Skip to main content

Principles of Vascular Remodeling

  • Chapter
Pan Vascular Medicine

Abstract

In association with neurogenic and hormonal regulating factors as well as geometrical and microanatomical structural features, characteristic resistances to arterial flow prevail for each organ or location. Shifts in the distribution of flow to various organs and organ systems associated with long- and short-term variations in relative metabolic function and differences in growth rate are associated with alterations in flow. Structural modifications associated with injury or tissue loss in relation to organ-specific disease processes are also modifiers of flow and of the redistribution of flow. The head of pressure developed by contraction of the cardiac ventricles permits blood flow to continue against the associated resistances to flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Glagov S, Zarins C, Giddens DP, Ku DN (1988) Hemodynamics and atherosclerosis. Arch Pathol Lab Med 112:1018–1031

    CAS  PubMed  Google Scholar 

  2. Kamiya A, Togawa T (1990) Adaptive regulation of wall shear stress to flow change in the canine carotid artery. Am J Phyiol 239:H14–H21

    Google Scholar 

  3. Zarins CK, Zatina MA, Giddens D, Ku DN, Glagov S (1987) Shear stress regulation of artery lumen diameter in experimental atherogenesis. J Vasc Surg 5:413–420

    CAS  PubMed  Google Scholar 

  4. Masuda H, Bassiouny H, Glagov S, Zarins CK (1989) Artery wall restructuring in response to increased flow. Surg Forum 45:285–286

    Google Scholar 

  5. Langille BL, Beneck MP, Keeley FW (1989) Adaptations of carotid arteries of young and mature rabbits to reduced carotid blood flow. Am J Physiol 256:H932–H939

    Google Scholar 

  6. Langille BL, O’Donnell F (1986) Reduction in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science 231:405–407

    Article  CAS  PubMed  Google Scholar 

  7. Burton AL (1954) Relation of structure to function of the tissues of the wall of blood vessels. Physiol Rev 34:619–642

    CAS  PubMed  Google Scholar 

  8. Wolinsky H, Glagov S (1967) A lamellar unit of aortic medial structure and function in mammals. Circ Res 20:99–111

    Article  CAS  PubMed  Google Scholar 

  9. Leung DYM, Glagov S, Mathews M (1977) Elastin and collagen accumulation in rabbit ascending aorta and pulmonary trunk during postnatal growth: correlation of cellular synthetic response with medial tension. Circulation Res 41:316–323

    Article  CAS  PubMed  Google Scholar 

  10. Friedman MH, Deters OJ, Bargeron CB, Hutchins GM, Mark FF (1986) Shear-dependent thickening of the human arterial intimai. Atherosclerosis 60:161–171

    Article  CAS  PubMed  Google Scholar 

  11. Glagov S, Zarins CK (1989) Is intimai hyperplasia an adaptive response or a pathologic process? Observations on the nature of non-atherosclerotic intimai thickening. J Vasc Surg 10:571–573

    Article  Google Scholar 

  12. Masawa N, Glagov S, Zarins CK (1994) Quantitative morphologic study of intimai thickening at the human carotid bifurcation. II. The compensatory enlargement response and the role of the intima in tensile support. Atherosclerosis 107:147–155

    Article  CAS  PubMed  Google Scholar 

  13. Clark JM, Glagov S (1985) Transmural organization of the arterial wall: the lamellar unit revisited. Arteriosclerosis 5:19–34

    Article  CAS  PubMed  Google Scholar 

  14. Leung DYM, Glagov S, Clark JM, Mathews MB (1975) Mechanical influences on biosynthesis of extracellular macro-molecules by aortic cells. In: Slavkin HC, Greenlich RC (eds) Extracellular matrix influence on gene expression. Academic, New York, pp 633–645

    Chapter  Google Scholar 

  15. Leung DYM, Glagov S, Mathews MB (1976) Cycling stretching stimulates synthesis of matrix components by arterial smooth muscle cells in vitro. Science 191:475–477

    Article  CAS  PubMed  Google Scholar 

  16. Xu C, Zarins CK, Bassiouny HS, Briggs WH, Reardon C, Glagov S (2000) Differential transmural distribution of gene expression for collagen types I and III proximal to aortic coarctation in the rabbit. J Vasc Res 37:170–182

    Article  CAS  PubMed  Google Scholar 

  17. Masuda H, Zhuang Y-J, Singh TM, Kawamura K, Murakami M, Zarins CK, Glagov S (1999) Adaptive remodeling of internal elastic lamina and endothelial lining during flow-induced arterial enlargement. Arterioscler Tromb Vasc Biol 19:2298–2307

    Article  CAS  Google Scholar 

  18. Tronc F, Wassef M, Esposito B, Henrion D, Glagov S, Tedgui A (1996) Role of NO in flow-induced remodeling of the rabbit common carotid artery. Arterioscler Thromb Vasc Biol 16:12560–1262

    Google Scholar 

  19. Ts’ao CH, Glagov S (1970) Basal endothelial attachment: tenacity at cytoplasmic dense zones in the rabbit aorta. Lab Invest 23:510–516

    PubMed  Google Scholar 

  20. Taylor KE, Glagov S, Zarins CK (1989) Preservation and structural adaptation of endothelium over experimental foam cell lesions: a quantitative ultrastructural study. Arteriosclerosis 9:88–894

    Google Scholar 

  21. Thubrikar, M, Robicsek F (1995) Pressure-induced arterial wall stress and atherosclerosis. Ann Thorac Surg 59:1594–1603

    Article  CAS  PubMed  Google Scholar 

  22. Lee RT, Grodzinsky AJ, Frank EH, Kamm RD, Schoen FJ (1991) Structure-dependent dynamic mechanical behavior of fibrous caps from human atherosclerotic plaques. Circulation 83:1764–1770

    Article  CAS  PubMed  Google Scholar 

  23. Loree HM, Kamm RD, Stringfellow RG, Lee RT (1992) Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ Res 71:850–858

    Article  CAS  PubMed  Google Scholar 

  24. Tracy RE, Kissling GE, Curtis MB (1987) Smooth muscle cell-reticulin lamellar units of 13.2 mm thickness composing the aortic intima. Virchows Arch A 411:415–424

    Article  CAS  Google Scholar 

  25. Rachev A, Stergiopulos N, Meister JJ (1996) Theoretical study of dynamics of arterial wall remodeling in response to changes in blood pressure. J Biomechanics 29:635–642

    Article  CAS  Google Scholar 

  26. Vito RP, Beattie D, Xu C, Glagov S (1997) Heterogeneous atherosclerotic human arteries: determination of stresses and correlation between stress and staining for MMP1. Med Biol Eng Comput 35 [Suppl1]:282

    Google Scholar 

  27. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ (1987) Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 316:1371–1375

    Article  CAS  PubMed  Google Scholar 

  28. Stary HC, Chandler AB, Glagov S, Guyton JR, Insull W Jr, Rosenfeld ME, Schaffer SA, Schwartz CJ, Wagner WD, Wissler RW (1994) A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. American Heart Association medical, scientific statement, special report. Circulation 89:2462–2478

    Article  CAS  PubMed  Google Scholar 

  29. Bond MG, Adams MR, Bullock BC (1981) Complicating factors in evaluating coronary artery atherosclerosis. Artery 9:21–29

    CAS  PubMed  Google Scholar 

  30. Armstrong ML, Heistad DD, Marcus ML, Megan MB, Piegors DJ (1985) Structural and hemodynamic responses of peripheral arteries of macaque monkeys to atherogenic diet. Arteriosclerosis 5:336–346

    Article  CAS  PubMed  Google Scholar 

  31. Zarins CK, Weisenberg E, Kolettis G, Stankunavicius R, Glagov S (1988) Differential enlargement of artery segments in response to enlarging atherosclerotic plaques. J Vasc Surg 7:386–394

    CAS  PubMed  Google Scholar 

  32. Glagov S, Bassiouny HS, Giddens DP, Zarins CK (1995) Intimai thickening: morphogenesis, functional significance and detection. J Vasc Invest 1:2–14

    Google Scholar 

  33. Losordo DW, Rosenfield K, Kaufman J, Pieczek A, Isner JM (1994) Focal compensatory enlargement of human arteries in response to progressive atherosclerosis: in vivo documentation using intravascular ultrasound. Circulation 89:2570

    Article  CAS  PubMed  Google Scholar 

  34. Glagov S, Zarins CK (1983) Quantitating atherosclerosis: problems of definition. In: Bond MG, Insull W, Glagov S, Chandler AB, Cornhill F (eds) Clinical diagnosis of atherosclerosis quantitative methods of evaluation. Springer, Berlin Heidelberg New York, pp 11–35

    Chapter  Google Scholar 

  35. Ko C, Glagov S, Zarins CK (1991) Structural basis for the compensatory enlargement of arteries during early atherogenesis. Follow-up and prevention of atherosclerotic plaque. 3rd international workshop on vascular haemodynamics, pp 157–161

    Google Scholar 

  36. Pasterkamp G, Borst C, Post MJ, Mali W, Wensing P, Gussenhoven EJ, Hillen B (1996) Atherosclerotic arterial remodeling in the superficial femoral artery: individual variation in local compensatory enlargement response. Circulation 93:1818–1825

    Article  CAS  PubMed  Google Scholar 

  37. Post MJ, Borst C, Pasterkamp G, Haudenschild CC (1995) Arterial remodeling in atherosclerosis and restenosis: a vague concept of a distinct phenomenon. Atherosclerosis 118 [Suppl]:S115–S123

    Article  Google Scholar 

  38. Baron BW, Glagov S, Giddens DP, Zarins CK (1993) Effect of coarctation on matrix content of experimental aortic atherosclerosis: relation to location, plaque size and blood pressure. Atherosclerosis 102:37–49

    Article  CAS  PubMed  Google Scholar 

  39. Bassiouny HS, Sakaguchi Y, Mikucki S, McKinsey JF, Piano G, Gewertz BL, Glagov S (1997) Juxtalumenal location of plaque necrosis and neoformation in symptomatic carotid stenosis. J Vasc Surg 26: 585–594

    Article  CAS  PubMed  Google Scholar 

  40. Goudet C(1995) Finite element analysis of diseased cross-sections of human carotid arteries. MS thesis, Georgia Institute of Technology, USA

    Google Scholar 

  41. Beattie DK, Vito RP, Glagov S (1999) Mechanical modeling: assessing atherosclerotic plaque behavior and stability in humans. Int J Cardiovasc Med Sci 2:69–81

    Google Scholar 

  42. Zarins CK, Xu C, Glagov S (1992) Aneurysmal enlargement of the aorta during regression of experimental atherosclerosis. J Surg Res 15:90–101

    CAS  Google Scholar 

  43. Zarins CK, Xu C, Glagov S (2001) Atherosclerotic enlargement of the human abdominal aorta. Atherosclerosis 155:157–164

    Article  CAS  PubMed  Google Scholar 

  44. Zarins CK, Runyon-Hass A, Zatina MA, Chien-Tai Lu, Glagov S (1986) Increased collagenase activity in early aneurysmal dilatation. J Vasc Surg 3:238–248

    CAS  PubMed  Google Scholar 

  45. Glagov S (1994) Intimai hyperplasia, vascular modeling and the restenosis problem. Circulation 89:2888–2891

    Article  CAS  PubMed  Google Scholar 

  46. Waller BF, Pinderton CA, Orr CM, Slack JD, VanTassel JW, Peters T (1991) Restenosis 1 to 24 months after clinically successful coronary balloon angioplasty: a necropsy study of 20 patients. J Am Coll Cardiol 17 [6 Suppl B]:58B–70B

    Article  Google Scholar 

  47. Kibbe MR, Billiar TR, Tzeng E (2000) Gene therapy for restenosis. Circ Res 86:829–833

    Article  CAS  PubMed  Google Scholar 

  48. Reidy MA, Fingerle J, Lindner V (1992) Factors controlling the development of arterial lesions after injury. Circulation 86 [Suppl III]: III43–III46

    Google Scholar 

  49. Kohler TR, Jawein A (1992) Flow affects development of intimai hyperplasia after arterial injury in rats. Arterioscler Thromb 12:963

    Article  CAS  PubMed  Google Scholar 

  50. Franklin SM, Faxon DP (1993) Pharmacological prevention of restenosis after coronary angioplasty: review of randomized clinical trials. Coron Art Dis 4:232–242

    Article  CAS  Google Scholar 

  51. Landau C, Lange RA, Hills LD (1994) Percutaneous transluminal coronary angioplasty. N Engl J Med 33:981–993

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Glagov, S., Ko, C., Bassiouny, H.S., Zarins, C.K. (2002). Principles of Vascular Remodeling. In: Lanzer, P., Topol, E.J. (eds) Pan Vascular Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56225-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56225-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62565-7

  • Online ISBN: 978-3-642-56225-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics