batlles D, Grunberger G (1999) Determinants of myocardial blood flow in patients with diabetes mellitus (abstract). J Am Coll Cardiol 33:435A

    Google Scholar 

  18. Vane JR, Anggard EE, Botting RM (1990) Regulatory functions of the vascular endothelium. N Engl J Med 323:27–36

    Article  CAS  PubMed  Google Scholar 

  19. Gibbons GH, Dzau VJ (1994) The emerging concept of vascular remodeling. N Engl J Med 330:1431–1438

    Article  CAS  PubMed  Google Scholar 

  20. Garg UC, Hassid A (1989) Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 83:1774–1777

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Radomski MW, Palmer RM, Moncada S (1987) The anti-aggregating properties of vascular endothelium: interactions between prostacyclin and nitric oxide. Br J Pharmacol 92:639–646

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Bath PM, Hassall DG, Gladwin AM, Palmer RM, Martin JF (1991) Nitric oxide and prostacyclin. Divergence of inhibitory effects on monocyte Chemotaxis and adhesion to endothelium in vitro. Arterioscler Thromb 11:254–260

    Article  CAS  PubMed  Google Scholar 

  23. Peng HB, Rajavashisth TB, Libby P, Liao JK (1995) Nitric oxide inhibits macrophage-colony stimulating factor gene transcription in vascular endothelial cells. J Biol Chem 270:17050–17055

    Article  CAS  PubMed  Google Scholar 

  24. Kichuk MR, Seyedi N, Zhang X et al (1996) Regulation of nitric oxide production in human coronary microvessels and the contribution of local kinin formation. Circulation 94:44–51

    Article  CAS  PubMed  Google Scholar 

  25. Ewing DJ, Clarke BF (1986) Autonomic neuropathy: its diagnosis and prognosis. Clin Endocrinol Metab 15:855–888

    Article  CAS  PubMed  Google Scholar 

  26. Allman KC, Stevens MJ, Wieland DM et al (1993) Noninvasive assessment of cardiac diabetic neuropathy by carbon-11 hydrox-yephedrine and positron emission tomography. J Am Coll Cardiol 22:1425–1432

    Article  CAS  PubMed  Google Scholar 

  27. Kreiner G, Wolzt M, Fasching P et al (1995) Myocardial m- [123I]iodo-benzylguanidine scintigraphy for the assessment of adrenergic cardiac innervation in patients with IDDM. Comparison with cardiovascular reflex tests and relationship to left ventricular function. Diabetes 44:543–559

    Article  CAS  PubMed  Google Scholar 

  28. Stevens MJ, Raffel DM, Allman KC et al (1998) Cardiac sympathetic dysinnervation in diabetes: implications for enhanced cardiovascular risk. Circulation 98:961–968

    Article  CAS  PubMed  Google Scholar 

  29. Nesto RW, Phillips RT, Kett KG et al (1988) Angina and exertional myocardial ischemia in diabetic and nondiabetic patients: assessment by exercise thallium scintigraphy. Ann Intern Med 108:170–175

    Article  CAS  PubMed  Google Scholar 

  30. Aronson D, Rayfield EJ, Chesebro JH (1997) Mechanisms determining course and outcome of diabetic patients who have had acute myocardial infarction. Ann Intern Med 126:296–306

    Article  CAS  PubMed  Google Scholar 

  31. The Diabetes Control and Complications Trial Research Group (1995) The effect of intensive diabetes therapy on the development and progression of neuropathy. Ann Intern Med 122:561–568

    Article  Google Scholar 

  32. Nathan DM (1998) Some answers, more controversy, from UKPDS. United Kingdom Prospective Diabetes Study. Lancet 352:832–833

    Article  CAS  PubMed  Google Scholar 

  33. Singer DE, Nathan DM, Anderson KM, Wilson PW, Evans JC (1992) Association of HbA1c with prevalent cardiovascular disease in the original cohort of the Framingham Heart Study. Diabetes 41:202–208

    Article  CAS  PubMed  Google Scholar 

  34. Uusitupa MI, Niskanen LK, Siitonen O, Voutilainen E, Pyorala K (1993) Ten-year cardiovascular mortality in relation to risk factors and abnormalities in lipoprotein composition in type 2 (non-insulin-dependent) diabetic and non-diabetic subjects. Diabetologia 36:1175–1184

    Article  CAS  PubMed  Google Scholar 

  35. Kuusisto J, Mykkanen L, Pyorala K, Laakso M (1994) NIDDM and its metabolic control predict coronary heart disease in elderly subjects. Diabetes 43:960–967

    Article  CAS  PubMed  Google Scholar 

  36. Kannel WB, Mc Gee DL (1979) Diabetes and cardiovascular diseases: The Framingham study. JAMA 241:2035–2038

    Article  CAS  PubMed  Google Scholar 

  37. Pan WH, Cedres LB, Liu K et al (1986) Relationship of clinical diabetes and asymptomatic hyperglycemia to risk of coronary heart disease mortality in men and women. Am J Epidemiol 123:504–516

    CAS  PubMed  Google Scholar 

  38. UK Prospective Diabetes Study (UKPDS) Group (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352:837–853

    Article  Google Scholar 

  39. Yokoyama I, Ohtake T, Momomura S et al (1998) Hyperglycemia rather than insulin resistance is related to reduced coronary flow reserve in NIDDM. Diabetes 47:119–124

    Article  CAS  PubMed  Google Scholar 

  40. Williams SB, Goldfine AB, Timimi FK et al (1998) Acute hyperglycemia attenuates endothelium-dependent vasodilation in humans in vivo. Circulation 97:1695–1701

    Article  CAS  PubMed  Google Scholar 

  41. Kawano H, Motoyama T, Hirashima O et al (1999) Hyperglycemia rapidly suppresses flow-mediated endothelium-dependent vasodilation of brachial artery. J Am Coll Cardiol 34:146–154

    Article  CAS  PubMed  Google Scholar 

  42. Gryglewski RJ, Palmer RM, Moncada S (1986) Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 320:454–456

    Article  CAS  PubMed  Google Scholar 

  43. Mugge A, Elwell JH, Peterson TE, Harrison DG (1991) Release of intact endothelium-derived relaxing factor depends on endothelial superoxide dismutase activity. Am J Physiol 260:C219–C225

    Google Scholar 

  44. Rubanyi GM, Vanhoutte PM (1986) Oxygen-derived free radicals, endothelium, and responsiveness of vascular smooth muscle. Am J Physiol 250:H815-H821

    Google Scholar 

  45. Kukreja RC, Kontos HA, Hess ML, Ellis EF (1986) PGH synthase and lipoxygenase generate superoxide in the presence of NADH or NADPH. Circ Res 59:612–619

    Article  CAS  PubMed  Google Scholar 

  46. Tesfamariam B, Jakubowski JA, Cohen RA (1989) Contraction of diabetic rabbit aorta caused by endothelium-derived PGH2-TXA2. Am J Physiol 257:H1327–H1333

    Google Scholar 

  47. Ting HH, Timimi FK, Boles KS, Creager SJ, Ganz P, Creager MA (1996) Vitamin C improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus. J Clin Invest 97:22–28

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Timimi FK, Ting HH, Haley EA, Roddy MA, Ganz P, Creager MA (1998) Vitamin C improves endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. J Am Coll Cardiol 31:552–557

    Article  CAS  PubMed  Google Scholar 

  49. Wolf BA, Williamson JR, Easom RA, Chang K, Sherman WR, Turk J (1991) Diacylglycerol accumulation and microvascular abnormalities induced by elevated glucose levels. J Clin Invest 87:31–38

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Bucala R, Tracey KJ, Cerami A (1991) Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes. J Clin Invest 87: 432–438

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. DeFronzo RA (1992) Insulin resistance, hyperinsulinemia, and coronary artery disease: a complex metabolic web. J Cardiovasc Pharmacol 20:S1–S16

    Article  Google Scholar 

  52. Henry RR (1998) Type 2 diabetes care: the role of insulin-sensitizing agents and practical implications for cardiovascular disease prevention. Am J Med 105:20S–26S

    Article  Google Scholar 

  53. Hernandez Pampaloni M, Hsueh WA, Quinones M, Sayre JS, Schelbert HR (2000) PET determined myocardial blood flow demonstrates abnormal coronary vasomotion in insulin resistance without diabetes (abstract). J Nucl Med 41:44p

    Google Scholar 

  54. Dean JD, Jones CJ, Hutchison SJ, Peters JR, Henderson AH (1991) Hyperinsulinaemia and microvascular angina. Lancet 337:456–457

    Article  CAS  PubMed  Google Scholar 

  55. Botker HE, Moller N, Ovesen P et al (1993) Insulin resistance in microvascular angina (syndrome X). Lancet 342:136–140

    Article  CAS  PubMed  Google Scholar 

  56. Chauhan A, Foote J, Petch MC, Schofield PM (1994) Hyperinsulinemia, coronary artery disease and syndrome X. J Am Coll Cardiol 23:364–368

    Article  CAS  PubMed  Google Scholar 

  57. Murakami T, Mizuno S, Kaku B, Ohnaka M (1999) Beneficial effects of troglitazone on endothelial dysfunction of coronary artery (abstract). J Am Coll Cardiol 33:301A

    Google Scholar 

  58. Hsueh WA, Law RE (1998) Cardiovascular risk continuum: implications of insulin resistance and diabetes. Am J Med 105:4S–14S

    Article  Google Scholar 

  59. Zeng G, Quon MJ (1996) Insulin-stimulated production of nitric oxide is inhibited by wortmannin. Direct measurement in vascular endothelial cells. J Clin Invest 98:894–898

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Le Marchand-Brustel Y, Gautier N, Cormont M, Van Obberghen E (1995) Wortmannin inhibits the action of insulin but not that of okadaic acid in skeletal muscle: comparison with fat cells. Endocrinology 136:3564–3570

    Article  CAS  PubMed  Google Scholar 

  61. Zeng G, Nystrom FH, Ravichandran LV et al (2000) Roles for insulin receptor, P13-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells. Circulation 101:1539–1545

    Article  CAS  PubMed  Google Scholar 

  62. Barrett-Connor E, Bush TL (1991) Estrogen and coronary heart disease in women (see comments). JAMA 265:1861–1867

    Article  CAS  PubMed  Google Scholar 

  63. Lerner DJ, Kannel WB (1986) Patterns of coronary heart disease morbidity and mortality in the sexes: a 26-year follow-up of the Framingham population. Am Heart J 111:383–390

    Article  CAS  PubMed  Google Scholar 

  64. Colditz GA, Willett WC, Stampfer MJ, Rosner B, Speizer FE, Hennekens CH (1987) Menopause and the risk of coronary heart disease in women. N Engl J Med 316:1105–1110

    Article  CAS  PubMed  Google Scholar 

  65. Stampfer MJ, Colditz GA, Willett WC et al (1991) Postmenopausal estrogen therapy and cardiovascular disease. Ten-year follow-up from the nurses health study. N Engl J Med 325:756–762

    Article  CAS  PubMed  Google Scholar 

  66. Barrett-Connor EL, Cohn BA, Wingard DL, Edelstein SL (1991) Why is diabetes mellitus a stronger risk factor for fatal ischemic heart disease in women than in men? The Rancho Bernardo Study. JAMA 265:627–631

    Article  CAS  PubMed  Google Scholar 

  67. Albert CM, McGovern BA, Newell JB, Ruskin JN (1996) Sex differences in cardiac arrest survivors. Circulation 93:1170–1176

    Article  CAS  PubMed  Google Scholar 

  68. Afonso L, Ramappa P, Bianco-Batlles D, Di Carli MF (2000) Loss of cardioprotection in premenopausal women with diabetes mellitus (abstract). J Nucl Med 41:2p

    Google Scholar 

  69. Lim SC, Caballero AE, Arora S et al (1999) The effect of hormonal replacement therapy on the vascular reactivity and endothelial function of healthy individuals and individuals with type 2 diabetes. J Clin Endocrinol Metab 84:4159–4164

    Article  CAS  PubMed  Google Scholar 

  70. Steinberg HO, Paradisi G, Cronin J et al (2000) Type II diabetes abrogates sex differences in endothelial function in premenopausal women. Circulation 101:2040–2046

    Article  CAS  PubMed  Google Scholar 

  71. Moncada S, Higgs A (1993) The L-argininenitric oxide pathway. N Engl J Med 329:2002–2012

    Article  CAS  PubMed  Google Scholar 

  72. Quyyumi AA (1998) Endothelial function in health and disease: new insights into the genesis of cardiovascular disease. Am J Med 105: 32S–39S

    Article  Google Scholar 

  73. Suwaidi JA, Hamasaki S, Higano ST, Nishimura RA, Holmes DR Jr, Lerman A (2000) Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. Circulation 101: 948–954

    Article  CAS  PubMed  Google Scholar 

  74. Schachinger V, Britten MB, Zeiher AM (2000) Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation 101:1899–1906

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Afonso, L., Di Carli, M.F. (2002). Coronary Artery Function in Diabetes Mellitus. In: Lanzer, P., Topol, E.J. (eds) Pan Vascular Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56225-9_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56225-9_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62565-7

  • Online ISBN: 978-3-642-56225-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics