Skip to main content

Molecular Vascular Embryology

  • Chapter
Pan Vascular Medicine

Abstract

The establishment of an intact, functional cardiovascular system is a prerequisite for embryonic development in vertebrates. A diagram showing the location of the major blood vessels in the embryonic cardiovascular system is presented in Fig. i. The importance of this system for delivering oxygen and nutrients to developing tissues is underscored by the early embryonic lethality of embryos deficient in essential cardiovascular genes. Despite a spatiotemporal correlation between the formation of the cardiac and vascular structures, these two systems undergo autonomous developmental programs. In fact, an intact vascular system will form perfectly well in the absence of a beating heart [1, 2]. Over the last 100 years, vascular development has been extensively studied by classical embryologists who described the formation of the first blood vessels. However, the absence of early vascular markers, especially markers for vascular endothelial precursor cells (angioblasts), greatly impeded studies aimed at understanding the initial events underlying vascular development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Knower H (1907) Effects of the early removal of the heart and arrest of the circulation on the development of frog embryos. Anat Rec 1:161–165

    Google Scholar 

  2. Chapman W (1918) The effect of heart-beat upon the development of the vascular system of the chick. Am J Anat 23:175–203

    Google Scholar 

  3. Gilbert S (2000) Developmental biology, 6th edn. Sinauer, Sunderland

    Google Scholar 

  4. Wolpert L, Beddington R, Brockes J, Jessel T, Lawrence P, Meyerowitz E (1998) Principles of development. Oxford University Press, Oxford

    Google Scholar 

  5. Poole T, Coffin J (1991) Morphogenetic mechanisms in avian vascular development. In: Stolte H, Kinne R, Bach P (eds) The development of the vascular system (Issues in biomedicine, vol 14). Karger, Basil, pp 25–36

    Google Scholar 

  6. His W (1868) Untersuchungen über die erste Anlage des Wirbel-thierleibes. Vogel, Leipzig

    Google Scholar 

  7. Van der Stricht O (1895) De la première origine du sang et des capillaires sanguins dans Faire vasculaire du lapin. Comptes rend. DL Soc Biol T 12(10):P181–185

    Google Scholar 

  8. His W (1901) Lecithoblast und Angioblast der Wirbelthiere: histo-genetische Studien. Abh Math-Phys Classe Königl Sachs Ges Wiss 14:171–328

    Google Scholar 

  9. Rückert J, Mollier S (1906) Die erste Entstehung der Gefässe und des Blutes bei Wirbeltieren. In: Hertwig O (ed) Handbuch der vergleichenden und experimentellen Entwickelungslehre der Wirbeltiere. Fischer, Jena, pp 1019–1297

    Google Scholar 

  10. Dantschakoff W (1908) Untersuchungen über die Entwicklung des Blutes und Bindegewebes bei den Vögeln. 1. Die erste Entstehung der Blutzellen beim Hühnerembryo und der Dottersack als blutbildendes Organ. Anatomische Hefte. Erste Abteilung, Arbeiten aus Anatomischen Instituten 37:471–589

    Google Scholar 

  11. Stockard C (1915a) A study of the wandering mesenchymal cells on the living yolk-sac and their developmental products: chromato-phores, vascular endothelium and blood cells. Am J Anat 18: 525–594

    Google Scholar 

  12. Sabin F (1920) Studies on the origin of blood vessels and of red blood corpuscles as seen in the living blastoderm of chicks during the second day of incubation. Contrib Embryol Carnegie Inst 9: 213–262

    Google Scholar 

  13. Sabin F (1922) Direct growth of veins by sprouting. Contrib Embryol Carnegie Inst 14:1–11

    Google Scholar 

  14. Stockard C (1915b) The origin of blood and vascular endothelium in embryos without a circulation of the blood and in the normal embryo. Am J Anat 18:228–326

    Google Scholar 

  15. Risau W (1995) Differentiation of endothelium. FASEB J 9:926–933

    CAS  PubMed  Google Scholar 

  16. Goss C (1928) Experimental removal of the blood island of am-blystoma punctatum embryos. J Exp Zool 52:45–63

    Google Scholar 

  17. Risau W, Flamme I (1995) Vasculogenesis. Annu Rev Cell Dev Biol 11:73–91

    CAS  PubMed  Google Scholar 

  18. Houser J, Ackerman A, Knouff R (1961) Vasculogenesis and ery-thropoiesis in the living yolk sac of the chick embryo. Anat Rec 140:29–43

    CAS  PubMed  Google Scholar 

  19. Gonzalez-Crussi F (1971) Vasculogenesis in the chick embryo, an ultrastructural study. Am J Anat 130:441–460

    CAS  PubMed  Google Scholar 

  20. Hahn H (1909) Experimentelle Studien über die Entstehung des Blutes und der ersten Gefäβe beim Hühnchen. Arch Entwick-lungsmech Org 27:337–433

    Google Scholar 

  21. Miller A, McWhorter J (1914) Experiments on the development of blood vessels in the area pellucida and embryonic body of the chick. Anat Rec 8:203–227

    Google Scholar 

  22. Reagan F (1915) Vascularization phenomena in fragments of embryonic bodies completely isolated from yolk-sac blastoderm. Anat Rec 9:329–341

    Google Scholar 

  23. Dieterlen-Lièwre F, Martin C (1981) Diffuse intraembryonic hemopoiesis in normal and chimeric avian development. Dev Biol 88:180–191

    Google Scholar 

  24. Olah I, Medgyes J, Glick B (1988) Origin of aortic cell clusters in the chicken embryo. Anat Rec 222:60–68

    CAS  PubMed  Google Scholar 

  25. Pardanaud L, Yassine F, Dieterlen-Lièvre F (1989) Relationship between vasculogenesis, angiogenesis and haemopoiesis during avian ontogeny. Development 105:473–485

    CAS  PubMed  Google Scholar 

  26. Evans H (1909) On the development of the aortae, cardinal and umbilical veins, and the other blood vessels of vertebrate embryos from capillaries. Anat Rec 3:498–518

    Google Scholar 

  27. Hirakow R, Hiruma T (1981) Scanning electron microscopic study on the development of primitive blood vessels in chick embryos at the early somite-stage. Anat Embryol (Berl) 163:299–306

    CAS  Google Scholar 

  28. Meier S (1980) Development of the chick embryo mesoblast: pronephros, lateral plate, and early vasculature. J Embyol Exp Mor-phol 55:291–306

    CAS  Google Scholar 

  29. Pardanaud L, Altmann C, Kitos P, Dieterlen-Lièvre F, Buck C (1987) Vasculogenesis in the early quail blastodisc as studied with a monoclonal antibody recognizing endothelial cells. Development 100:339–349

    CAS  PubMed  Google Scholar 

  30. Coffin J, Poole T (1988) Embryonic vascular development: immunohistochemical identification of the origin and subsequent morphogenesis of the major vessel primordia in quail embryos. Development 102:735–748

    CAS  PubMed  Google Scholar 

  31. Sugi Y, Markwald R (1996) Formation and early morphogenesis of endocardial endothelial precursor cells and the role of endoderm. Dev Biol 175:66–83

    CAS  PubMed  Google Scholar 

  32. Drake C, Little C (1998) The morphogenesis of primordial vascular networks. In: Little C, Mironov V, Sage E (eds) Vascular morphogenesis. In vivo, in vitro, in mente. Birkhauser, Boston, PP 3–21

    Google Scholar 

  33. Augustine J (1981) Influence of the entoderm on mesodermal expansion in the area vasculosa of the chick. J Embryol Exp Morphol 65:89–103

    CAS  PubMed  Google Scholar 

  34. Pardanaud L, Dieterlen-Lièwre F (1999) Manipulation of the angiopoietic/hemangiopoietic commitment in the avian embryo. Development 126:617–627

    CAS  PubMed  Google Scholar 

  35. Coffin J, Harriison J, Schwartz S, Heimark R (1991) Angioblast differentiation and morphogenesis of the vascular endothelium in the mouse embryo. Dev Biol 148:51–62

    CAS  PubMed  Google Scholar 

  36. Drake C, Fleming P (2000) Vasculogenesis in the day 6.5 to 9.5 mouse embryo. Blood 95:1671–1679

    CAS  PubMed  Google Scholar 

  37. Cleaver O, Tonissen K, Saha M, Krieg P (1997) Neovascularization of the Xenopus embryo. Dev Dynam 210:66–77

    CAS  Google Scholar 

  38. Fouquet B, Weinstein B, Serluca F, Fishman M (1997) Vessel patterning in the embryo of the zebrafish: guidance by the notochord. Dev Biol 183:37–48

    CAS  PubMed  Google Scholar 

  39. Cleaver O, Krieg P (1998) VEGF mediates angioblast migration during development of the dorsal aorta in Xenopus. Development 125:3905–3914

    CAS  PubMed  Google Scholar 

  40. Sumoy L, Keasey J, Dittman T, Kimelman D (1997) A role for notochord in axial vascular development revealed by analysis of pheno-type and the expression of VEGR-2 in zebrafish flh and ntl mutant embryos. Mech Dev 63:15–27

    CAS  PubMed  Google Scholar 

  41. Weinstein B (1999) What guides early embryonic blood vessel formation? Dev Dynam 215:2–11

    CAS  Google Scholar 

  42. Miquerol L, Gertsenstein M, Harpal K, Rossant J, Nagy A (1999) Multiple developmental roles of VEGF suggested by a lacZ tagged allele. Dev Biol 212:307–322

    CAS  PubMed  Google Scholar 

  43. Noden D (1989) Embryonic origins and assembly of blood vessels. Am Rev Respir Dis 140:1097–1103

    CAS  PubMed  Google Scholar 

  44. Christ B, Poelmann R, Mentink M, Gittenberger-de Groot A (1990) Vascular endothelial cells migrate centripetally within embryonic arteries. Anat Embryol (Berl) 181:333–339

    CAS  Google Scholar 

  45. Wilms P, Christ B, Wilting J, Wachtler F (1991) Distribution and migration of angiogenic cells from grafted avascular intraembryonic mesoderm. Anat Embryol (Berl) 183:371–377

    CAS  Google Scholar 

  46. Wilting J, Brand-Saberi B, Huang R, Zhi Q, Köntges G, Ordahl C, Christ B (1995) Angiogenic potential of the avian somite. Dev Dynam 202:165–171

    CAS  Google Scholar 

  47. Azar Y, Eyal-Giladi H (1979) Marginal zone cells — the primitive streak inducing component of the primary hypoblast in chick. J Embryol Exp Morphol 52:79–88

    CAS  PubMed  Google Scholar 

  48. Christ B, Grim M, Wilting J, von Kirschhofer K, Wachtler F (1991) Differentiation of endothelial cells in avian embryos does not depend on gastrulation. Acta Histochem 91:193–199

    CAS  PubMed  Google Scholar 

  49. Krah K, Mironov V, Risau W, Flamme I (1994) Induction of vasculogenesis in quail blastodisc-derived embryoid bodies. Dev Biol 164:123–132

    CAS  PubMed  Google Scholar 

  50. von Kirschhofer K, Grim M, Christ B, Wachtler F (1994) Emergence of myogenic and endothelial cell lineages in avian embryos. Dev Biol 163:270–278

    Google Scholar 

  51. Cox C, Poole T (2000) Angioblast differentiation is influenced by the local environment: FGF-2 induces angioblasts and patterns vessel formation in the quail embryo. Dev Dynam 218:371–382

    CAS  Google Scholar 

  52. Wilt F (1965) Erythropoiesis in the chick embryo: the role of endoderm. Science 147:1588–1590

    CAS  PubMed  Google Scholar 

  53. Miura Y, Wilt F (1969) Tissue interaction and the formation of the first erythroblasts of the chick embryo. Dev Biol 19:201–211

    CAS  PubMed  Google Scholar 

  54. Bielinska M, Narita N, Heikinheimo M, Porter S, Wilson D (1996) Erythropoiesis and vasculogenesis in embryoid bodies lacking visceral yolk sac endoderm. Blood 88:3720–3730

    CAS  PubMed  Google Scholar 

  55. 55- Palis J, McGrath K, Kingsley P (1995) Initiation of hemato-poiesis and vasculogenesis in murine yolk sac expiants. Blood 86:156–163

    CAS  PubMed  Google Scholar 

  56. Murray P (1932) The development in vitro of the blood of the early chick embryo. Proc R Soc B Lond Ser B 111:497–521

    CAS  Google Scholar 

  57. Wagner R (1980) Endothelial cell embryology and growth. Adv Microcirc 9:45–75

    Google Scholar 

  58. Jaffredo T, Gautier R, Eichmann A, Dieterlen-Lièvre F (1998) Intraaortic hemopoietic cells are derived from endothelial cells during ontogeny. Development 125:4575–4583

    CAS  PubMed  Google Scholar 

  59. Shalaby F, Rossant J, Yamaguchi T, Gertsenstein M, Wu X, Breitman M, Schuh A (1995) Failure of blood-island formation and vasculogenesis in Flk-deficient mice. Nature 376:62–66

    CAS  PubMed  Google Scholar 

  60. Shalaby F, Ho J, Stanford W, Fischer K, Schuh A, Schwartz L, Bernstein A, Rossant J (1997) A requirement for Flki in primitive and definitive hematopoiesis and vasculogenesis. Cell 89:981–990

    CAS  PubMed  Google Scholar 

  61. Kallianpur A, Jordan J, Brandt S (1994) The SCL/TAL-1 gene is expressed in progenitors of both the hematopoietic and vascular systems during embryogenesis. Blood 83:1200–1208

    CAS  PubMed  Google Scholar 

  62. Drake C, Brandt S, Trusk T, Little C (1997) TALi/SCL is expressed in endothelial progenitor cells/angioblasts and defines a dorsal-to-ventral gradient of vasculogenesis. Dev Biol 192:17–30

    CAS  PubMed  Google Scholar 

  63. Liao E, Paw B, Oates A, Pratt S, Postlethwait J, Zon L (1998) SCL/ Tal-1 transcription factor acts downstream of cloche to specify hematopoietic and vascular progenitors in zebrafish. Genes Dev 12:621–626

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Akhurst R, Lehnert S, Faissner A, Duffie E (1990) TGF beta in murine morphogenetic processes: the early embryo and cardio-genesis. Development 108:645–656

    CAS  PubMed  Google Scholar 

  65. Pèault B, Thiery J, Le Douarin N (1983) Surface marker for hemopoietic and endothelial cell lineages in quail that is defined by a monoclonal antibody. Proc Natl Acad Sci USA 80:2976–2980

    PubMed Central  PubMed  Google Scholar 

  66. Labastie M, Poole T, Pèault B, Le Douarin N (1986) MBi, a quail leukocyte-endothelium antigen: partial characterization of the cell surface and secreted forms in cultured endothelial cells. Proc Natl Acad Sci USA 83:9016–9020

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Jaffe E, Hoyer L, Nachman R (1973) Synthesis of anti-hemophilic factor antigen by cultured human endothelial cells. J Clin Invest 52:2757–2764

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Pardanaud L, Luton D, Prigent M, Bourcheix L, Catala M, Dieterlen-Lièvre F (1996) Two distinct endothelial lineages in ontogeny, one of them related to hemopoiesis. Development 125:1363–1371

    Google Scholar 

  69. Stainier D, Weinstein B, Detrich H III, Zon L, Fishman M (1995) Cloche, and early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages. Development 121:3141–3150

    CAS  PubMed  Google Scholar 

  70. Liao W, Bisgrowve B, Sawyer H, Hug B, Bell B, Peters K, Grunwald D, Stainier D (1997) The zebrafish gene cloche acts upstream of a flk-1 homologue to regulate endothelial cell differentiation. Development 124:381–389

    CAS  PubMed  Google Scholar 

  71. Thompson M, Ransom D, Pratt S, MacLennan H, Kieran M, Detrich H III, Vail B, Huber T, Paw B, Brownlie A, Oates A, Fritz A, Gates M, Amores A, Bahary N, Talbot W, Her H, Beier D, Postlethwait J, Zon L (1998) The cloche and spadetail genes differentially regulate hematopoiesis and vasculogenesis. Dev Biol 197: 248–269

    CAS  PubMed  Google Scholar 

  72. Parker L, Stainier D (1999) Cell-autonomous and non-autonomous requirements for the zebrafish gene cloche in hematopoiesis. Development 126:2643–2651

    CAS  PubMed  Google Scholar 

  73. Choi K, Kennedy M, Kazarov A, Papadimitriou J, Keller G (1998) A common precursor for hematopoietic and endothelial cells. Development 125:725–732

    CAS  PubMed  Google Scholar 

  74. Faloon P, Arentson E, Kazarov A, Deng C, Porcher C, Orkin S, Choi K (2000) Basic fibroblast growth factor positively regulates hematopoietic development. Development 127:1931–1941

    CAS  PubMed  Google Scholar 

  75. Eriksson U, Alitalo K (1999) Structure, expression and receptor-binding properties of novel vascular endothelial growth factors. In: Claesson-Welsh L (ed) Vascular growth factors and angiogenesis. Springer, Berlin Heidelberg New York, pp 41–57

    Google Scholar 

  76. Persico M, Vincenti V, DiPalma T (1999) Structure, expression and receptor-binding properties of placenta growth factor (P1GF). In: Claesson-Welsh L (ed) Vascular growth factors and angiogenesis. Springer, Berlin Heidelberg New York, pp 41–57

    Google Scholar 

  77. Gerber H, Hillan K, Ryan A, Kowalski J, Keller G, Rangell L, Wright B, Radtke F, Aguet M, Ferrara N (1999) VEGF is required for growth and survival in neonatal mice. Development 126:1149–1159

    CAS  PubMed  Google Scholar 

  78. Holash J, Wiegand S, Yancopoulos G (1999) New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene 18: 5356–5362

    CAS  PubMed  Google Scholar 

  79. Keck P, Hauser S, Krivi G, Snazo K, Warren T, Feder J, Connolly D (1989) Vascular permeability factor, and endothelial cell mitogen related to PDGF. Science 246:1309–1312

    CAS  PubMed  Google Scholar 

  80. Leung D, Cachianes G, Kuang W, Goeddel D, Ferrara N (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:1306–1309

    CAS  PubMed  Google Scholar 

  81. Houck K, Leung D, Rowland A, Winer J, Ferrara N (1992) Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J Biol Chem 267:26031–26037

    CAS  PubMed  Google Scholar 

  82. Gengrinovitch S, Berman B, David G, Witte L, Neufeld G, Ron D (1999) Glypican-1 is a VEGF165 binding proteoglycan that acts as an extracellular chaperone for VEGF165. J Biol Chem 274: 10816–10822

    CAS  PubMed  Google Scholar 

  83. Houck K, Ferrara N, Winer J, Cachianes G, Li B, Leung D (1991) The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol Endocrinol 5:1806–1814

    CAS  PubMed  Google Scholar 

  84. Keyt B, Berleau L, Nguyen H, Chen H, Heinsohn H, Vandlen R, Ferrara N (1996) The carboxyl-terminal domain (111–165) of vascular endothelial growth factor is critical for its mitogenic potency. J Biol Chem 271:7788–7795

    CAS  PubMed  Google Scholar 

  85. Wilting J, Birkenhager R, Eichmann A, Kurz H, Martiny-Baron G, Marme D, McCarthy J, Christ B, Weich H (1996) VEGF 121 induces proliferation of vascular endothelial cells and expression of flk-1 without affecting lymphatic vessels of the chorioallantoic membrane. Dev Biol 176:76–85

    CAS  PubMed  Google Scholar 

  86. Park J, Keller G, Ferrara N (1993) The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol Biol Cell 4:1317–1326

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Waltenberger J, Claesson-Welsh L, Siegbahn A, Shibuya M, Heldin C (1994) Different signal transduction properties of KDR and Flti, two receptors for vascular endothelial growth factor. J Biol Chem 269:26988–26995

    CAS  PubMed  Google Scholar 

  88. Dumont D, Fong G, Puri M, Gradwohl G, Alitalo K, Breitman M (1995) Vascularization of the mouse embryo: a study of flk-1, tek, tie, and vascular endothelial growth factor expression during development. Dev Dynam 203:80–92

    CAS  Google Scholar 

  89. Ash J, Overbeek P (2000) Lens-specific VEGF-A expression induces angioblast migration and proliferation and stimulates angiogenic remodeling. Dev Biol 223:383–398

    CAS  PubMed  Google Scholar 

  90. Breier G, Albrecht U, Sterrer S, Risau W (1992) Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation. Development 114:521–532

    CAS  PubMed  Google Scholar 

  91. Yamaguchi T, Dumont D, Conlon R, Breitman M, Rossant J (1993) flk-1, an fit-related receptor tyrosine kinase is an early marker for endothelial cell precursors. Development 118:489–498

    CAS  PubMed  Google Scholar 

  92. Flamme I, Breier G, Risau W (1995a) Vascular endothelial growth factor (VEGF) and VEGF Receptor 2 (flk-1) are expressed during vasculogenesis and vascular differentiation in the quail embryo. Dev Biol 169:699–712

    CAS  PubMed  Google Scholar 

  93. Liang D, Xu X, Chin A, Balasubramaniyan N, Teo M, Lam T, Weinberg E, Ge R (1998) Cloning and characterization of vascular endothelial growth factor (VEGF) from zebrafish, Danio rerio. Biochim Biophys Acta 1397:14–20

    CAS  PubMed  Google Scholar 

  94. Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kleckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:435–438

    CAS  PubMed  Google Scholar 

  95. Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea K, Powell-Braxton L, Hillan K, Moore M (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380:439–442

    CAS  PubMed  Google Scholar 

  96. Akiri G, Nahari D, Finkelstein Y, Le S, Elroy-Stein O, Levi B (1998) Regulation of vascular endothelial growth factor (VEGF) expression is mediated by internal initiation of translation and alternative initiation of transcription. Oncogene 17:227–236

    CAS  PubMed  Google Scholar 

  97. Huez I, Créancier L, Audigier S, Gensac M, Prats H (1998) Two independent internal ribosome entry sites are involved in translation initiation of vascular endothelial growth factor mRNA. Mol Cell Biol 18:6178–6190

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Stein I, Itin A, Einat P, Skaliter R, Grossman Z, Keshet E (1998) Translation of vascular endothelial growth factor mRNA by internal ribosome entry: implications for translation under hypoxia. Mol Cell Biol 18:3112–3119

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Ikeda E, Achen M, Breier G, Risau W (1995) Hypoxia-induced transcriptional activation and increased mRNA stability of vascular endothelial growth factor in C6 glioma cells. J Biol Chem 270: 19761–19766

    CAS  PubMed  Google Scholar 

  100. Liu Y, Cox S, Morita T, Kourembanas S (1995) Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells, identification of a 5’ enhancer. Circ Res 77:638–643

    CAS  PubMed  Google Scholar 

  101. Drake C, Little C (1995) Exogenous vascular endothelial growth factor induces malformed and hyperfused vessels during embryonic neovascularization. Proc Natl Acad Sci USA 92: 7657–7661

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Flamme I, von Reutern M, Drexler H, Syed-Ali S, Risau W (1995 b) Overexpression of vascular endothelial growth factor in the avian embryo induces hypervascularization and increased vascular permeability without alterations of embryonic pattern formation. Dev Biol 171:399–414

    Google Scholar 

  103. Drake C, Little C (1999) VEGF and vascular fusion: implications for normal and pathological vessels. J Histochem Cytochem 47: 1351–1355

    CAS  PubMed  Google Scholar 

  104. Carmeliet P, Ng Y, Nuyens D, Theilmeier G, Brusselmans K, Cornelissen I, Ehler E, Kakkar V, Stalmans I, Mattot V, Perriard J, Dewerchin M, Flameng W, Nagy A, Lupu F, Moons L, Collen D, D’Amore P, Shima D (1999a) Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nat Med 5:495–502

    CAS  PubMed  Google Scholar 

  105. Fong G, Rossant J, Gertsenstein M, Breitman M (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376:66–69

    CAS  PubMed  Google Scholar 

  106. Fong G, Zhang L, Bryce D, Peng J (1999) Increased hemangioblast commitment, not vascular disorganization, is the primary defect in flt-1 knock-out mice. Development 126:3015–3025

    CAS  PubMed  Google Scholar 

  107. Hiratsuka S, Minowa O, Kuno J, Noda T, Shibuya M (1998) Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci USA 95:9349–9354

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Soker S, Takashima S, Miao H, Neufeld G, Klagsbrun M (1998) Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92:735–745

    CAS  PubMed  Google Scholar 

  109. He Z, Tessier-Lavigne M (1997) Neuropilin is a receptor for the axonal chemorepellent semaphorin III. Cell 90:739–751

    CAS  PubMed  Google Scholar 

  110. Fuh G, Garcia K, de Vos A (2000) The interaction of Neuropilin-1 with vascular endothelial growth factor and its receptor Flt-1. J Biol Chem 275:26690–26695

    CAS  PubMed  Google Scholar 

  111. Kawasaki J, Kitsukawa T, Bekku Y, Matsuda Y, Sanbo M, Yagi T, Fujisawa H (1999) A requirement for neuropilin-1 in embryonic vessel formation. Development 126:4895–4902

    CAS  PubMed  Google Scholar 

  112. Gluzman-Poltorak Z, Cohen T, Herzog Y, Neufeld G (2000) Neu-ropilin-2 and Neuropilin-1 are receptors for VEGF165 and PLGF-2, but only neuropilin-2 functions as a receptor for the 145-amino acid form of VEGF. J Biol Chem 275:18040–18045

    CAS  PubMed  Google Scholar 

  113. Vernon R, Lara S, Drake C, Iruela-Arispe M, Angello J, Little C, Wight T, Sage E (1995) Organized type I collagen influences endothelial patterns during “spontaneous angiogenesis in vitro”: planar cultures as models of vascular development. In Vitro Cell Dev Biol 31:120–131

    CAS  Google Scholar 

  114. Yamada K, Miyamoto S (1995) Integrin transmembrane signaling and cytoskeletal control. Curr Opin Cell Biol 7:681–689

    CAS  PubMed  Google Scholar 

  115. Hynes R, Bader B (1997) Targeted mutations in integrins and their ligands: their implications for vascular biology. Thromb Haemost 78:83–87

    CAS  PubMed  Google Scholar 

  116. Brooks P, Clark R, Cheresh D (1994) Requirement for vascular integrin αvβ3 for angiogenesis. Science 264:569–571

    CAS  PubMed  Google Scholar 

  117. Drake C, Cheresh D, Little C (1995) An antagonist of integrin vβ3 prevents maturation of blood vessels during embryonic neovascularization. J Cell Sci 108:2655–2661

    CAS  PubMed  Google Scholar 

  118. Cheresh D (1987) Human endothelial cells synthesize and express an Arg-Gly-Asp-directed adhesion receptor involved in attachment of fibrinogen and von Willebrand factor. Proc Natl Acad Sci USA 84:6471–6475

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Bader B, Rayburn H, Crowley D, Hynes R (1998) Extensive vasculo-genesis, angiogenesis, and organogenesis precede lethality in mice lacking all αv integrins. Cell 95:507–519

    CAS  PubMed  Google Scholar 

  120. Yang J, Rayburn H, Hynes R (1993) Embryonic mesodermal defects in α5 integrin-deficient mice. Development 119:1093–1105

    CAS  PubMed  Google Scholar 

  121. Yang J, Bader B, Kreidberg J, Ullman-Cullerè M, Trevithick J, Hynes R (1999) Overlapping and independent functions of fibronectin receptor integrins in early mesodermal development. Dev Biol 215:264–277

    CAS  PubMed  Google Scholar 

  122. Drake C, Jacobson A (1988) A survey by scanning electron microscopy of the extracellular matrix and endothelial components of the primordial chick heart. Anat Rec 222:391–400

    CAS  PubMed  Google Scholar 

  123. Weinstein B, Stemple D, Driever W, Fishman M (1995) Gridlock, a localized heritable vascular patterning defect in the zebrafish. Nat Med 1:143–147

    Google Scholar 

  124. Zhong T, Rosenberg M, Mohideen M, Weinstein B, Fishman M(2000) Gridlock, an HLH gene required for assembly of the aorta in zebrafish. Science 287:1820–1824

    CAS  PubMed  Google Scholar 

  125. Hertig A (1935) Angiogenesis in the early human chorion and in the primary placenta of the macaque monkey. Contrib Embryol Carnegie Inst 25:39–81

    Google Scholar 

  126. Clark E, Clark E (1939) Microscopic observations on the growth of blood capillaries in the living mammal. Am J Anat 64:251–301

    Google Scholar 

  127. Ausprunk D, Folkman J (1977) Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res 14:53–65

    CAS  PubMed  Google Scholar 

  128. Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    CAS  PubMed  Google Scholar 

  129. Hiraoka N, Allen E, Apel I, Gyetko M, Weiss S (1998) Matrix metal-loproteinases regulate neovascularization by acting as perricellu-lar fibrinolysins. Cell 95:365–377

    CAS  PubMed  Google Scholar 

  130. Wilting J, Christ B (1996) Embryonic angiogenesis: a review. Naturwissenschaften 83:153–164

    CAS  PubMed  Google Scholar 

  131. Caduff J, Fischer L, Burri PP (1986) Scanning electron microscope study of the developing microvasculature in the postnatal rat lung. Anat Rec 216:154–164

    CAS  PubMed  Google Scholar 

  132. Burri P, Tarek M (1990) A novel mechanism of capillary growth in the rat pulmonary microcirculation. Anat Rec 228:35–45

    CAS  PubMed  Google Scholar 

  133. Patan S, Haenni B, Burri P (1993) Evidence for intussusceptive capillary growth in the chicken chorio-allantoic membrane (CAM). Anat Embryol (Berl) 187:121–130

    CAS  Google Scholar 

  134. Patan S, Haenni B, Burri P (1996) Implementation of intussusceptive microvascular growth in the chicken chorioallantoic membrane (CAM). Microvasc Res 51:80–98

    CAS  PubMed  Google Scholar 

  135. Patan S (1998) Tie1 and Tie2 receptor tyrosine kinases inversely regulate embryonic angiogenesis by the mechanism of intussusceptive microvascular growth. Microvasc Res 56:1–21

    CAS  PubMed  Google Scholar 

  136. Pepper M (1997) Transforming growth factor-beta: vasculogenesis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev 8:21–43

    CAS  PubMed  Google Scholar 

  137. Brown C, Boyer A, Runyan R, Barnett J (1999) Requirement of Type III TGV-β receptor for endocardial transformation in the heart. Science 283:2080–2082

    CAS  PubMed  Google Scholar 

  138. Heimark R, Twardzik D, Schwartz S (1986) Inhibition of endothelial regeneration by type-beta transforming growth factor from platelets. Science 233:1078–1080

    CAS  PubMed  Google Scholar 

  139. Müller G, Behrens J, Nussbaumer U, Bohlen P, Birchmeier W (1987) Inhibitory action of transforming growth factor β on endothelial cells. Proc Natl Acad Sci USA 84:5600–5604

    PubMed Central  PubMed  Google Scholar 

  140. Takehara K, LeRoy E, Grotendorst G (1987) TGF-/3 inhibition of endothelial cell proliferation: alteration of EGF binding and EGF-induced growth-regulatory (competence) gene expression. Cell 49:415–422

    CAS  PubMed  Google Scholar 

  141. Antonelli-Orlidge A, Saunders K, Smith S, D’Amore P (1989) An activated form of transforming growth factor β is produced by cocultures of endothelial cells and pericytes. Proc Natl Acad Sci USA 86:4544–4548

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Heino J, Ignotz R, Hemler M, Crouse C, Massague J (1989) Regulation of cell adhesion receptors by transforming growth factor-/?. Concomitant regulation of integrins that share a common beta subunit. J Biol Chem 264:380–388

    CAS  PubMed  Google Scholar 

  143. Pelton R, Saxena B, Jones M, Moses H, Gold L (1991) Immunohisto-chemical localization of TGFβ1, TGFβ1, and TGFβ1 in the mouse embryo: expression patterns suggest multiple roles during embryonic development. J Cell Biol 115:1091–1105

    CAS  PubMed  Google Scholar 

  144. Lawler S, Candia A, Ebner R, Shum L, Lopez A, Moses H, Wright C, Derynck R (1994) The murine type II TGF-jÖ receptor has a coincident embryonic expression and binding preference for TGF-/J1. Development 120:165–175

    CAS  PubMed  Google Scholar 

  145. Brown C, Boyer A, Runyan R, Barnett J (1996) Antibodies to the type II TGF-/? receptor block cell activation and migration during atrioventricular cushion transformation in the heart. Dev Biol 174:248–257

    CAS  PubMed  Google Scholar 

  146. Battegay E, Raines E, Seifert R, Bowen-Pope D, Ross R (1990) TGF-β induces bimodal proliferation of connective tissue cells via complex control of an autocrine PDGF loop. Cell 63:515–524

    CAS  PubMed  Google Scholar 

  147. Sporn M, Roberts A, Wakefield L, Assoian R (1986) Transforming growth factor-beta: biological function and chemical structure. Science 233:532–534

    CAS  PubMed  Google Scholar 

  148. Shull M, Ormsby I, Kier A, Pawlowski S, Diebold R, Yin M, Allen R, Sidman C, Proetzel G, Calvin D, Annunziata N, Doetschman T (1992) Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature 359:693–699

    CAS  PubMed  Google Scholar 

  149. Kulkami A, Huh C, Becker D, Geiser A, Lyght M, Flanders K, Roberts A, Sporn M, Ward J, Karlsson S (1993) Transforming growth factor β1 null mutations in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci USA 90: 770–774

    Google Scholar 

  150. Dickson M, Martin J, Cousins F, Kulkami A, Karlsson S, Akhurst R (1995) Defective haematopoiesis and vasculogenesis in transforming growth factor-β knockout mice. Development 121:1845–1854

    CAS  PubMed  Google Scholar 

  151. Letterio J, Geiser A, Kulkami A, Roche N, Sporn M, Roberts A (1994) Maternal rescue of transforming growth factor-β null mice. Science 264:1936–1938

    CAS  PubMed  Google Scholar 

  152. Agah R, Srinivasa K, Linnemann R, Firpo M, Quertermous T, Dichek D (2000) Cardiovascular overexpression of transforming growth factor-β causes abnormal yolk sac vasculogenesis and early embryonic death. Circ Res 86:1024–1030

    CAS  PubMed  Google Scholar 

  153. Oshima M, Oshima H, Taketo M (1996) TGF-β receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Dev Biol 179:297–302

    CAS  PubMed  Google Scholar 

  154. Goumans M, Zwijsen A, van Rooijen M, Huylebroeck D, Roelen B, Mummery C (1999) Transforming growth factor-β signalling in extraembryonic mesoderm is required for yolk sac vasculogenesis in mice. Development 126:3473–3483

    CAS  PubMed  Google Scholar 

  155. Zhang X, Tsung H, Caen J, Li X, Yao Z, Han Z (1998) Vasculogenesis from embryonic bodies of murine embryonic stem cells transfect-ed by TGF-β gene. Endothelium 6:95–106

    CAS  PubMed  Google Scholar 

  156. McAllister K, Grogg K, Johnson D, Gallione C, Baldwin M, Jackson C, Helmbbold E, Markel D, McKinnon W, Murrell J, McCormick M, Pericak-Vance M, Heutink P, Oostra B, Haitjema T, Westerman C, Porteous M, Guttmacher A, Letarte M, Marchuk D (1994) Endoglin, a TGF-β binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet 8:345–351

    CAS  PubMed  Google Scholar 

  157. Guttmacher A, Marchuk D, White R Jr (1995) Hereditary hemorrhagic telangiectasia. NEJM 333:918–924

    CAS  PubMed  Google Scholar 

  158. Li D, Sorensen L, Brooke B, Urness L, Davis E, Taylor D, Boak B, Wendel D (1999) Defective angiogenesis in mice lacking endoglin. Science 284:1534–1537

    CAS  PubMed  Google Scholar 

  159. Johnson D, Berg J, Baldwin M, Gallione C, Marondel I, Yoon S, Stenzel T, Speer M, Pericak-Vance M, Diamond A, Guttmacher A, Jackson C, Attisano L, Kucherlapati R, Porteous M, Marchuk D (1996) Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet 13:189–195

    CAS  PubMed  Google Scholar 

  160. Heldin C, Westermark B (1999) Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 79:1283–1316

    CAS  PubMed  Google Scholar 

  161. Boström H, Willetts K, Pekny M, Levèen P, Lindahl P, Hedstrand H, Pekna M, Hellström M, Gebre-Medhin S, Schalling M, Nilsson M, Kurland S, Törnell J, Heath J, Betsholtz C (1996) PDGF-A signaling is a critical event in lung alveolar myofibroblast development and alveogenesis. Cell 85:863–873

    PubMed  Google Scholar 

  162. Alpers C, Seifert R, Hudkins K, Johnson R, Bowen-Pope D (1992) Developmental patterns of PDGF B-chain, PDGF-receptor, and alpha-actin expression in human glomerulogenesis. Kidney Int 42:390–399

    CAS  PubMed  Google Scholar 

  163. Smits A, Hermansson M, Nister M, Karnushina I, Heldin C, Westermark B, Funa K (1989) Rat brain capillary endothelial cells express functional PDGF B-type receptors. Growth Factors 2:1–8

    CAS  PubMed  Google Scholar 

  164. Holmgren L, Glaser A, Pfeifer-Ohlsson S, Ohlsson R (1991) Angiogenesis during human extraembryonic development involves the spatiotemporal control of PDGF ligand and receptor gene expression. Development 113:749–754

    CAS  PubMed  Google Scholar 

  165. Shinbrot E, Peters K, Williams L (1994) Expression of the platelet-derived growth factor β receptor during organogenesis and tissue differentiation in the mouse embryo. Dev Dynam 199:169–175

    CAS  Google Scholar 

  166. Schatteman G, Motley S, Effmann E, Bowen-Pope D (1995) Platelet-derived growth factor receptor alpha subunit deleted patch mouse exhibits severe cardiovascular dysmorphogenesis. Teratology 51: 351–366

    CAS  PubMed  Google Scholar 

  167. Soriano P (1994) Abnormal kidney development and hematological disorders in PDGF β-receptor mutant mice. Genes Dev 8:1888–1896

    CAS  PubMed  Google Scholar 

  168. Levèen P, Pekny M, Gebre-Medhin S, Swolin B, Larsson E, Betsholtz C (1994) Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev 8:1875–1887

    PubMed  Google Scholar 

  169. Lindahl P, Johansson B, Levèen P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277:242–245

    CAS  PubMed  Google Scholar 

  170. Partanen J, Dumont D (1999) Functions of Tiei and Tie2 receptor tyrosine kinases in vascular development. In: Claesson-Welsh L (ed) Vascular growth factors and angiogenesis. Springer, Berlin Heidelberg New York, pp 159–172

    Google Scholar 

  171. Dumont D, Gradwohl G, Fong G, Puri M, Gertsenstein M, Auerbach A, Breitman M (1994) Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev 8: 1897–1909

    CAS  PubMed  Google Scholar 

  172. Sato T, Tozawa Y, Deutsch U, Wolburg-Buchholz K, Fujiwara Y, Gendron-Maguire M, Gridley T, Wolburg H, Risau W, Qin Y (1995) Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 376:70–74

    CAS  PubMed  Google Scholar 

  173. Vikkula M, Boon L, Carraway K, Calvert J, Diamonti A, Goumnerov B, Pasyk K, Marchuk D, Warman M, Cantley L, Mulliken J, Olsen B (1996) Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinases TIE2. Cell 87:1181–1190

    CAS  PubMed  Google Scholar 

  174. Puri M, Rossant J, Alitalo K, Bernstein A, Partanen J (1995) The receptor tyrosine kinase TIE is required for integrity and survival of vascular endothelial cells. EMBO J 14:5884–5891

    CAS  PubMed Central  PubMed  Google Scholar 

  175. Partanen J, Puri M, Schwartz L, Fischer K, Bernstein A, Rossant J (1996) Cell autonomous functions of the receptor tyrosine kinase TIE in a late phase of angiogenic capillary growth and endothelial survival during murine development. Development 122: 3013–3021

    CAS  PubMed  Google Scholar 

  176. Puri M, Partanen J, Rossant J, Bernstein A (1999) Interaction of the TEK and TIE receptor tyrosine kinases during cardiovascular development. Development 126:4569–4580

    CAS  PubMed  Google Scholar 

  177. Davis S, Aldrich T, Jones P, Acheson A, Compton D, Jain V, Ryan T, Bruno J, Radziejewsk C, Maisonpierre P, Yancopoulos G (1996) Isolation of angiopoietin-1, a ligand for the TIE2 receptor by secretion-trap expression cloning. Cell 87:1161–1169

    CAS  PubMed  Google Scholar 

  178. Suri C, Jones P, Patan S, Bartunkova S, Maisonpierre P, Davis S, Sato T, Yancopoulos G (1996) Requisite role of angiopoietin-1, a ligand for the TIE2 receptor during embryonic angiogenesis. Cell 87:1171–1180

    CAS  PubMed  Google Scholar 

  179. Suri C, McClain J, Thurston G, McDonald D, Zhou H, Oldmixon E, Sato T, Yancopoulos G (1998) Increased vascularization in mice overexpressing angiopoietin-1. Science 282:468–471

    CAS  PubMed  Google Scholar 

  180. Maisonpierre P, Suri C, Jones P, Bartunkova S, Wiegand S, Radziejewski C, Compton D, McClain J, Aldrich T, Papadopoulos N, Daly T, Davis S, Sato T, Yancopoulos G (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60

    CAS  PubMed  Google Scholar 

  181. Kim I, Kim J, Ryu Y, Jung S, Nah J, Koh G (2000) Characterization and expression of a novel alternatively spliced human angiopoietin-2. J Biol Chem 275:18550–18556

    CAS  PubMed  Google Scholar 

  182. Kim I, Kim J, Ryu Y, Jung S, Nah J, Koh G (2000) Characterization and expression of a novel alternatively spliced human angiopoietin-2. J Biol Chem 275:18550–18556

    CAS  PubMed  Google Scholar 

  183. im I, Moon S, Koh K, Kim H, Uhm C, Kwak H, Kim N, Koh G (1999) Molecular cloning, expression, and characterization of angio-poietin-related protein. J Biol Chem 274:26523–26528

    Google Scholar 

  184. Nishimura M, Miki T, Yashima R, Yokoi N, Yano H, Sato Y, Seino S (1999) Angiopoietin-3, a novel member of the angiopoietin family. FEBS Lett 448:254–256

    CAS  PubMed  Google Scholar 

  185. Valenzuela D, Griffiths J, Rojas J, Aldridch T, Jones P, Zhou H, McClain J, Copeland N, Gilbert D, Jenkins N, Huang T, Papadopoulos N, Maisonpierre P, Davis S, Yancopoulos G (1999) Angio-poietins 3 and 4: diverging gene counterparts in mice and humans. Proc Natl Acad Sci USA 96:1904–1909

    CAS  PubMed Central  PubMed  Google Scholar 

  186. Breier G, Breviario F, Caveda L, Berthier R, Schnüren H, Gotsch U, Vestweber D, Risau W, Dejana E (1996) Molecular cloning and expression of murine vascular endothelial-cadherin in early stage development of cardiovascular system. Blood 87:630–641

    CAS  PubMed  Google Scholar 

  187. Lampugnani M, Resnati M, Raiteri M, Pigott R, Pisacane A, Houen G, Ruco L, Dejana E (1992) A novel endothelial-specific membrane protein is a marker of cell-cell contacts. J Cell Biol 118:1511–1522

    CAS  PubMed  Google Scholar 

  188. Vittet D, Buchou T, Schweitzer A, Dejana E, Huber P (1997) Targeted null-mutation in the vascular endothelial-cadherin gene impairs the organization of vascular-like structures in embryoid bodies. Proc Natl Acad Sci USA 94:6273–6278

    CAS  PubMed Central  PubMed  Google Scholar 

  189. Carmeliet P, Lampugnani M, Moons L, Breviario F, Compernolle V, Bono F, Balconi G, Spagnuolo R, Oosthuyse B, Dewerchin M, Zanetti A, Angellilo A, Mattot V, Nuyens D, Lutgens E, Clotman F, de Ruiter M, Gittenberger-de Groot A, Poelmann R, Lupu F, Herbert J, Collen D, Dejana E (1999) Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98:147–157

    CAS  PubMed  Google Scholar 

  190. Del Arno F, Smith D, Swiatek P, Gendron-Maguire M, Greenspan R, McMahon A, Gridley T (1992) Expression pattern of Motch, a mouse homolog of Drosophila Notch, suggests an important role in early postimplantation mouse development. Development 115:737–744

    Google Scholar 

  191. Reaume A, Conlon R, Zirngibl R, Yamaguchi T, Rossant J (1992) Expression analysis of a Notch homologue in the mouse embryo. Dev Biol 154:377–387

    CAS  PubMed  Google Scholar 

  192. Uyttendaele H, Marazzi G, Wu G, Yan Q, Sassoon D, Kitajewski J (1996) Notch4/int-3, a mammary proto-oncogene, is an endothelial cell-specific mammalian Notch gene. Development 122: 2251–2259

    CAS  PubMed  Google Scholar 

  193. Swiatek P, Lindsell C, del Arno F, Weinmaster G, Gridley T (1994) Notchi is essential for postimplantation in mice. Genes Dev 8: 707–719

    CAS  PubMed  Google Scholar 

  194. Krebs L, Xue Y, Norton C, Shutter J, Maguire M, Sundberg J, Gallahan D, Closson V, Kitajewski J, Callahan R, Smith G, Stark K, Gridley T (2000) Notch signaling is essential for vascular morphogenesis in mice. Genes Dev 14:1343–1352

    CAS  PubMed Central  PubMed  Google Scholar 

  195. Xue Y, Gao X, Lindsell C, Norton C, Chang B, Hickss C, Gendron-Maguire M, Rand E, Weinmaster G, Gridley T (1999) Embryonic lethality and vascular defects in mice lacking the Notch ligand Jaggedi. Hum Mol Genet 8:723–730

    CAS  PubMed  Google Scholar 

  196. Shutter J, Scully S, Fan W, Richards W, Kitajewski J, Deblandre G, Kintner C, Stark K (2000) DII4, a novel Notch ligand expressed in arterial endothelium. Genes Dev 14:1313–1318

    CAS  PubMed Central  PubMed  Google Scholar 

  197. Van der Geer P, Hunter T, Lindberg R (1994) Receptor protein-tyrosine kinases and their signal transduction pathways. Annu Rev Cell Biol 10:251–337

    PubMed  Google Scholar 

  198. Holder N, Klein R (1999) Eph receptors and ephrins: effectors of morphogenesis. Development 126:2033–2044

    CAS  PubMed  Google Scholar 

  199. Gale N, Holland S, Valenzuela D, Flenniken A, Pan L, Ryan T, Henke-meyer M, Strebhardt K, Hirai H, Wilkinson D, Pawson T, Davis S, Yancopoulos G (1996) Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartmentalized during embryogenesis. Neuron 17:9–19

    CAS  PubMed  Google Scholar 

  200. Holland S, Gale N, Mbamalu G, Yancopoulos G, Henkemeyer M, Pawson T (1996) Bidirectional signalling through the EPH-family receptor Nuk and its transmembrane ligands. Nature 383:722–725

    CAS  PubMed  Google Scholar 

  201. Mellitzer G, Xu Q, Wilkinson D (1999) Eph receptors and ephrins restrict cell intermingling and communication. Nature 400: 77–81

    CAS  PubMed  Google Scholar 

  202. Pandey A, Shao H, Marks R, Polverini P, Dixit V (1995) Role of B61, the ligand for the Eck receptor tyrosine kinase, in TNF-a-induced angiogenesis. Science 268:567–569

    CAS  PubMed  Google Scholar 

  203. Wang H, Chen Z, Anderson D (1998) Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93:741–753

    CAS  PubMed  Google Scholar 

  204. Adams R, Wilkinson G, Weiss C, Diella F, Gale N, Deutsch U, Risau W, Klein R (1999) Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev 13:295–306

    CAS  PubMed Central  PubMed  Google Scholar 

  205. Helbling P, Saulnier D, Brändli A (2000) The receptor tyrosine kinase EphB4 and ephrin-B ligands restrict angiogenic growth of embryonic veins in Xenopus laevis. Development 127:269–278

    CAS  PubMed  Google Scholar 

  206. Newman C, Chia F, Krieg P (1997) The Xhex homeobox gene is expressed during development of the vascular endothelium: over-expression leads to an increase in vascular endothelial cell number. Mech Dev 66:83–93

    CAS  PubMed  Google Scholar 

  207. Thomas P, Brown A, Beddington R (1998) Hex: a homeobox gene revealing peri-implantation asymmetry in the mouse embryo and an early transient marker of endothelial cell precursors. Development 125:85–94

    CAS  PubMed  Google Scholar 

  208. Yatskievych T, Pascoe S, Antin P (1999) Expression of the homeobox gene Hex during early stages of chick embryo development. Mech Dev 80:107–109

    CAS  PubMed  Google Scholar 

  209. Barbera J, Clements M, Thomas P, Rodriguez T, Meloy D, Kioussis D, Beddington R (2000) The homeobox gene Hex is required in definitive endodermal tissues for normal forebrain, liver and thyroid formation. Development 127:2433–2445

    CAS  Google Scholar 

  210. Wakiya K, Bègue A, Stehelin D, Shibuya M (1996) A cAMP response element and an Ets motif are involved in the transcriptional regulation of flt-1 tyrosine kinase (Vascular endothelial growth factor receptor 1) gene. J Biol Chem 271:30823–30828

    CAS  PubMed  Google Scholar 

  211. Yamamoto H, Flannery M, Kupriyanov S, Pearce J, McKercher S, Henkel G, Maki R, Werb Z, Oshima R (1998) Defective trophoblast function in mice with a targeted mutation of EtS2. Genes Dev 12:1315–1326

    CAS  PubMed Central  PubMed  Google Scholar 

  212. Barton K, Muthusamy N, Fischer C, Ting C, Walunas T, Lanier L, Leiden J (1998) The Ets-1 transcription factor is required for the development of natural killer cells in mice. Immunity 9:555–563

    CAS  PubMed  Google Scholar 

  213. Brown L, Rodaway A, Schilling T, Jowett T, Ingham P, Patient R, Sharrocks A (2000) Insights into early vasculogenesis revealed by expression of the ETS-domain transcription factor Fli-1 in wild-type and mutant zebrafish embryos. Mech Dev 90:237–252

    CAS  PubMed  Google Scholar 

  214. Syropoulos D, Pharr P, Lavenburg K, Jackers P, Papas T, Ogawa M, Watson D (2000) Hemorrhage, impaired hematopoiesis, and lethality in mouse embryos carrying a targeted disruption of the fli1 transcription factor. Mol Cell Biol 20:5643–5652

    Google Scholar 

  215. Wang L, Kuo F, Fujiwara Y, Gilliland D, Golub T, Orkin S (1997) Yolk sac angiogenic defect and intra-embryonic apoptosis in mice lacking the Etsrelated factor TEL. EMBO J 16:4374–4383

    CAS  PubMed Central  PubMed  Google Scholar 

  216. Baltzinger M, Mager-Heckel A, Remy P (1999) XI erg: expression pattern and overexpression during development plead for a role in endothelial cell differentiation. Dev Dyn 216:420–433

    CAS  PubMed  Google Scholar 

  217. Gering M, Rodaway A, Göttgens B, Patient R, Green A (1998) The SCL gene specifies haemangioblast development from early mesoderm. EMBO J 17:4029–4045

    CAS  PubMed Central  PubMed  Google Scholar 

  218. Shivdasani R, Mayer E, Orkin S (1995) Absence of blood formation in mice lacking the T-cell leukemia oncoprotein tal-1/SCL. Nature 373:432–434

    CAS  PubMed  Google Scholar 

  219. Visvader J, Fujiwara Y, Orkin S (1998) Unsuspected role for the T-cell leukemia protein SCL/tal-1 in vascular development. Genes Dev 12:473–479

    CAS  PubMed Central  PubMed  Google Scholar 

  220. Clauss M, Weich H, Breier G, Kniest U, Röckl W, Waltenberger J, Risau W (1996) The vascular endothelial growth factor receptor Flt-1 mediates biological activities. J Biol Chem 271:17629–17634

    CAS  PubMed  Google Scholar 

  221. Folkman J, D’Amore P (1996) Blood vessel formation: what is the molecular basis? Cell 87:1151–1155

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vokes, S.A., Krieg, P.A. (2002). Molecular Vascular Embryology. In: Lanzer, P., Topol, E.J. (eds) Pan Vascular Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56225-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56225-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62565-7

  • Online ISBN: 978-3-642-56225-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics