Skip to main content

Integrated Coronary Physiology and Pathophysiology

  • Chapter
Pan Vascular Medicine

Abstract

This chapter describes the basic regulatory mechanisms underlying the control of coronary vasomotor tone and myocardial perfusion under physiological and pathophysiological conditions. Changes in coronary blood flow in various pathophysiological states, including acute myocardial ischemia, ischemic preconditioning, reperfusion, stunning, hibernation, and those occurring during diagnostic and therapeutic pharmacological coronary interventions will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chilian WM, Layne SM, Eastham CL, Marcus ML (1989) Heterogeneous microvascular coronary α-adrenergic vasoconstriction. Cire Res 64:376–388

    CAS  Google Scholar 

  2. Duncker DJ, Bache RJ (2000) Regulation of coronary vasomotor tone under normal conditions and during acute myocardial hypoperfusion. Pharmacol Ther 86:87–110

    CAS  PubMed  Google Scholar 

  3. Trenouth RS, Phelps NC, Neill WA (1976) Determinants of left ventricular hypertrophy and oxygen supply in chronic aortic valve disease. Circulation 53:644–650

    CAS  PubMed  Google Scholar 

  4. Gould KL (1999) Collapsing stenoses. In: Gould KL (ed) Coronary artery stenosis and reversing atherosclerosis. Arnold, London, PP 79–92

    Google Scholar 

  5. Klocke FJ, Weinstein IR, Klocke JF, Ellis AK, Kraus DR, Mates RE et al (1981) Zero-flow pressures and pressure-flow relationships during single long diastoles in the canine coronary bed before and during maximum vasodilation. Limited influence of capacitive effects. J Clin Invest 68:970–980

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Downey JM, Kirk ES (1975) Inhibition of coronary blood flow by a vascular waterfall mechanism. Circ Res 36:753–760

    CAS  PubMed  Google Scholar 

  7. Chilian WM, Eastham CL, Layne SM, Marcus ML (1988) Small vessel phenomena in the coronary microcirculation: phasic intra-myocardial perfusion and coronary microvascular dynamics. Prog Cardiovasc Dis 31:17–38

    CAS  PubMed  Google Scholar 

  8. May-Newman K, Omens JH, Pavelec RS, McCulloch AD (1994) Three-dimensional transmural mechanical interaction between the coronary vasculature and passive myocardium in the dog. Circ Res 74:1166–1178

    CAS  PubMed  Google Scholar 

  9. Canty JM (1988) Coronary pressure-function and steady-state pressure-flow relations during autoregulation in the unanesthetized dog. Circ Res 63:821–836

    PubMed  Google Scholar 

  10. Schulz R, Guth BD, Heusch G (1991) No effect of coronary perfusion on regional myocardial function within the autoregulatory range in pigs: Evidence against the Gregg phenomenon. Circulation 83:1390–1403

    CAS  PubMed  Google Scholar 

  11. Spaan J, Laird J (1982) Intramyocardial compliance cannot be neglected in the coronary circulation. Proceedings of the 5th International Conference of the Cardiovascular System Dynamics Society, Oxford, 28 September-1 October 1982, p 40

    Google Scholar 

  12. Bache RJ, Cobb FR (1977) Effect of maximal coronary vasodilation on transmural myocardial perfusion during tachycardia in the awake dog. Circ Res 41:648–653

    CAS  PubMed  Google Scholar 

  13. Heusch G, Yoshimoto N (1983) Effects of cardiac contraction on segmental coronary resistances and collateral perfusion. Int J Microcirc 2:131–141

    CAS  Google Scholar 

  14. Raff WK, Lochner W (1974) Wirkungsmechanismus von Nitroglycerin. Med Klin 69:1100–1104

    Google Scholar 

  15. Raff WK, Kosche F, Lochner W (1972) Extravascular coronary resistance and its relation to microcirculation. Influence of heart rate, end-diastolic pressure and maximal rate of rise of intraventricular pressure. Am J Cardiol 29:598–603

    CAS  PubMed  Google Scholar 

  16. Lee SC, Mallet RT, Shizukuda Y, Williams AG, Jr, Downey HF (1992) Canine coronary vasodepressor responses to hypoxia are attenuated but not abolished by 8-phenyltheophylline. Am J Physiol 262: H955–H960

    Google Scholar 

  17. Winbury MM, Howe BB, Hefner MA (1969) Effect of nitrates and other coronary dilators on large and small coronary vessels: a hypothesis for the mechanism of action of nitrates. J Pharmacol Exp Ther 168:70–95

    CAS  PubMed  Google Scholar 

  18. Bassenge E, Strein K (1986) Dose-dependent effects of isosorbide-5-mononitrate on the venous, arterial and coronary arterial system of conscious dogs. Naunyn-Schmiedebergs Arch Pharmacol 334: 100–104

    CAS  PubMed  Google Scholar 

  19. Guth BD, Schulz R, Heusch G (1991) Pressure-flow characteristics in the right and left ventricular perfusion territories of the right coronary artery in swine. Pfluegers Arch Eur J Physiol 419:622–628

    CAS  Google Scholar 

  20. Dole WP (1987) Autoregulation of the coronary circulation. Prog Cardiovasc Dis 29:293–323

    CAS  PubMed  Google Scholar 

  21. Endo M, Hirosawa K, Kaneko N, Hase K, Inoue Y (1976) Prinzmetal’s variant angina. Coronary arteriogram and left ventriculogram during angina attack induced by methacholine. N Engl J Med 294: 252–255

    CAS  PubMed  Google Scholar 

  22. Yasue H, Touyama M, Shimamoto M, Kato H, Tanaka S (1974) Role of autonomic nervous system in the pathogenesis of Prinzmetal’s variant form of angina. Circulation 50:534–539

    CAS  PubMed  Google Scholar 

  23. Yasue H, Touyama M, Kato H, Satoru T, Akiyama F (1976) Prinzmetal’s form of angina as a manifestation of alpha-adrenergic receptor-mediated coronary artery spasm: documentation by coronary angiography. Am Heart J 91:148–155

    CAS  PubMed  Google Scholar 

  24. Marcus ML, Wright C, Doty D, Eastham CL, Laughlin D, Krumm P et al (1981) Measurements of coronary velocity and reactive hyperemia in the coronary circulation of humans. Circ Res 49: 877–891

    CAS  PubMed  Google Scholar 

  25. Hoffman JI (1984) Maximal coronary flow and the concept of coronary vascular reserve. Circulation 70:153–159

    CAS  PubMed  Google Scholar 

  26. Heusch G, Yoshimoto N (1983) Effects of heart rate and perfusion pressure on segmental coronary resistances and collateral perfusion. Pfluegers Arch 397:284–289

    CAS  Google Scholar 

  27. De Bruyne B, Stockbroeckx J, Demoor D, Heyndrickx GR, Kern MJ (1994) Role of side holes in guide catheters: observations on coronary pressure and flow. Cathet Cardiovasc Diagn 33:145–152

    PubMed  Google Scholar 

  28. Pijls NH, Kern MJ, Yock PG, De Bruyne B (2000) Practice and potential pitfalls of coronary pressure measurement. Cathet Cardiovasc Diagn 49:1–16

    CAS  Google Scholar 

  29. Bassenge E (1996) Endothelial function in different organs. Prog Cardiovasc Dis 39:209–228

    CAS  PubMed  Google Scholar 

  30. Ertl G, Hu K, Bauer WR, Bauer B (1996) The renin-angiotensin system and coronary vasomotion. Heart 76 [Suppl 3]:45–52

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Ertl G (1997) Anti-ischemic and fibrinolytic effects of angiotensin-converting-enzyme inhibitors: review of clinical evidence. Cardiologia 42:501–504

    Google Scholar 

  32. Cohen MV, Kirk ES (1973) Differential response of large and small coronary arteries to nitroglycerin and angiotensin. Autoregulation and tachyphylaxis. Circ Res 33:445–453

    CAS  PubMed  Google Scholar 

  33. Ertl G, Hu K (2001) Anti-ischemic potential of drugs related to the renin-angiotensin system. J Cardiovasc Pharmacol 37 [Suppl 1]: S11–S20

    Google Scholar 

  34. Holtz J, Busse R, Sommer O, Bassenge E (1987) Dilation of epicardial arteries in conscious dogs induced by angiotensin-converting enzyme inhibition with enalaprilat. J Cardiovasc Pharmacol 9: 348–355

    CAS  PubMed  Google Scholar 

  35. Van den Heuvel AF, van Gilst WH, Van Veldhuisen DJ, de Vries RJ, Dunselman PH, Kingma JH (1997) Long-term anti-ischemic effects of angiotensin-converting enzyme inhibition in patients after myocardial infarction. The Captopril and Thrombolysis Study (CATS) Investigators. J Am Coll Cardiol 30:400–405

    Google Scholar 

  36. Rutherford JD, Pfeffer MA, Moye LA, Davis BR, Flaker GC, Kowey PR et al (1994) Effects of Captopril on ischemic events after myocardial infarction. Results of the Survival and Ventricular Enlargement Trial (SAVE) Investigators. Circulation 90:1731–1738

    CAS  PubMed  Google Scholar 

  37. Sogaard P, Gotzsche CO, Ravkilde J, Thygesen K (1993) Effects of Captopril on ischemia and dysfunction of the left ventricle after myocardial infarction. Circulation 87:1093–1099

    CAS  PubMed  Google Scholar 

  38. Gibbs JSR, Crean PA, Mockus L, Wright C, Sutton GC, Fox KM (1989) The variable effect of angiotensin converting enzyme inhibition on myocardial ischaemia in chronic stable angina. Br Heart J 62:112–117

    PubMed Central  PubMed  Google Scholar 

  39. Karsch KR, Voelker W, Mauser M (1990) Myocardial and coronary effects of Captopril during pacing-induced ischaemia in patients with coronary artery disease. Eur Heart J11 [Suppl B]:157–161

    Google Scholar 

  40. Vanhoutte PM, Katusic ZS, Shepherd JT (1984) Vasopressin induces endothelium-dependent relaxations of cerebral and coronary, but not of systemic arteries. J Hypertens 2 [Suppl]:S421–S422

    CAS  Google Scholar 

  41. Heyndrickx GR, Boettcher DH, Vatner SF (1976) Effect of angiotensin, vasopressin, and methoxamine on cardiac function and blood flow distribution in conscious dogs. Am J Physiol 231: 1579–1587

    CAS  PubMed  Google Scholar 

  42. Pitt B, Pasyk S, Walton J, Grekin R (1982) Endogenous arginine vasopressin release in patients with coronary artery spasm (abstract). Circulation 66:1188

    Google Scholar 

  43. Chu A, Morris KG, Kuehl WD, Cusma J, Navetta F, Cobb FR (1989) Effects of atrial natriuretic peptide on the coronary arterial vasculature in humans. Circulation 80:1627–1635

    CAS  PubMed  Google Scholar 

  44. Ginsburg R, Esserman LJ, Bristow MR (1983) Myocardial performance and extracellular ionized calcium in a severely failing human heart. Ann Intern Med 98:603–606

    CAS  PubMed  Google Scholar 

  45. Bristow MR, Ginsburg R, Gilbert EM, Hershberger RE (1987) Heterogeneous regulatory changes in cell surface membrane receptors coupled to a positive inotropic response in the failing human heart. Basic Res Cardiol 82 [Suppl 21:369–376

    Google Scholar 

  46. Simmet T, Peskar BA (1986) Eicosanoids and the coronary circulation. Rev Physiol Biochem Pharmacol 104:1–64

    CAS  PubMed  Google Scholar 

  47. Lamontagne D, König A, Bassenge E, Busse R (1992) Prostacyclin and nitric oxide contribute to the vasodilator action of acetylcholine and bradykinin in the intact rabbit coronary bed. J Cardiovasc Pharmacol 20:652–657

    CAS  PubMed  Google Scholar 

  48. Dai XZ, Bache RJ (1984) Effect of indomethacin on coronary blood flow during graded treadmill exercise in the dog. Am J Physiol 247: H452–H458.

    Google Scholar 

  49. Holtz J, Förstermann U, Pohl U, Giesler M, Bassenge E (1984) Flow-dependent, endothelium-mediated dilation of epicardial coronary arteries in conscious dogs: effects of cyclooxygenase inhibition. J Cardiovasc Pharmacol 6:1161–1169

    CAS  PubMed  Google Scholar 

  50. Altman J, Dulas D, Bache RJ (1992) Effect of cyclooxygenase blockade on blood flow through well-developed coronary collateral vessels. Circ Res 70:1091–1098

    CAS  PubMed  Google Scholar 

  51. Lefkovits J, Plow EF, Topol EJ (1995) Platelet glycoprotein IIb/IIIa receptors in cardiovascular medicine (review). N Engl J Med 332:1553–1559

    CAS  PubMed  Google Scholar 

  52. Lincoff M, Carliff R, Topol EJ (2000) Platelet glycoprotein IIb/IIIa receptor blockade in coronary artery disease. J Am Coll Cardiol 35:1103–1115

    CAS  PubMed  Google Scholar 

  53. Gallagher KP, Osakada G, Kemper WS, Ross J Jr (1985) Cyclical coronary flow reductions in conscious dogs equipped with ameroid constrictors to produce severe coronary narrowing. Basic Res Cardiol 80:100–106

    CAS  PubMed  Google Scholar 

  54. Cohen RA, Shepherd JT, Vanhoutte PM (1983) Inhibitory role of the endothelium in the response of isolated coronary arteries to platelets. Science 221:273–274

    CAS  PubMed  Google Scholar 

  55. Houston DS, Shepherd JT, Vanhoutte PM (1986) Aggregating human platelets causes direct contraction and endothelium-dependent relaxation of isolated canine coronary arteries. Role of serotonin, thromboxane A2, and adenine nucleotides. J Clin Invest 78:539–544

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Finci L, Höfling B, Ludwig B, Bulitta M, Steffenino G, Etti H et al (1989) Sulotroban during and after coronary angioplasty. A doubleblind, placebo controlled study. Z Kardiol 78 [Suppl 31:50–54

    Google Scholar 

  57. Fauler J, Frölich JC (1989) Cardiovascular effects of leukotrienes. Cardiovasc Drug Ther 3:499–505

    CAS  Google Scholar 

  58. Evers AS, Murphee S, Saffitz JE, Jakschik BA, Needleman P (1985) Effects of endogenously produced leukotrienes, thromboxane and prostaglandins on coronary vascular resistance in rabbit myocardial infarction. J Clin Invest 75:992–999

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Schlossman J, Ammendola A, Ashman K, Zong X, Huber A, Neubauer G et al (2000) Regulation of intracellular calcium by a signalling complex of IRAG, IP3 receptor and cGMP kinase I-beta. Nature 404:197–201

    Google Scholar 

  60. Pries AR, Secomb TW, Gaehtgens P (2000) The endothelial surface layer. Pfluegers Arch 440:653–666

    CAS  Google Scholar 

  61. Bassenge E, Busse R, Pohl U (1987) Abluminal release and asymmetrical response of the rabbit arterial wall to endothelium-derived relaxing factor. Circ Res 61:II68–II73

    Google Scholar 

  62. Fleming I, Bauersachs J, Busse R (1996) Paracrine functions of the coronary vascular endothelium. Mol Cell Biochem 157:137–145

    CAS  PubMed  Google Scholar 

  63. Fleming I, Busse R (2000) Activation of NOS by Ca2+-dependent and Ca2+-independent mechanisms. In: Ignarro LJ (ed) Nitric oxide. Academic Press, San Diego, pp 621–632

    Google Scholar 

  64. Kuo L, Chilian WM, Davis MJ (1990) Coronary arteriolar myogenic response is independent of endothelium. Circ Res 66:860–866

    CAS  PubMed  Google Scholar 

  65. Kuo L, Davis MJ, Chilian WM (1990) Endothelium-dependent, flow-induced dilation of isolated coronary arterioles. Am J Physiol 259:H1063–H1070

    Google Scholar 

  66. Ueeda M, Silvia SK, Olsson RA (1992) Nitric oxide modulates coronary autoregulation in the guinea pig. Circ Res 70:1296–1303

    CAS  PubMed  Google Scholar 

  67. Holtz J, Giesler M, Bassenge E (1983) Two dilatory mechanisms of anti-anginal drugs on epicardial coronary arteries in vivo: indirect, flow-dependent, endothelium-mediated dilation and direct smooth muscle relaxation. Z Kardiol 72:98–106

    CAS  PubMed  Google Scholar 

  68. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    CAS  PubMed  Google Scholar 

  69. Crossman DC, Larkin SW, Dashwood MR, Davies GJ, Yacoub M, Maseri A (1991) Responses of atherosclerotic human coronary arteries in vivo to the endothelium-dependent vasodilator substance P. Circulation 84:2001–2010

    CAS  PubMed  Google Scholar 

  70. Vita JA, Treasure CB, Nabel EG, Mclenachan JM, Fish RD, Yeung AC et al (1990) Coronary vasomotor response to acetylcholine relates to risk factors for coronary artery disease. Circulation 81:491–497

    CAS  PubMed  Google Scholar 

  71. Kronemann N, Nockher WA, Busse R, Schini-Kerth VB (1999) Growth-inhibitory effect of cyclic GMP- and cyclic AMP-depend-ent vasodilators on rat vascular smooth muscle cells: effect on cell cycle and cyclin expression. Br J Pharmacol 126:349–357

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Dzau VJ, Gibbons GH (1993) Introduction. Vascular remodeling: mechanisms and implications. J Cardiovasc Pharmacol 21 [Suppl 1]: S1–S5

    Google Scholar 

  73. Motoyama T, Kawano H, Kugiyama K, Okumura K, Ohgushi M, Yoshimura M, Hirashima O, Yasue H (1997) Flow-mediated, endothelium-dependent dilatiation of the brachial arteries is impaired in patients with coronary spastic angina. Am Heart J 133:263–267

    CAS  PubMed  Google Scholar 

  74. Heusch G (1991) Control of coronary vasomotor tone in ischemic myocardium by local metabolism and neurohumoral mechanisms (review). Eur Heart J 12[Suppl F] 199–106

    Google Scholar 

  75. Fleming I, Busse R (1999) NO: the primary EDRF. J Mol Cell Cardiol 311:5–14

    Google Scholar 

  76. Ignarro LJ, Cirino G, Napoli C (1999) Nitric oxide as a signaling molecule in the vascular system: an overview. J Cardiovasc Pharmacol 34:879–886

    CAS  PubMed  Google Scholar 

  77. Griendling KK, Harrison DG (1999) Dual role of reactive oxygen species in vascular growth (review) [editorial; comment]. Circ Res 85:562–563

    CAS  PubMed  Google Scholar 

  78. Duerrschmidt N, Wippich N, Goettsch W, Broemme HJ, Morawietz H (2000) Endothelin-i induces NAD(P)H oxidase in human endothelial cells. Biochem Biophys Res Commun 269:713–717

    CAS  PubMed  Google Scholar 

  79. Brown MR, Miller FJ Jr, Li WG, Ellingson AN, Mozena JD, Chatterjee P et al (1999) Overexpression of human catalase inhibits proliferation and promotes apoptosis in vascular smooth muscle cells. Circ Res 85:524–533

    CAS  PubMed  Google Scholar 

  80. Zafari AM, Ushio-Fukai M, Akers M, Yin Q, Shah A, Harrison DG et al (1998) Role of NADH/NADPH oxidase-derived H2O2 in angiotensin II-induced vascular hypertrophy. Hypertension 32:488–495

    CAS  PubMed  Google Scholar 

  81. Kojda G, Harrison D (1999) Interactions between NO and reactive oxygen species: pathophysiological importance in atherosclerosis, hypertension, diabetes and heart failure. Cardiovasc Res 43: 562–571

    CAS  PubMed  Google Scholar 

  82. Bauersachs J, Bouloumie A, Mulsch A, Wiemer G, Fleming I, Busse R (1998) Vasodilator dysfunction in aged spontaneously hypertensive rats: changes in NO synthase III and soluble guanylyl cyclase expression, and in superoxide anion production. Cardiovasc Res 37:772–779

    CAS  PubMed  Google Scholar 

  83. Zeiher AM, Drexler H, Saurbier B, Just HJ (1993) Endothelium-mediated coronary blood flow modulations in humans: effects of age, atherosclerosis, hypercholesterolemia, and hypertension. J Clin Invest 92:652–662

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Marumo T, Schini-Kerth VB, Busse R (1999) Vascular endothelial growth factor activates nuclear factor-kappa B and induces monocyte chemoattractant protein-1 in bovine retinal endothelial cells. Diabetes 48:1131–1137

    CAS  PubMed  Google Scholar 

  85. Ishikura H, Yoshiki T (1994) Pathways leading to intractable vasculitis syndromes: a review (in Japanese). Nippon Rinsho 52: 1977–1981

    CAS  PubMed  Google Scholar 

  86. Mancini GB (2000) Long-term use of angiotensin-converting enzyme inhibitors to modify endothelial dysfunction: a review of clinical investigations. Clin Invest Med Clin Exp 23:144–161

    CAS  Google Scholar 

  87. Quyyumi AA (1998) Endothelial function in health and disease: new insights into the genesis of cardiovascular disease. Am J Med 105:32S–39S

    Google Scholar 

  88. Luscher TF, Barton M (1997) Biology of the endothelium. Clin Cardiol 20 [11 Suppl 2]:II3-II10

    Google Scholar 

  89. Bassenge E, Fink B, Schwemmer M (1999) Oxidative stress, vascular dysfunction and heart failure. Heart Failure Rev 4:133–145

    CAS  Google Scholar 

  90. Shah AM (1996) Paracrine modulation of heart cell function by endothelial cells. Cardiovasc Res 31:847–867

    CAS  PubMed  Google Scholar 

  91. Paulus WJ, Vantrimpont PJ, Shah A (1995) Paracrine coronary endothelial control of left ventricular function in humans. Circulation 92:2119–2126

    CAS  PubMed  Google Scholar 

  92. Cesari M, Pavan E, Sacchetto A, Rossi GP (1996) Endothelin-i: a scientist’s curiosity, or a real player in ischemic heart disease? Am Heart J 132:1236–1243

    CAS  PubMed  Google Scholar 

  93. Xu D, Emoto N, Giaid A, Slaughter C, Kaw S, deWitt D et al (1994) ECE-1: a membrane-bound metalloprotease that catalyzes the proteolytic activation of big endothelin-i. Cell 78:473–485

    CAS  PubMed  Google Scholar 

  94. Kuwaki T, Ling GY, Onodera M, Ishii T, Nakamura A, Ju KH et al (1999) Endothelin in the central control of cardiovascular and respiratory functions. Clin Exp Pharmacol Physiol 26:989–994

    CAS  PubMed  Google Scholar 

  95. Brandes RP, Koddenberg G, Gwinner W, Kim D, Kruse HJ, Busse R et al (1999) Role of increased production of superoxide anions by NAD(P)H oxidase and xanthine oxidase in prolonged endo-toxemia. Hypertension 33:1243–1249

    CAS  PubMed  Google Scholar 

  96. Telemaque S, Emoto N, de Wit D, Yanagisawa M (1998) In vivo role of endothelin-converting enzyme-1 as examined by adenovirus-mediated overexpression in rats. J Cardiol Pharmacol 31 [Suppl 1]: S548–S550

    Google Scholar 

  97. Miyauchi T, Masaki T (1999) Pathophysiology of endothelin in the cardiovascular system. Annu Rev Physiol 61:391–415

    CAS  PubMed  Google Scholar 

  98. Clozel JP, Clozel M (1989) Effects of endothelin on the coronary vascular bed in open-chest dogs. Circ Res 65:1193–1200

    CAS  PubMed  Google Scholar 

  99. Marsden PA, Brenner BM (1992) Transcriptional regulation of the endothelin-i gene by TNF-alpha. Am J Physiol 262:C854–C861

    Google Scholar 

  100. Wagner OF, Christ G, Wojta J, Vierhapper H, Parzer S, Nowotny PJ et al (1992) Polar secretion of endothelin-i by cultured endothelial cells. J Biol Chem 267:16066–16068

    CAS  PubMed  Google Scholar 

  101. Roux S, Breu V, Ertel SI, Clozel M (1999) Endothelin antagonism with bosentan: a review of potential applications. J Mol Med 77: 364–376

    CAS  PubMed  Google Scholar 

  102. Krum H, Gu A, Wilshire-Clement M, Sackner-Bernstein J, Goldsmith R, Medina N et al (1996) Changes in plasma endothelin-i levels reflect clinical response to beta-blockade in chronic heart failure. Am Heart J 131:337–341

    CAS  PubMed  Google Scholar 

  103. Monge JC (1998) Neurohormonal markers of clinical outcome in cardiovascular disease: is endothelin the best one? J Cardiovasc Pharmacol 32 [Suppl 2]:S36–S42

    Google Scholar 

  104. Setsuta K, Seino Y, Tomita Y, Nejima J, Takano T, Hayakawa H (1995) Origin and pathophysiological role of increased plasma endo-thelin-1 in patients with acute myocardial infarction. Angiology 46:557–565

    CAS  PubMed  Google Scholar 

  105. Stewart D (1998) Update on endothelin. Can J Cardiol 14 [Suppl D]: 11D–13D

    Google Scholar 

  106. Sakai S, Miyauchi T, Kobayashi M, Yamaguchi I, Goto K, Sugishita Y (1996) Inhibition of myocardial endothelin pathway improves long-term survival in heart failure. Nature 384:353–355

    CAS  PubMed  Google Scholar 

  107. Sakai S, Miyauchi T, Yamaguchi I (2000) Long-term endothelin receptor antagonist administration improves alterations in expression of various cardiac genes in failing myocardium of rats with heart failure. Circulation 101:2849–2853

    CAS  PubMed  Google Scholar 

  108. Miyauchi T, Goto K (1999) Heart failure and endothelin receptor antagonists. Trends Pharmacol Sci 20:210–217

    CAS  PubMed  Google Scholar 

  109. Dupuis J (2000) Endothelin receptor antagonists and their developing role in cardiovascular therapeutics. Can J Cardiol 16:903–910

    CAS  PubMed  Google Scholar 

  110. Schmidt HHHW, Pollock JS, Nakane M, Förstermann U, Murad F (1992) Ca2+/calmodulin-regulated nitric oxide synthases. Cell Calcium 13:427–434

    CAS  PubMed  Google Scholar 

  111. Maemura K, Kurihara H, Kurihara Y, Kuwaki T, Kumada M, Yazaki Y (1995) Gene expression of endothelin isoforms and receptors in endothelin-i knockout mice. J Cardiovasc Pharmacol 26 [Suppl 3]: S17–S21

    Google Scholar 

  112. Clouthier DE, Williams SC, Yanagisawa H, Wieduwilt M, Richardson JA, Yanagisawa M (2000) Signaling pathways crucial for craniofacial development revealed by endothelin-A receptor-deficient mice. Develop Biol 217:10–24

    CAS  PubMed  Google Scholar 

  113. Popp R, Bauersachs J, Hecker M, Flemin I, Busse R (1996) A transferable, β-naphthoflavone-inducible, hyperpolarizing factor is synthesized by native and cultured porcine coronary endothelial cell. J Physiol 497:699–709

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Busse R, Fleming I (2000) Endothelium-derived hyperpolarizing factor and its interaction with NO. In: Ignarro LJ (ed) Nitric oxide. Academic Press, San Diego, pp 569–583

    Google Scholar 

  115. Fisslthaler B, Popp R, Kiss L, Potente M, Harder DR, Fleming I et al (1999) Cytochrome P450 2 C is an EDHF synthase in coronary arteries. Nature 401:493–497

    CAS  PubMed  Google Scholar 

  116. Taxler HJ, Chaytor AT, Evans WH, Griffith TM (1998) Ingibition of the gap junctional component of endothelium-dependent relaxations in rabbit iliac artery by 18- glycyrrhetinic acid. Br J Pharmacol 125:1–3

    Google Scholar 

  117. Fleming I, Schermer B, Popp R, Busse R (1999) Inhibition of the production of endothelium-derived hyperpolarizing factor by cannabinoid receptor agonists. Br J Pharmacol 126:949–960

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Zelis R, Hayoz D, Drexler H, Münzel T, Hornig B, Zeiher AM et al (1992) Arterial dilatory reserve in congestive heart failure. J Hyper-tens 10 [Suppl 6]:S65–S67

    Google Scholar 

  119. Beech DJ, Zhang H, Nakao K, Bolton TB (1993) K channel activation by nucleotide diphosphates and its inhibition by glibenclamide in vascular smooth muscle cells. Br J Pharmacol 110:573–582

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Daut J, Maier-Rudolph W, von Beckerath N, Mehrke G, Günther K, Goedel-Meinen L (1990) Hypoxic dilation of coronary arteries is mediated by ATP-sensitive potassium channels. Science 247:1341–1344

    CAS  PubMed  Google Scholar 

  121. Mellemkjaer S, Nielsen-Kudsk JE (2000) Glibenclamide inhibits relaxation of isolated porcine coronary arteries under conditions of impaired glycolysis. Eur J Pharmacol 270:307–312

    Google Scholar 

  122. Bünger R, Gwirtz P (1998) Coronary vasculature and endothelium. In: Chang J, Olsen ER, Prasad K, Sumpio BE (eds) Textbook of angiology. Springer, New York pp 55–84

    Google Scholar 

  123. Broten TP, Romson JL, Fullerton DA, van Winkle DM, Feigl EO (1991) Synergistic action of myocardial oxygen and carbon dioxide in controlling coronary blood flow. Circ Res 68:531–542

    CAS  PubMed  Google Scholar 

  124. Gewirtz H, Weeks G, Nathanson M, Sharaf B, Fedele F, Most AS (1989) Tissue acidosis — role in sustained arteriolar dilatation distal to a coronary stenosis. Circulation 79:890–898

    CAS  PubMed  Google Scholar 

  125. Hopkins NK, Gorman RR (1981) Regulation of endothelial cell cyclic nucleotide metabolism by prostacyclin. J Clin Invest 67: 540–546

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Lochner W, Parratt JR (1966) A comparison of the effects of locally and systemically administered kinins on coronary blood flow and myocardial metabolism. Br J Pharmacol 26:17–26

    CAS  Google Scholar 

  127. Miller WL, Belardinelli L, Bacchus AN, Foley DH, Rubio R, Berne RM (1979) Canine myocardial adenosine and lactate production, oxygen consumption, and coronary blood flow during stellate ganglia stimulation. Circ Res 45:708–718

    CAS  PubMed  Google Scholar 

  128. Bardenheuer H, Schrader J (1983) Relationship between myocardial oxygen consumption, coronary flow, and adenosine release in an improved isolated working heart preparation of guinea pigs. Circ Res 51:263–271

    Google Scholar 

  129. Bassenge E, Heusch G (1990) Endothelial and neuro-humoral control of coronary blood flow in health and disease. Rev Physiol Biochem Pharmacol 116:77–165

    CAS  PubMed  Google Scholar 

  130. Nuutinen EM, Nishiki K, Erecisnka M, Wilson DF (1982) Role of mitochondrial oxidative phosphorylation in regulation of coronary blood flow. Am J Physiol 243:H159–H169

    Google Scholar 

  131. Saito D, Steinhart CR, Nixon DG, Olsson RA (1981) Intracoronary adenosine deaminase reduces canine myocardial reactive hyperemia. Circ Res 49:1262–1267

    CAS  PubMed  Google Scholar 

  132. Niiya K, Uchida S, Tsuji T, Olsson RA (1994) Glibenclamide reduces the coronary vasculature tone to glibenclamide: a study on the isolated perfused guinea pig heart. J Pharmacol Exp Ther 271: 14–19

    CAS  PubMed  Google Scholar 

  133. Gorman MW, Ning XH, He MX, Portman MA, Sparks HV (1992) Adenosine release and high energy phosphates in intact dog hearts during norepinephrine infusion. Circ Res 70:1146–1151

    CAS  PubMed  Google Scholar 

  134. Canty JM, Klocke FJ (1985) Reduced regional myocardial perfusion in the presence of pharmacologic vasodilator reserve. Circulation 71:370–377

    PubMed  Google Scholar 

  135. Berne RM (1963) Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Am J Physiol 204:317–322

    CAS  PubMed  Google Scholar 

  136. Aversano T, Ouyang P, Silverman H (1991) Blockade of the ATP-sen-sitive potassium channel modulates reactive hyperemia in the canine coronary circulation. Circ Res 69:618–622

    CAS  PubMed  Google Scholar 

  137. Wang Q, Paulson OB, Lassen NA (1992) Is autoregulation of cerebral blood flow in rats influenced by nitro-L-arginine, a blocker of the synthesis of nitric oxide. Acta Physiol Scand 145:297–298

    CAS  PubMed  Google Scholar 

  138. Houston DA, Burnstock G, Vanhoutte PM (1987) Different P2-purinergic receptor subtypes of endothelium and smooth muscle in canine blood vessels. J Pharmacol Exp Ther 241:501–506

    CAS  PubMed  Google Scholar 

  139. Krivokapich J, Stevenson LW, Kobashigawa J, Huang SC, Schelbert HR (1991) Quantification of absolute myocardial perfusion at rest and during exercise with positron emission tomography after human cardiac transplantation. J Am Coll Cardiol 18:512–517

    CAS  PubMed  Google Scholar 

  140. Heusch G (1990) α-adrenergic mechanisms in myocardial ischemia. Circulation 81:1–13

    CAS  PubMed  Google Scholar 

  141. Horgan MJ, Pinheiro JMB, Malik AB (1991) Mechanism of endo-thelin-1-induced pulmonary vasoconstriction. Circ Res 69:157–164

    CAS  PubMed  Google Scholar 

  142. Heyndrickx GR, Muylaert P, Pannier JL (1982) α-adrenergic control of oxygen delivery to myocardium during exercise in conscious dogs. Am J Physiol 242:H805–H809

    Google Scholar 

  143. Gregorini L, Marco J, Palombo C, Kozkov M, Bossi IM, Marco I et al (1999) Coronary flow reserve changes induced by alpha-1 and alpha-2 adrenergic blockade (abstract). Circulation 100 [Suppl 1], I376–I377

    Google Scholar 

  144. Gregorini L, Marco J, Kozakova M, Palombo C, Anguissola GB, Marco I et al (1999) Alpha-adrenergic blockade improves recovery of myocardial perfusion and function after coronary stenting in patients with acute myocardial infarction (see comments). Circulation 99:482–490

    CAS  PubMed  Google Scholar 

  145. Robertson RM, Wood AJJ, Vaughn WK, Robertson D (1982) Exacerbation of vasotonic angina pectoris by propranolol. Circulation 65:281–290

    CAS  PubMed  Google Scholar 

  146. Pepine CJ, Cohn PF, Deedwania PC, Gibson RS, Handberg E, Hill JA et al (1994) Effects of treatment on outcome in mildly symptomatic patients with ischemia during daily life. The Atenolol Silent Ischemia Study (ASIST) (see comments). Circulation 90:762–768

    CAS  PubMed  Google Scholar 

  147. Duncker D, Stubenitsky R, Verdouw PD (1998) Autonomic control of vasomotion in the porcine coronary circulation during treadmill exercise. Circ Res 82:1312–1322

    CAS  PubMed  Google Scholar 

  148. Vatner SF, Hintze TH (1983) Mechanism of constriction of large coronary arteries by β- adrenergic receptor blockade. Circ Res 53:389–400

    CAS  PubMed  Google Scholar 

  149. Von Restorff W, Bassenge E (1976) Evaluation of a neurogenic rapid coronary dilatation during an excitatory response in conscious dogs. Pfluegers Arch 367:157–164

    Google Scholar 

  150. Murray PA, Vatner SF (1979) Alpha-adrenoceptor attenuation of the coronary vascular response to severe exercise in the conscious dog. Circ Res 45:654–660

    CAS  PubMed  Google Scholar 

  151. Heusch G, Deussen A (1984) Nifedipine prevents sympathetic vasoconstriction distal to severe coronary stenoses. J Cardiovasc Pharmacol 6:378–383

    CAS  PubMed  Google Scholar 

  152. Heusch G, Deussen A, Schipke J, Thämer V (1984) α1-and α2-adrenoceptor-mediated vasoconstriction of large and small canine coronary arteries in vivo. J Cardiovasc Pharmacol 6:961–968

    CAS  PubMed  Google Scholar 

  153. Chilian WM (1991) Functional distribution of alpha 1- and alpha 2-adrenergic receptors in the coronary microcirculation. Circulation 84:2108–2122

    CAS  PubMed  Google Scholar 

  154. Busch P, Deussen A, Heusch G (1988) Sympathetic effects on segmental coronary resistances and their role in coronary collateral perfusion. J Appl Cardiol 3:145–160

    Google Scholar 

  155. Chilian WM, Harrison DG, Haws CW, Snyder WD, Marcus ML (1986) Adrenergic coronary tone during submaximal exercise in the dog is produced by circulating catecholamines. Evidence for adrenergic denervation supersensitivity in the myocardium but not in coronary vessels. Circ Res 58:68–82

    CAS  PubMed  Google Scholar 

  156. Baumgart D, Ehring T, Kowallik P, Guth BD, Krajcer M, Heusch G (1993) Impact of α-adrenergic coronary vasoconstriction of the transmural myocardial blood flow distribution during humoral and neuronal adrenergic activation. Circ Res 73:869–886

    CAS  PubMed  Google Scholar 

  157. Roeske WR, Yamamura HI (1996) Autonomic control of the myocardium: muscarinic cholinergic receptor mechanisms. In: Shepherd JT, Vatner SF (eds) Nervous control of the heart. Harwood Academic Publishers, Amsterdam, pp 111–137

    Google Scholar 

  158. Eglen RM, Hegde SS, Watson N (1996) Muscarinic receptor subtypes and smooth muscle function (review). Pharmacol Rev 48:531–565

    CAS  PubMed  Google Scholar 

  159. Feigl EO (1969) Parasympathetic control of coronary blood flow in dogs. Circ Res 25:509–519

    CAS  PubMed  Google Scholar 

  160. Zhao G, Hintze TH, Kaley G (1996) Neural regulation of coronary vascular resistance: role of nitric oxide in reflex cholinergic coronary vasodilation in normal and pathophysiologic states. EXS 76:1–19

    CAS  PubMed  Google Scholar 

  161. Knight DR, Shen Y-T, Young MA, Vatner SF (1991) Acetylcholine-induced coronary vasoconstriction and vasodilation in tranquilized baboons. Circ Res 69:706–713

    CAS  PubMed  Google Scholar 

  162. Zeiher AM, Drexler H, Wollschläger H, Just HJ (1991) Modulation of coronary vasomotor tone in humans. Progressive endothelial dysfunction with different early stages of coronary atherosclerosis. Circulation 83:391–401

    CAS  PubMed  Google Scholar 

  163. Feigl EO (1996) Autonomic control of coronary blood flow. In: Shepherd JT, Vatner SF (eds) Nervous control of the heart. Harwood Academic Publishers, Amsterdam, pp 227–252

    Google Scholar 

  164. Toda N (1995) Regulation of blood pressure by nitroxidergic nerve. J Diabetes Compl 9:200–202

    CAS  Google Scholar 

  165. Haass M, Cheng B, Richardt G, Lang RE, Schomig A (1989) Characterization and presynaptic modulation of stimulation-evoked exocytotic corelease of noradrenaline and neuropeptide Y in guinea pig heart. Naunyn-Schmiedebergs Arch Pharmacol 339:71–78

    CAS  PubMed  Google Scholar 

  166. Franco-Cereceda A, Lundberg JM, Dahlof C (1985) Neuropeptide Y and sympathetic control of heart contractility and coronary vascular tone. Acta Physiol Scand 124:361–369

    CAS  PubMed  Google Scholar 

  167. Martin SE, Patterson RE (1987) Coronary artery infusion of neuropeptide Y in patients with angina pectoris. Lancet 1,2:1057–1059

    Google Scholar 

  168. Mcewan J, Larkin S, Davies G, Chierchia S, Brown M, Stevenson J et al (1986) Calcitonin gene-related peptide: a potent dilator of human epicardial coronary arteries. Circulation 74:1243–1247

    CAS  PubMed  Google Scholar 

  169. Anderson FL, Kralios AC, Hershberger R, Bristow MR (1988) Effect of vasoactive intestinal peptide on myocardial contractility and coronary blood flow in the dog: comparison with isoproterenol and forskolin. J Cardiovasc Pharmacol 12:365–371

    CAS  PubMed  Google Scholar 

  170. Kushawa SS, Crossman DC, Bustami M (1991) Substance P for evaluation of coronary endothelial function after cardiac transplantation. J Am Coll Cardiol 17:1537–1544

    Google Scholar 

  171. White RE, Kryman JP, El Mowafy AM, Han G, Carrier GO (2000) cAMP-dependent vasodilators cross-activate the cGMP-dependent protein kinase to stimulate BK(Ca) channel activity in coronary artery smooth muscle cells. Circ Res 86:897–905

    CAS  PubMed  Google Scholar 

  172. George MJ, Shibata EF (1995) Regulation of calcium-activated potassium channels by S-nitrosothiol compounds and cyclic guanosine monophosphate in rabbit coronary artery myocytes. J Invest Med 43:451–458

    CAS  Google Scholar 

  173. Yamagishi T, Yanagisawa T, Satoh K, Taira N (1994) Relaxant mechanisms of cyclic AMP-increasing agents in porcine coronary artery. Eur J Pharmacol 251:253–262

    CAS  PubMed  Google Scholar 

  174. Hofmann F, Ammendola A, Schlossman J (2000) Rising behind NO: cGMP-dependent protein kinases. J Cell Sci 113:1671–1676

    CAS  PubMed  Google Scholar 

  175. Ishibashi Y, Duncker DJ, Zhang J, Bache RJ (1998) ATP-sensitive K+ channels, adenosine, and nitric oxide-mediated mechanisms account for coronary vasodilation during exercise. Circ Res 82: 346–359

    CAS  PubMed  Google Scholar 

  176. Harrison DG (1993) Neurohumoral and pharmacologic regulation of collateral perfusion. In: Schaper W, Schaper J (eds) Collateral circulation. Kluwer, Boston, pp 329–341

    Google Scholar 

  177. Schaper J, Schaper W (2000) Angiogenesis and coronary collateral circulation. In: Sperelakis N, Kurachi Y, Terzic A, Cohen MV (eds) Heart physiology and pathophysiology, 4th ed. Academic Press, pp 1031–1043

    Google Scholar 

  178. Ertl G, Simm F, Wichmann J, Fuchs M, Lochner W (1979) The dependence of coronary collateral blood flow on regional vascular resistance. Studies with glyceryl trinitrate, adenosine and verapamil. Naunyn-Schmiedebergs Arch Pharmacol 308:265–272

    CAS  PubMed  Google Scholar 

  179. Harrison DG, Chilian WM, Marcus MM (1986) Absence of functioning α-adrenergic receptors in mature canine coronary collaterals. Circ Res 59:133–142

    CAS  PubMed  Google Scholar 

  180. Gamero L, Levenson J, Armentano R, Graf S, Brandani L, Simon A et al (1999) Carotid wall inertial index increase is related to intima-media thickening in hypertensive patients. J Hypertens 17:1825–1829

    CAS  PubMed  Google Scholar 

  181. Sakata N, Imanaga Y, Meng J, Tachikawa Y, Takebayashi S, Nagai R et al (1999) Increased advanced glycation end products in atherosclerotic lesions of patients with end-stage renal disease. Atherosclerosis 142:67–77

    CAS  PubMed  Google Scholar 

  182. Matsuzaki M, Patritti J, Tajimi T, Miller M, Kemper WS, Ross J Jr (1984) Effects of β-blockade on regional myocardial flow and function during exercise. Am J Physiol 247:H52–H60

    Google Scholar 

  183. Gregorini L, Marco J, Palombo C, Kozakova M, Anguissola GB, Cassagneau B et al (1998) Postischemic left ventricular dysfunction is abolished by alpha-adrenergic blocking agents. J Am Coll Cardiol 31:992–1001

    CAS  PubMed  Google Scholar 

  184. Heusch G, Deussen A (1983) The effects of cardiac sympathetic nerve stimulation on the perfusion of stenotic coronary arteries in the dog. Circ Res 53:8–15

    CAS  PubMed  Google Scholar 

  185. Chierchia S, Davies GJ, Berkenboom GM, Crea F, Crean P, Maseri A (1984) α-adrenergic receptors and coronary spasm: an elusive link. Circulation 69:8–14

    CAS  PubMed  Google Scholar 

  186. Robertson RM, Bernard YD, Carr RK, Robertson D (1983) Alpha-adrenergic blockade in vasotonic angina: lack of efficacy of specific alphaireceptor blockade with prazosin. J Am Coll Cardiol 2:1146–1150

    CAS  PubMed  Google Scholar 

  187. Winniford MD, Filipchuk N, Hillis LD (1983) Alpha-adrenergic blockade for variant angina: a long-term, double-blind, randomized trial. Circulation 67:1185–1188

    CAS  PubMed  Google Scholar 

  188. Mueller HS, Rao PS, Rao PB, Gory DJ, Mudd JG, Ayres SM (1982) Enhanced transcardiac 1-norepinephrine response during cold pressor test in obstructive coronary artery disease. Am J Cardiol 50:1223–1228

    CAS  PubMed  Google Scholar 

  189. Zeiher AM, Drexler H, Wollschläger H, Saurbier B, Just HJ (1989) Coronary vasomotion in response to sympathetic stimulation in humans — importance of the functional integrity of the endothelium. J Am Coll Cardiol 14:1181–1190

    CAS  PubMed  Google Scholar 

  190. Nabel EG, Ganz P, Gordon JB, Alexander RW, Selwyn AP (1988) Dilation of normal and constriction of atherosclerotic coronary arteries caused by the cold pressor test. Circulation 77:43–52

    CAS  PubMed  Google Scholar 

  191. Mudge GH, Grossman W, Mills RM Jr, Lesch M, Braunwald E (1976) Reflex increase in coronary vascular resistance in patients with ischemic heart disease. N Engl J Med 295:1333–1335

    PubMed  Google Scholar 

  192. Mudge GH, Goldberg S, Gunther S, Mann T, Grossman W (1979) Comparison of metabolic and vasoconstrictor stimuli on coronary vascular resistance in man. Circulation 59:544–549

    PubMed  Google Scholar 

  193. Berkenboom GM, Abramowicz M, Vandermoten P, Degre SG (1986) Role of alpha-adrenergic coronary tone in exercise-induced angina pectoris. Am J Cardiol 57:195–198

    CAS  PubMed  Google Scholar 

  194. Collins P, Sheridan D (1985) Improvement in angina pectoris with alpha adrenoceptor blockade. Br Heart J 53:488–492

    CAS  PubMed Central  PubMed  Google Scholar 

  195. Gould L, Reddy CV, Gomprecht RF (1973) Oral phentolamine in angina pectoris. Jpn Heart J 14:393–397

    CAS  PubMed  Google Scholar 

  196. Gould KL, Lipscomb K, Hamilton GW (1974) Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 33:87–94

    CAS  PubMed  Google Scholar 

  197. Gould KL (1999) Coronary Artery stenosis and reversing atherosclerosis, 2nd ed. Oxford University Press, Oxford

    Google Scholar 

  198. Maseri A, Crea F, Kaski JC, Davies G (1992) Mechanisms and significance of cardiac ischemic pain (review). Prog Cardiovasc Dis 35:1–18

    CAS  PubMed  Google Scholar 

  199. Maseri A, Chierchia S, Kaski JC (1985) Mixed angina pectoris (review). Am J Cardiol 56:30E–33E

    Google Scholar 

  200. Erbel R, Heusch G (1999) Coronary microembolization-its role in acute coronary syndromes and interventions. Herz 24:558–575

    CAS  PubMed  Google Scholar 

  201. Marzilli M, Sambuceti G, Fedele S, L’Abbate A (2000) Coronary microcirculatory vasoconstriction during ischemia in patients with unstable angina. J Am Coll Cardiol 35:327–334

    CAS  PubMed  Google Scholar 

  202. Camacho SA, Lanzer P, Toy BJ, Gober J, Valenza M, Botvinick EH et al (1988) In vivo alterations of high-energy phosphates and intracellular pH during reversible ischemia in pigs: a 31P magnetic resonance spectroscopy study. Am Heart J 116:701–708

    CAS  PubMed  Google Scholar 

  203. Takehana K, Ruiz M, Petruzella FD, Watson DD, Beller GA, Glover DK (2000) Response to incremental doses of dobutamine early after reperfusion is predictive of the degree of myocardial salvage in dogs with experimental acute myocardial infarction. J Am Coll Cardiol 35:1960–1968

    CAS  PubMed  Google Scholar 

  204. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136

    CAS  PubMed  Google Scholar 

  205. Cohen MV, Liu GS, Downey JM (1991) Preconditioning causes improved wall motion as well as smaller infarcts after transient coronary occlusion in rabbits. Circulation 84:341–349

    CAS  PubMed  Google Scholar 

  206. Ovize M, Przyklenk K, Hale SL, Kloner RA (1992) Preconditioning does not attenuate myocardial stunning. Circulation 85:2247–2254

    CAS  PubMed  Google Scholar 

  207. Miyamae M, Fujiwara H, Kida M, Yokota R, Tanaka M, Katsuragawa M et al (1993) Preconditioning improves energy metabolism during reperfusion but does not attenuate myocardial stunning in porcine hearts. Circulation 88:223–234

    CAS  PubMed  Google Scholar 

  208. Schulz R, Janssen F, Guth BD, Heusch G (1991) Effect of coronary hyperperfusion on regional myocardial function and oxygen consumption of stunned myocardium in pigs. Basic Res Cardiol 86:534–543

    CAS  PubMed  Google Scholar 

  209. Schott RJ, Rohmann S, Braun ER, Schaper W (1990) Ischemic preconditioning reduces infarct size in swine myocardium. Circ Res 66:1133–1142

    CAS  PubMed  Google Scholar 

  210. Rohmann S, Schott RJ, Harting J, Schaper W (1991) Ischemic preconditioning is not a function of stunned myocardium (abstract). J Mol Cell Cardiol 23 [Suppl. V]: 71

    Google Scholar 

  211. Matsuda M, Catena TG, Vander Heide RS, Jennings RB, Reimer KA (1993) Cardiac protection by ischaemic preconditioning is not mediated by myocardial stunning. Cardiovasc Res 27:585–592

    CAS  PubMed  Google Scholar 

  212. Van Winkle DM, Thornton JD, Downey DM, Downey JM (1991) The natural history of preconditioning: cardioprotection depends on duration of transient ischemia and time to subsequent ischemia. Coronary Artery Dis 2:613–619

    Google Scholar 

  213. Li YW, Whittaker P, Kloner RA (1992) The transient nature of the effect of ischemic preconditioning on myocardial infarct size and ventricular arrhythmia. Am Heart J 123:346–353

    CAS  PubMed  Google Scholar 

  214. Przyklenk K, Bauer B, Ovize M, Kloner RA, Whittaker P (1993) Regional ischemic ‘ preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation 87:893–899

    CAS  PubMed  Google Scholar 

  215. Schulz R, Post H, Sakka S, Wallbridge DR, Heusch G (1995) Intraischemic preconditioning. Increased tolerance to sustained low-flow ischemia by a brief episode of no-flow ischemia without intermittent reperfusion. Circ Res 76:942–950

    CAS  PubMed  Google Scholar 

  216. Liu GS, Thornton J, van Winkle DM, Stanley AW, Olsson RA, Downey JM (1991) Protection against infarction afforded by preconditioning is mediated by A1 adenosine receptors in rabbit heart. Circulation 84:350–356

    CAS  PubMed  Google Scholar 

  217. Quayle JM, Nelson MT, Standen NB (1997) ATP-sensitive and inwardly rectifying potassium channels in smooth muscle. Physiol Rev 77:1165–1232

    CAS  PubMed  Google Scholar 

  218. Gross GJ (1998) Recombinant cardiac ATP-sensitive potassium channels and cardioprotection. Circulation 98:1479–1480

    CAS  PubMed  Google Scholar 

  219. Shimshak TM, Preuss KC, Gross GJ, Brooks HL, Waritier DC (1986) Recovery of contractile function in post-ischaemic reperfused myocardium of conscious dogs: influence of nicorandil, a new antianginal agent. Cardiovasc Res 20:621–626

    CAS  PubMed  Google Scholar 

  220. Gross GJ, Auchampach JA (1992) Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in dogs. Circ Res 70:223–233

    CAS  PubMed  Google Scholar 

  221. Thornton JD, Liu GS, Olsson RA, Downey JM (1992) Intravenous pretreatment with A1-selective adenosine analogues protects the heart against infarction. Circulation 85:659–665

    CAS  PubMed  Google Scholar 

  222. Tsuchida A, Liu GS, Wilborn WH, Downey JM (1993) Pretreatment with the adenosine A1 selective agonist, 2-chloro-N6-cyclopentyl-adenosine (CCPA), causes a sustained limitation of infarct size in rabbits. Cardiovasc Res 27:652–656

    CAS  PubMed  Google Scholar 

  223. Schultz JE, Hsu AK, Barbieri JT, Li PL, Gross GJ (1998) Pertussis toxin abolishes the cardioprotective effect of ischemic preconditioning in intact rat heart. Am J Physiol 275:H495–H500

    Google Scholar 

  224. Schaper W, Gorge G, Winkler B, Schaper J (1988) The collateral circulation of the heart. Prog Cardiovasc Dis 31:57–77

    CAS  PubMed  Google Scholar 

  225. Feldman RD, Christy JP, Paul ST, Harrison DG (1989) β-Adrenergic receptors on canine coronary collateral vessels: characterization and function. Am J Physiol 257:H1634–H1639

    Google Scholar 

  226. Wright L, Homans DC, Laxson DD, Dai XZ, Bache RJ (1992) Effect of serotonin and thromboxane A2 on blood flow through moderately well developed coronary collateral vessels. J Am Coll Cardiol 19:687–693

    CAS  PubMed  Google Scholar 

  227. Mansary M, Hynd JW, Vergroesen I, Belcher PR, Drake-Holland AJ, Noble MIM (2000) Measurement of coronary collateral flow and resistance in the presence of an open critical stenosis, and the response to intra-arterial thrombosis. Cardiovasc Res 47: 359–366

    Google Scholar 

  228. Becker LC (2000) Constriction of native coronary collaterals. Cardiovasc Res 47:217–218

    CAS  PubMed  Google Scholar 

  229. Peters KG, Marcus ML, Harrison DG (1989) Vasopressin and the mature coronary collateral circulation. Circulation 79:1324–1331

    CAS  PubMed  Google Scholar 

  230. Sellke F, Quillen JE, Brooks LA, Harrison DG (1990) Endothelial modulation of the coronary vasculature in vessels perfused via mature collaterals. Circulation 81:1938–1947

    CAS  PubMed  Google Scholar 

  231. Sasayama S, Fujita M (1992) Recent insights into coronary collateral circulation. Circulation 85:1197–1204

    CAS  PubMed  Google Scholar 

  232. Topol EJ, Ellis SG (1991) Coronary collaterals revisited. Accessory pathway to myocardial preservation during infarction. Circulation 83:1084–1086

    CAS  PubMed  Google Scholar 

  233. Rowe GG (1970) Inequalities of myocardial perfusion in coronary artery disease (“coronary steal”). Circulation 42:193–194

    CAS  PubMed  Google Scholar 

  234. Laxson DD, Homans DC, Bache RJ (1993) Inhibition of adenosine-mediated coronary vasodilation exacerbates myocardial ischemia during exercise. Am J Physiol 265:H1471–H1477

    Google Scholar 

  235. Gallagher KP, Folts JD, Shebuski RJ, Rankin JH, Rowe GG (1980) Subepicardial vasodilator reserve in the presence of critical coronary stenosis in dogs. Am J Cardiol 46:67–73

    CAS  PubMed  Google Scholar 

  236. Gould KL (1978) Noninvasive assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilatation. I. Physiologic basis and experimental validation. Am J Cardiol 41:267–278

    CAS  PubMed  Google Scholar 

  237. Albro PC, Gould KL, Westcott RJ, Hamilton GW, Ritchie JL, Williams DL (1978) Noninvasive assessment of coronary stenoses by myocardial imaging during pharmacologic coronary vasodilatation. III. Clinical trial. Am J Cardiol 42:751–760

    CAS  PubMed  Google Scholar 

  238. Maczewski M, Beresewicz A (2000) The role of endothelin, protein kinase C and free radicals in the mechanism of the post-ischemic endothelial dysfunction in guineapig hearts. J Mol Cell Cardiol 32:297–310

    CAS  PubMed  Google Scholar 

  239. Jordan JE, Zhao ZQ, Vinten-Johansen J (1999) The role of neutrophils in myocardial ischemia-reperfusion injury. Cardiovasc Res 43:860–878

    CAS  PubMed  Google Scholar 

  240. Beresewicz A, Czarnowska E, Maczewski M (1998) Ischemic preconditioning and superoxide dismutase protect against endothelial dysfunction and endothelium glycocalyx disruption in the postischemic guinea-pig hearts. Mol Cell Biochem 186:87–97

    CAS  PubMed  Google Scholar 

  241. Alam MS, Ku K, Yamauchi M, Hashimoto M, Nosaka S, Hossain MS et al (1998) Protective effects of nicaraven, a new hydroxyl radical scavenger, on the endothelial dysfunction after exposure of pig coronary artery to hydroxyl radicals. Mol Cell Biochem 178:237–243

    CAS  PubMed  Google Scholar 

  242. Simpson PJ, Mickelson JK, Lucchesi BR (1987) Free radical scavengers in myocardial ischemia. Fed Proc 46:2413–2421

    CAS  PubMed  Google Scholar 

  243. Ambrosio G, Tritto I (1999) Reperfusion injury: experimental evidence and clinical implications. Am Heart J 138:69–75

    Google Scholar 

  244. Ferrari R, Ceconi C, Curello S, Benigno M, La Canna G, Visioli O (1996) Left ventricular dysfunction due to the new ischemic outcomes: stunning and hibernation. J Cardiovasc Pharmacol 28 [Suppl 1]:S18–S26

    Google Scholar 

  245. Dusting GJ (1996) Nitric oxide in coronary artery disease: roles in atherosclerosis, myocardial reperfusion and heart failure. EXS 76:33–55

    CAS  PubMed  Google Scholar 

  246. Ferrari R (1995) Metabolic disturbances during myocardial ischemia and reperfusion. Am J Cardiol 76:176–246

    Google Scholar 

  247. Ricevuti G, Mazzone A, Pasotti D, de Servi S, Specchia G (1991) Role of granulocytes in endothelial injury in coronary heart disease in humans. Atherosclerosis 91:1–14

    CAS  PubMed  Google Scholar 

  248. De Servi S, Ricevuti G, Mazzone A, Ghio S, Zito A, Raffaghello S et al (1991) Granulocyte function in coronary artery disease. Am J Cardiol 68:64B–68B

    Google Scholar 

  249. Forman MB, Virmani R, Puett DW (1990) Mechanisms and therapy of myocardial reperfusion injury. Circulation 81 [Suppl 3]:IV69–IV78

    Google Scholar 

  250. Hudson KF (1994) A phenomenon of paradox: myocardial reperfusion injury. Heart Lung 23:384–393

    CAS  PubMed  Google Scholar 

  251. Ferrari R, Ceconi C, Curello S, Alfieri O, Visioli O (1993) Myocardial damage during ischaemia and reperfusion. Eur Heart J14 [Suppl G]: 25–30

    Google Scholar 

  252. Amrani M, Yacoub MH (1996) Endothelial function in myocardial protection. Curr Op Cardiol 11:559–563

    CAS  Google Scholar 

  253. Seccombe JF, Schaff HV (1995) Coronary artery endothelial function after myocardial ischemia and reperfusion. Ann Thorac Surg 60:778–788

    CAS  PubMed  Google Scholar 

  254. Rochette L, Maupoil V (1993) From ischemia to reperfusion lesions (in French). Arch Mal Coeur Vaiss 86 [Suppl 4]:13–17

    PubMed  Google Scholar 

  255. Burton KP (1988) Evidence of direct toxic effects of free radicals on the myocardium. Free Rad Biol Med 4:15–24

    CAS  PubMed  Google Scholar 

  256. Ferrari R (1996) The role of mitochondria in ischemic heart disease. J Cardiovasc Pharmacol 28 [Suppl 1]:S1–S10

    Google Scholar 

  257. Park JW, Braun P, Mertens S, Heinrich KW (1992) Ischemia: reperfusion injury and restenosis after coronary angioplasty. Ann NY Acad Sci 669:215–236

    CAS  PubMed  Google Scholar 

  258. Janero DR (1991) Therapeutic potential of vitamin E against myocardial ischemic-reperfusion injury. Free Rad Biol Med 10:315–324

    CAS  Google Scholar 

  259. Rajakumar AR, Prasad K, Mantha SV, Khouri M, Raney B (1999) Protection of coronary angioplasty-induced oxidative stress by Isovue used during angioplasty. Can J Cardiol 15:989–998

    CAS  PubMed  Google Scholar 

  260. Schachinger V, Zeiher AM (1996) Endothelial regulation of coronary circulation: current status (in German). Z Kardiol 85 Suppl 6]: 263–267

    PubMed  Google Scholar 

  261. Schachinger V, Zeiher AM (1996) Alterations of coronary blood flow and myocardial perfusion in hypercholesterolaemia. Heart 76:295–298

    CAS  PubMed Central  PubMed  Google Scholar 

  262. Mcmurray J, Chopra M (1991) Influence of ACE inhibitors on free radicals and reperfusion injury: pharmacological curiosity or therapeutic hope? Br J Clin Pharmacol 31:373–379

    CAS  PubMed Central  PubMed  Google Scholar 

  263. Heyndrickx GR, Baig H, Nellens P, Leusen I, Fishbein MC, Vatner SF (1978) Depression of regional blood flow and wall thickening after brief coronary occlusions. Am J Physiol 234:H653–H659

    Google Scholar 

  264. Heusch G (1991) The relationship between regional blood flow and contractile function in normal, ischemic, and reperfused myocardium. Basic Res Cardiol 86:197–218

    CAS  PubMed  Google Scholar 

  265. Bolli R, Zhu WX, Thornby JI, O’Neill PG, Roberts R (1988) Time course and determinants of recovery of function after reversible ischemia in conscious dogs. Am J Physiol 254:H102–H114

    Google Scholar 

  266. Hearse DJ (1991) Reperfusion-induced injury: a possible role for oxidant stress and its manipulation (review). Cardiovasc Drug Ther 5 [Suppl 21:225–235

    Google Scholar 

  267. Bolli R (1990) Mechanism of myocardial “stunning”. Circulation 82:723–738

    CAS  PubMed  Google Scholar 

  268. Duncker DJ, Schulz R, Ferrari R, Garcia-Dorado D, Guarnieri C, Heusch G et al (1998) “Myocardial stunning” remaining questions. Cardiovasc Res 38:549–558

    CAS  PubMed  Google Scholar 

  269. Jeroudi MO, Triana FJ, Patel BS, Bolli R (1990) Effect of superoxide dismutase and catalase, given separately, on myocardial “stunning”. Am J Physiol 259:H889–H901

    Google Scholar 

  270. Bolli R, Patel BS, Zhu WX, O’Neill PG, Hartley CJ, Charlat ML et al (1987) The iron chelator desferrioxamine attenuates postischemic ventricular dysfunction. Am J Physiol 253:H1372–H1380

    Google Scholar 

  271. Bolli R, Patel BS, Jeroudi MO, Li XY, Triana JF, Lai EK et al (1990) Iron-mediated radical reactions upon reperfusion contribute to myocardial “stunning”. Am J Physiol 259:H1901–H1911

    Google Scholar 

  272. Hearse DJ (1991) Stunning: a radical review. Cardiovasc Drug Ther 5:853–876

    CAS  Google Scholar 

  273. Janssen PML, Zeitz O, Hasenfuss G (1999) Transient and sustained impacts of hydroxyl radicals on sarcoplasmic reticulum function: protective effects of nebivolol. Eur J Pharmacol 366:223–232

    CAS  PubMed  Google Scholar 

  274. Ide T, Tsutsui H, Kinugawa S, Suematsu N, Hayashidani S, Ichikawa K et al (2000) Direct evidence for increased hydroxyl radicals originating from superoxide in the failing myocardium. Circ Res 86:152–157

    CAS  PubMed  Google Scholar 

  275. Bolli R, Jeroudi MO, Patel BS, Aruoma OI, Halliwell B, Lai EK et al (1989) Marked reduction of free radical generation and contractile dysfunction by antioxidant therapy begun at the time of reperfusion. Evidence that myocardial “stunning” is a manifestation of reperfusion injury. Circ Res 65:607–622

    CAS  PubMed  Google Scholar 

  276. Hulley SB, Cohen R, Widdowson G (1977) Plasma high-density lipoprotein cholesterol level: influence of risk factor intervention. JAMA 238:2269–2271

    CAS  PubMed  Google Scholar 

  277. Guth BD, Martin JF, Heusch G, Ross J Jr (1987) Regional myocardial blood flow, function and metabolism using phosphorus-31 nuclear magnetic resonance spectroscopy during ischemia and reperfusion in dogs. J Am Coll Cardiol 10:673–681

    CAS  PubMed  Google Scholar 

  278. Hoffmeister HM, Mauser M, Schaper W (1985) Effect of adenosine and AICAR on ATP content and regional contractile function in reperfused canine myocardium. Basic Res Cardiol 80:445–458

    CAS  PubMed  Google Scholar 

  279. Heusch G, Rose J, Skyschally A, Post H, Schulz R (1996) Calcium responsiveness in regional myocardial short-term hibernation and stunning in the in situ porcine heart. Inotropic responses to post-extrasystolic potentiation and intracoronary calcium. Circulation 93:1556–1566

    CAS  PubMed  Google Scholar 

  280. Ehring T, Schulz R, Heusch G (1992) Characterization of “hibernating” and “stunned” myocardium with focus on the use of calcium antagonists in “stunned” myocardium. J Cardiovasc Pharmacol 20 [Suppl 5]:S25–S33

    Google Scholar 

  281. Krause SM, Jacobus WE, Becker LC (1989) Alterations in cardiac sarcoplasmic reticulum calcium transport in the postischemic “stunned” myocardium. Circ Res 65:526–530

    CAS  PubMed  Google Scholar 

  282. Tani M, Neely JR (1989) Role of intracellular Na+ in Ca-2+ overload and depressed recovery of ventricular function of reperfused ischemic rat hearts — possible involvement of H+-Na+ and Na+-Ca2+ exchange. Circ Res 65:1045–1056

    CAS  PubMed  Google Scholar 

  283. Heusch G (1992) Myocardial stunning — A role for calcium antagonists during ischaemia. Cardiovasc Res 26:14–19

    CAS  PubMed  Google Scholar 

  284. Heusch G (1998) Hibernating myocardium. Physiol Rev 78: 1055–1085

    CAS  PubMed  Google Scholar 

  285. Matsuzaki M, Gallagher KP, Kemper WS, White F, Ross J Jr (1983) Sustained regional dysfunction produced by prolonged coronary stenosis: gradual recovery after reperfusion. Circulation 68: 170–182

    CAS  PubMed  Google Scholar 

  286. Elsasser A, Schlepper M, Klovekorn WP, Cai WJ, Zimmermann R, Muller KD et al (1997) Hibernating myocardium: an incomplete adaptation to ischemia. Circulation 96:2920–2931

    CAS  PubMed  Google Scholar 

  287. Schwarz ER, Schaper J, vom DJ, Altehoefer C, Grohmann B, Schoendube F et al (1996) Myocyte degeneration and cell death in hibernating human myocardium. J Am Coll Cardiol 27:1577–1585

    CAS  PubMed  Google Scholar 

  288. Pasquet A, Robert A, D’Hondt AM, Dion R, Melin JA, Vanoverschelde JL (1999) Prognostic value of myocardial ischemia and viability in patients with chronic left ventricular ischemic dysfunction [published erratum appears in Circulation 100:1584]. Circulation 100:141–148

    CAS  PubMed  Google Scholar 

  289. Marinho NVS, Keogh BE, Costa DC, Lammersma AA, Ell PJ, Camici PG (1996) Pathophysiology of chronic left ventricular dysfunction. New insights from the measurement of absolute myocardial blood flow and glucose utilization. Circulation 93:737–744

    CAS  PubMed  Google Scholar 

  290. Shen YT, Vatner SF (1995) Mechanism of impaired myocardial function during progressive coronary stenosis in conscious pigs. Hibernation versus stunning? Circ Res 76:479–488

    CAS  PubMed  Google Scholar 

  291. Vanoverschelde JL, Wrjns W, Depre C, Essamri B, Heyndrickx GR, Borgers M et al (1993) Mechanisms of chronic regional postischemic dysfunction in humans. New insights from the study of noninfarcted collateral-dependent myocardium. Circulation 87: 1513–1523

    CAS  PubMed  Google Scholar 

  292. Shan K, Bick RJ, Poindexter BJ, Nagueh SF, Shimoni S, Verani MS et al (2000) Altered adrenergic receptor density in myocardial hibernation in humans: a possible mechanism of depressed myocardial function. Circulation 102:2599–2606

    CAS  PubMed  Google Scholar 

  293. Heusch G, Post H, Michel MC, Kelm M, Schulz R (2000) Endogenous nitric oxide and myocardial adaptation to ischemia (see comments). Circ Res 87:146–152

    CAS  PubMed  Google Scholar 

  294. Prinzmetal M, Kennamer R, Merliss R, Wada T, Bor N (1959) Angina pectoris I. A variant form of angina pectoris: preliminary report. Am J Med 27:375–388

    CAS  PubMed  Google Scholar 

  295. Lablanche JM, Bauters C, Leroy F, Bertrand M (1991) Vasomotor activity and coronary insufficiency (in French) (review). Arch Mal Coeur Vaiss 84 [Suppl 1] 169–74

    Google Scholar 

  296. Forman MB, Oates JA, Robertson D, Robertson RM, Roberts LJ, Virmani R (1985) Increased adventitial mast cells in a patient with coronary spasm. N Engl J Med 313:1138–1141

    CAS  PubMed  Google Scholar 

  297. Sakata Y, Komamura K, Hirayama A, Nanto S, Kitakaze M, Hori M et al (1996) Elevation of the plasma histamine concentration in the coronary circulation in patients with variant angina. Am J Cardiol 77:1121–1126

    CAS  PubMed  Google Scholar 

  298. Dusting GJ (1984) Coronary vasomotor tone: the role of prostanoids re-examined. Biblthca Cardiol 38:178–188

    CAS  Google Scholar 

  299. Shimokawa H (2000) Cellular and molecular mechanisms of coronary artery spasm: lessons from animal models. Jpn Circ J 64:1–12

    CAS  PubMed  Google Scholar 

  300. Zeiher AM, Schachinger V, Saurbier B, Just H (1994) Assessment of endothelial modulation of coronary vasomotor tone: insights into a fundamental functional disturbance in vascular biology of atherosclerosis. Basic Res Cardiol 89 [Suppl 1]:115–128

    PubMed  Google Scholar 

  301. Krajcar M, Heusch G (1993) Local and neurohumoral control of coronary blood flow. Basic Res Cardiol 88 [Suppl 1] 125–42

    Google Scholar 

  302. Heusch G (1991) Control of coronary vasomotor tone in ischaemic myocardium by local metabolism and neurohumoral mechanisms. Eur Heart J12 [Suppl F]:99–106

    CAS  Google Scholar 

  303. Gersh BJ (1999) Optimal management of acute myocardial infarction at the dawn of the next millennium. Am Heart J 138:S188–S202

    Google Scholar 

  304. Galiuto L, Iliceto S (1998) Myocardial contrast echocardiography in the evaluation of viable myocardium after acute myocardial infarction. Am J Cardiol 81:29G–32G

    Google Scholar 

  305. Safi AM, Kwan TW (2000) “No-reflow” phenomenon following percutaneous coronary intervention: an uncommon complication. Angiology 51:247–252

    CAS  PubMed  Google Scholar 

  306. Fishbein MC (1990) Reperfusion Injury. Clin Cardiol 13:213–217

    CAS  PubMed  Google Scholar 

  307. Mullane KM, Salmon JA, Kraemer R (1987) Leukocyte-derived metabolites of arachidonic acid in ischemia-induced myocardial injury. Fed Proc 46:2422–2433

    CAS  PubMed  Google Scholar 

  308. Kloner RA, Hale S (1994) Cardiovascular applications of fluoro-carbons in regional ischemia/reperfusion. Artif Cells Blood Substit Immobil Biotechnol 22:1069–1081

    CAS  PubMed  Google Scholar 

  309. Metha JL, Nichols WW, Metha P (1988) Neutrophils as potential participants in acute myocardial ischemia: relevance to reperfusion. J Am Coll Cardiol 11:1309–1316

    Google Scholar 

  310. Pernow J, Wang QD (1997) Endothelin in myocardial ischemia and reperfusion. Cardiovasc Res 33:518–526

    CAS  PubMed  Google Scholar 

  311. Nikol S, Huehns TY, Hofling B (1997) Novel uses and potential for calcium antagonists in revascularization. Eur Heart J19 [Suppl A]: A105–A109

    Google Scholar 

  312. Cecena FA (1996) Stenting the stent: alternative strategy for treating in-stent restenosis. Cathet Cardiovasc Diagn 39:377–382

    CAS  PubMed  Google Scholar 

  313. Vahanian A, Lung B (1996) Role of calcium channel blockers in reducing acute ischemia and preventing restenosis in PTCA. Drugs 52[Suppl4]:9–15

    CAS  PubMed  Google Scholar 

  314. Luscher TF, Noll G (1999) Is it all in the genes ...? Nitric oxide synthase and coronary vasospasm. Circulation 99:2855–2857

    CAS  PubMed  Google Scholar 

  315. Vassalli G, Dichek DA (1997) Gene therapy for arterial thrombosis. Cardiovasc Res 35:459–469

    CAS  PubMed  Google Scholar 

  316. Puybasset L, Bea ML, Ghaleh B, Giudicelli JF, Berdeaux A (1996) Coronary and systemic hemodynamic effects of sustained inhibition of nitric oxide synthesis in conscious dogs. Evidence for cross talk between nitric oxide and cyclooxygenase in coronary vessels. Circ Res 79:343–357

    CAS  PubMed  Google Scholar 

  317. Feron O, Zhao YY, Kelly RA (1999) The ins and outs of caveolar signaling. m2 muscarinic cholinergic receptors and eNOS activation versus neuregulin and ErbB4 signaling in cardiac myocytes. Ann NY Acad Sci 874:11–19

    CAS  PubMed  Google Scholar 

  318. Wagner AH, Kohler T, Ruckschloss U, Just I, Hecker M (2000) Improvement of nitric oxide-dependent vasodilatation by HMG-CoA reductase inhibitors through attenuation of endothelial superoxide anion formation. Arterioscler Thromb Vasc Biol 20: 61–69

    CAS  PubMed  Google Scholar 

  319. Alfon J, Guasch JF, Berrozpe M, Badimon L (1999) Nitric oxide synthase II NOS II gene expression correlates with atherosclerotic intimai thickening. Preventive effects of HMG-CoA reductase inhibitors. Atherosclerosis 145:325–331

    CAS  PubMed  Google Scholar 

  320. Varin R, Mulder P, Richard V, Tamion F, Devaux C, Henry JP et al (1999) Exercise improves flow-mediated vasodilatation of skeletal muscle arteries in rats with chronic heart failure. Role of nitric oxide, prostanoids, and oxidant stress. Circulation 99: 2951–2957

    CAS  PubMed  Google Scholar 

  321. Baker CS, Hall RJ, Evans TJ, Pomerance A, Maclouf J, Creminon C et al (1999) Cyclooxygenase-2 is widely expressed in atherosclerotic lesions affecting native and transplanted human coronary arteries and colocalizes with inducible nitric oxide synthase and nitrotyro-sine particularly in macrophages. Arterioscler Thromb Vasc Biol 19:646–655

    CAS  PubMed  Google Scholar 

  322. Weber M, Harrison DG, Kojda G (2000) Nitric oxide (NO) and vascular oxidative stress. Importance in coronary disease, hypertension, diabetes mellitus and heart failure (in German). Med Monatsschr Pharm 231:12–17

    Google Scholar 

  323. Sellke FW (1999) Vascular changes after cardiopulmonary bypass and ischemic cardiac arrest: roles of nitric oxide synthase and cyclooxygenase. Braz J Med Biol Res 32:1345–1352

    CAS  PubMed  Google Scholar 

  324. Simon BC, Noll B, Maisch B (1999) Endothelial dysfunction-assessment of current status and approaches to therapy (in German). Herz 24:62–71

    CAS  PubMed  Google Scholar 

  325. Boger RH, Bode-Boger SM, Sydow K, et al (2000) Plasma concentration of asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase, is elevated in monkeys with hyperhomo-cyst(e)inemia or hypercholesterolemia. Arterioscler Thromb Vasc Biol 20:1557–1564

    CAS  PubMed  Google Scholar 

  326. Boger RH, Sydow K, Borlak J, Thum T, Lenzen H, Schubert B et al (2000) LDL cholesterol upregulates synthesis of asymmetrical dimethylarginine in human endothelial cells: involvement of S-adenosylmethionine-dependent methyltransferases. Circ Res 87: 99–105

    CAS  PubMed  Google Scholar 

  327. Cooke JP (1998) Is atherosclerosis an arginine deficiency disease? J Invest Med 46:377–380

    CAS  Google Scholar 

  328. Hampton TG, Amende I, Fong J, Laubach VE, Li J, Metais C et al (2000) Basic FGF reduces stunning via a NOS2-dependent pathway in coronary-perfused mouse hearts. Am J Physiol Heart Circ Physiol 279:H26o-H268

    Google Scholar 

  329. Pittis M, Zhang X, Loke KE, Mital S, Kaley G, Hintze TH (2000) Canine coronary microvessel NO production regulates oxygen consumption in ecNOS knockout mouse heart. J Mol Cell Cardiol 32:1141–1146

    CAS  PubMed  Google Scholar 

  330. Guo Y, Jones WK, Xuan YT, Tang XL, Bao W, Wu WJ et al (1999) The late phase of ischemic preconditioning is abrogated by targeted disruption of the inducible NO synthase gene. Proc Natl Acad Sci USA 96:11,507–11,512

    Google Scholar 

  331. Xi L, Jarrett NC, Hess ML, Kukreja RC (1999) Myocardial ischemia/reperfusion injury in the inducible nitric oxide synthase knockout mice. Life Sciences 65:935–945

    CAS  PubMed  Google Scholar 

  332. Chataigneau T, Feletou M, Huang PL, Fishman MC, Duhault J, Vanhoutte PM (1999) Acetylcholine-induced relaxation in blood vessels from endothelial nitric oxide synthase knockout mice. Br J Pharmacol 126:219–226

    CAS  PubMed Central  PubMed  Google Scholar 

  333. Godecke A, Decking UK, Ding Z, Hirchenhain J, Bidmon H J, Godecke S et al (1998) Coronary hemodynamics in endothelial NO synthase knockout mice. Circ Res 82:186–194

    CAS  PubMed  Google Scholar 

  334. Xi L, Jarrett NC, Hess ML, Kukreja RC (1999) Essential role of inducible nitric oxide synthase in monophosphoryl lipid A-induced late cardioprotection: evidence from pharmacological inhibition and gene knockout mice. Circulation 99:2157–2163

    CAS  PubMed  Google Scholar 

  335. Xi L, Jarrett NC, Hess ML, Kukreja RC (1999) Myocardial ischemia/reperfusion injury in the inducible nitric oxide synthase knockout mice. Life Sci 65:935–945

    CAS  PubMed  Google Scholar 

  336. Jones SP, Girod WG, Palazzo AJ, Granger DN, Grisham MB, Jourd’heuil D et al (1999) Myocardial ischemia-reperfusion injury is exacerbated in absence of endothelial cell nitric oxide synthase. Am J Physiol 276:H1567–H1573

    Google Scholar 

  337. Zou MH, Bachschmid M (1999) Hypoxia-reoxygenation triggers coronary vasospasm in isolated bovine coronary arteries via tyrosine nitration of prostacyclin synthase. J Exp Med 190:135–139

    CAS  PubMed Central  PubMed  Google Scholar 

  338. Yamashita N, Hoshida S, Otsu K, Asahi M, Kuzuya T, Hori M (1999) Exercise provides direct biphasic cardioprotection via manganese superoxide dismutase activation. J Exp Med 189:1699–1706

    CAS  PubMed Central  PubMed  Google Scholar 

  339. Woodman CR, Muller JM, Rush JW, Laughlin MH, Price EM (1999) Flow regulation of ecNOS and Cu/Zn SOD mRNA expression in porcine coronary arterioles. Am J Physiol 276:H1058–H1063

    Google Scholar 

  340. Richard V, Kaeffer N, Thuillez C (1996) Delayed protection of the ischemic heart — from pathophysiology to therapeutic applications. Fund Clin Pharmacol 10:409–415

    CAS  Google Scholar 

  341. Giugliano D, Acampora R, D’Onofrio F (1994) Medical hypothesis: cardiovascular complications of diabetes mellitus — from glucose to insulin and back. Diab Metabol 20:445–453

    CAS  Google Scholar 

  342. Yoshida T, Maulik N, Engelman RM, Ho YS, Das DK (2000) Targeted disruption of the mouse Sod I gene makes the hearts vulnerable to ischemic reperfusion injury. Circ Res 86:264–269

    CAS  PubMed  Google Scholar 

  343. Godecke A, Flogel U, Zanger K, Ding Z, Hirchenhain J, Decking UK et al (1999) Disruption of myoglobin in mice induces multiple compensatory mechanisms. Proc Natl Acad Sci USA 96:10,495–10,500

    Google Scholar 

  344. Bates DO, Lodwick D, Williams B (1999) Vascular endothelial growth factor and microvascular permeability. Microcirculation 6:83–96

    CAS  PubMed  Google Scholar 

  345. Duh E, Aiello LP (1999) Vascular endothelial growth factor and diabetes: the agonist versus antagonist paradox. Diabetes 48: 1899–1906

    CAS  PubMed  Google Scholar 

  346. Ferrara N, Bunting S (1996) Vascular endothelial growth factor, a specific regulator of angiogenesis. Curr Op Nephrol Hypertens 5:35–44

    CAS  Google Scholar 

  347. Losordo DW, Vale PR, Isner JM (1999) Gene therapy for myocardial angiogenesis. Am Heart J 138:132–141

    Google Scholar 

  348. Bombardini T, Picano E (1997) The coronary angiogenetic effect of heparin: experimental basis and clinical evidence. Angiology 48: 969–976

    CAS  PubMed  Google Scholar 

  349. Bellomo D, Headrick JP, Silins GU, Paterson CA, Thomas PS, Gartside M et al (2000) Mice lacking the vascular endothelial growth factor-B gene (Vegfb) have smaller hearts, dysfunctional coronary vasculature, and impaired recovery from cardiac ischemia. Circ Res 86 [Online]:E29–E35

    Google Scholar 

  350. Schultz A, Lavie L, Hochberg I, Beyar R, Stone T, Skorecki K et al (1999) Interindividual heterogeneity in the hypoxic regulation of VEGF: significance for the development of the coronary artery collateral circulation. Circulation 100:547–552

    CAS  PubMed  Google Scholar 

  351. Pfeifer A, Klatt P, Massberg S, Ny L, Sausbier M, Hirneiss C et al (1998) Defective smooth muscle regulation in cGMP kinase I-deficient mice. EMBO J 17:3045–3051

    CAS  PubMed Central  PubMed  Google Scholar 

  352. Morgenstern C, Höljes U, Arnold G, Lochner W (1973) The influence of coronary pressure and coronary flow on intracoronary blood volume and geometry of the left ventricle. Pfluegers Arch 340:101–111

    CAS  Google Scholar 

  353. Bassenge E, Holtz J, von Restorff W (1978) What is the physiological significance of sympathetic coronary innervation? In: Maseri A, Klassen GA, Lesch M (eds) Primary and secondary angina pectoris. Grune & Stratton, New York, pp 201–210

    Google Scholar 

  354. Ostadal B, Rychter Z, Poupa O (1970) Comparative aspects of the development of the terminal vascular bed in the myocardium. Cesk Fysiol 19:1–7

    CAS  Google Scholar 

  355. Holtz J, Grunewald WA, Manz R, von Restorff W, Bassenge E (1977) Intracapillary hemoglobin oxygen saturation and oxygen consumption in different layers of the left ventricular myocardium. Pfluegers Arch 370:253–258

    CAS  Google Scholar 

  356. Stein PD, Marzilli M, Sabbah HN, Lee T (1980) Systolic and diastolic pressure gradients within the left ventricular wall. Am J Physiol 238:H625–H630

    Google Scholar 

  357. Wüsten B (1979) Biophysics of myocardial perfusion. In: Schaper W (ed) The pathophysiology of myocardial perfusion. Elsevier, Amsterdam, pp 199–244

    Google Scholar 

  358. Streeter DD Jr, Vaishnav RN, Patel DJ, Spotnitz HM, Ross J Jr, Sonnenblick EH (1970) Stress distribution in the canine left ventricle during diastole and systole. Biophys J 104:345–363

    Google Scholar 

  359. Bassenge E, Stewart DJ (1986) Effects of nitrates in various vascular sections and regions. Z Kardiol 75:1–7

    CAS  PubMed  Google Scholar 

  360. Rang HP, Ritter JM, Dale MM (1999) Pharmacology, 4th edn. Churchill Livingston, Edinburgh

    Google Scholar 

  361. Munzel T, Li H, Mollnau H, Hink U, Matheis E, Hartmann M et al (2000) Effects of long-term nitroglycerin treatment on endothelial nitric oxide synthase (NOS III) gene expression, NOS Ill-mediated superoxide production, and vascular NO bioavailability. Circ Res 86 [Online]:E7–E12

    Google Scholar 

  362. Heitzer T, Brockhoff C, Mayer B, Warnholtz A, Mollnau H, Henne S et al (2000) Tetrahydrobiopterin improves endothelium-depend-ent vasodilation in chronic smokers: evidence for a dysfunctional nitric oxide synthase. Circ Res 86 [Online]:E36–E41

    Google Scholar 

  363. Bassenge E (1995) Control of coronary blood flow by autacoids. Basic Res Cardiol 90:125–141

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bassenge, E., Schwemmer, M. (2002). Integrated Coronary Physiology and Pathophysiology. In: Lanzer, P., Topol, E.J. (eds) Pan Vascular Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56225-9_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56225-9_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62565-7

  • Online ISBN: 978-3-642-56225-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics