Skip to main content

Competition in Well-Mixed Habitats: From Competitive Exclusion to Competitive Chaos

  • Chapter
Competition and Coexistence

Part of the book series: Ecological Studies ((ECOLSTUD,volume 161))

Abstract

Until today, the overwhelming species diversity of many ecosystems, including rainforests and coral reefs, remains a fascinating mystery, which we have only just begun to unravel. The processes that determine the species composition of natural communities have always been a major topic in ecology. Among these processes, species interactions like competition and predation play an important role. The dynamics and community composition that result from such species interactions are under intensive study by community ecologists. The questions generally considered in community ecology were succinctly summarised by Silander and Pacala (1990, pp. 67-68):

“The broad aim of population or community ecology is to understand the way different kinds of interactions affect the dynamics and structure of a particular system or systems. For example, one needs to understand the contribution of density- and frequency dependent interactions (i.e., competition, predation, and compensatory interactions) to community structure and dynamics. Does the population or community reach an equilibrium? Is it stable or unstable? What is the nature of the equilibrium? Is the dynamical behaviour oscillatory or nonoscillatory? What are the conditions necessary for species coexistence?”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrams PA (1984) Variability in resource consumption rates and the coexistence of competing species. Theor Popul Biol 25:106–124

    Article  Google Scholar 

  • Abrams PA, Shen L (1989) Population dynamics of systems with consumers that maintain a constant ratio of intake rates of two resources. Theor Popul Biol 35:51–89

    Article  Google Scholar 

  • Armstrong RA, McGehee R (1976) Coexistence of two competitors on one resource. J Theor Biol 56:499–502

    Article  PubMed  CAS  Google Scholar 

  • Armstrong RA., McGehee R (1980) Competitive exclusion. Am Nat 115: 151–170

    Article  Google Scholar 

  • Bell CR, Cummings NE, Canfield ML, Moore LW (1990) Competition of octopine-catabolizing Pseudomonas spp. and octopine-type Agrobacterium tumefaciens for octopine in chemostats. Appl Environ Microb 56:2840–2846

    CAS  Google Scholar 

  • Bjørnstad ON, Grenfell BT (2001) Noisy clockwork: time series analysis of population fluctuations in animals. Science 293:638–643

    Article  PubMed  Google Scholar 

  • Burmaster DE (1979) The continuous culture of phytoplankton: mathematical equivalence among three steady-state models. Am Nat 113:123–134

    Article  Google Scholar 

  • Buss LW., Jackson JBC (1979) Competitive networks: nontransitive competitive relationships in cryptic coral reef environments. Am Nat 113:223–234

    Article  Google Scholar 

  • Chesson PL (1994) Multispecies competition in variable environments. Theor Popul Biol 45:227–276

    Article  Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310

    Article  PubMed  CAS  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection. Murray, London

    Google Scholar 

  • De Nobel WT, Huisman J, Snoep JL, Mur LR (1997) Competition for phosphorus between the nitrogen-fixing cyanobacteria Anabaena and Aphanizomenon. FEMS Microbiol Ecol 24:259–267

    Article  Google Scholar 

  • Droop MR (1973) Some thoughts on nutrient limitation in algae. J Phycol 9:264–272

    CAS  Google Scholar 

  • Ducobu H, Huisman J, Jonker RR, Mur LR (1998) Competition between a prochlorophyte and a cyanobacterium under various phosphorus regimes: comparison with the Droop model. J Phycol 34:467–476

    Article  Google Scholar 

  • Durrett R, Levin SA (1997) Allelopathy in spatially distributed populations. J Theor Biol 185:165–171

    Article  PubMed  Google Scholar 

  • Durrett R, Levin SA (1998) Spatial aspects of interspecific competition. Theor Popul Biol 53:30–43

    Article  PubMed  CAS  Google Scholar 

  • Elton C (1930) Animal ecology and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Frean M, Abraham ER (2001) Rock-scissors-paper and the survival of the weakest. Proc R Soc Lond B 268:1323–1327

    Article  CAS  Google Scholar 

  • Fujimoto N, Sudo R, Sugiura N, Inamori Y (1997) Nutrient-limited growth of Microcystis aeruginosa and Phormidium tenue and competition under various N:P supply ratios and temperatures. Limnol Oceanogr 42:250–256

    Article  CAS  Google Scholar 

  • Fussmann GF, Ellner SP, Shertzer KW, Hairston NG (2000) Crossing the Hopfbifurcation in a live predator-prey system. Science 290:1358–1360

    Article  PubMed  CAS  Google Scholar 

  • Gause GF (1934) The struggle for existence. Williams and Wilkins, Baltimore

    Book  Google Scholar 

  • Gilpin ME (1975) Limit cycles in competition communities. Am Nat 109:51–60

    Article  Google Scholar 

  • Grebogi C, Ott E, Yorke JA (1987) Chaos, strange attractors, and fractal basin boundaries in nonlinear dynamics. Science 238:632–638

    Article  PubMed  CAS  Google Scholar 

  • Grover JP (1989) Influence of cell shape and size on algal competitive ability. J Phycol 25:402–405

    Article  Google Scholar 

  • Grover JP (1990) Resource competition in a variable environment: phytoplankton growing according to Monod-s model. Am Nat 136:771–789

    Article  Google Scholar 

  • Grover JP (1991a) Resource competition in a variable environment: phytoplankton growing according to the variable-internal-stores model. Am Nat 138:811–835

    Article  Google Scholar 

  • Grover JP (1991b) Dynamics of competition among micro algae in variable environments: experimental tests of alternative models. Oikos 62:231–243

    Article  Google Scholar 

  • Grover JP (1997) Resource competition. Chapman and Hall, London

    Book  Google Scholar 

  • Hansen SR, Hubbell SP (1980) Single-nutrient microbial competition: qualitative agreement between experimental and theoretically forecast outcomes. Science 207:1491–1493

    Article  PubMed  CAS  Google Scholar 

  • Hardin G (1960) The competitive exclusion principle. Science 131:1292–1297

    Article  PubMed  CAS  Google Scholar 

  • Heerkloss R, Klinkenberg G (1998) A long-term series of a planktonic foodweb: a case of chaotic dynamics. Verh Int Verein Limnol 26:1952–1956

    Google Scholar 

  • Holling CS (1959) Some characteristics of simple types of predation and parasitism. Can Entomol 91:385–398

    Article  Google Scholar 

  • Holm NP, Armstrong DE (1981) Role of nutrient limitation and competition in controlling the populations of Asterionella formosa and Microcystis aeruginosa in semicontinuous culture. Limnol Oceanogr 26:622–634

    Article  CAS  Google Scholar 

  • Hsu SB, Hubbell SP, Waltman P (1977) A mathematical theory of single-nutrient competition in continuous cultures of micro-organisms. SIAM J Appl Math 32:366–383

    Article  Google Scholar 

  • Hu S, Zhang DY (1993) The effects of initial population density on the competition for limiting nutrients in two freshwater algae. Oecologia 96:569–574

    Article  Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Huisman J (1999) Population dynamics of light-limited phytoplankton: microcosm experiments. Ecology 80:202–210

    Article  Google Scholar 

  • Huisman J, Weissing FJ (1994) Light-limited growth and competition for light in wellmixed aquatic environments: an elementary model. Ecology 75:507–520

    Article  Google Scholar 

  • Huisman I, Weissing FJ (1995) Competition for nutrients and light in a mixed water column: a theoretical analysis. Am Nat 146:536–564

    Article  Google Scholar 

  • Huisman J, Weissing FJ (1999) Biodiversity of plankton by species oscillations and chaos. Nature 402:407–410

    Article  Google Scholar 

  • Huisman J, Weissing FJ (2000) Coexistence and resource competition. Nature 407:694

    Article  CAS  Google Scholar 

  • Huisman J, Weissing FJ (2001a) Fundamental unpredictability in multispecies competition. Am Nat 157:488–494

    Article  PubMed  CAS  Google Scholar 

  • Huisman J, Weissing FJ (2001b) Biological conditions for oscillations and chaos generated by multispecies competition. Ecology 82:2682–2695

    Article  Google Scholar 

  • Huisman J, Jonker RR, Zonneveld C, Weissing FJ (1999) Competition for light between phytoplankton species: experimental tests of mechanistic theory. Ecology 80:211–222

    Article  Google Scholar 

  • Huisman J, Johansson AM, Folmer EO, Weissing FJ (2001) Towards a solution of the plankton paradox: the importance of physiology and life history. Ecol Lett 4:408–411

    Article  Google Scholar 

  • Hutchinson GE (1961) The paradox of the plankton. Am Nat 95:137–145

    Article  Google Scholar 

  • Jost JL, Drake JF, Frederickson AG, Tsuchiya HM (1973) Interactions of Tetrahymena pyriformis, Escherichia coli, Azotobacter vinelandii, and glucose in a minimal medium. J Bacteriol 113:834–840

    PubMed  CAS  Google Scholar 

  • Kerr B, Riley MA, Feldman MW, Bohannan BJM (2002) Local dispersal promotes biodiversity in a real-life game of rock-paper scissors. Nature 418:171–174

    Article  PubMed  CAS  Google Scholar 

  • Kilham SS (1986) Dynamics of Lake Michigan natural phytoplankton communities in continuous cultures along a Si:P loading gradient. Can J Fish Aquat Sci 43:351–360

    Article  CAS  Google Scholar 

  • Koch AL (1974) Competitive coexistence of two predators using the same prey under constant environmental conditions. J Theor Biol 44:387–395

    Article  PubMed  CAS  Google Scholar 

  • Kuenen JG, Boonstra J, Schroder HGJ, Veldkamp H (1977) Competition for inorganic substrates among chemoorganotrophic and chemolithotrophic bacteria. Microbial Ecol 3:119–130

    Article  CAS  Google Scholar 

  • León JA, Tumpson DB (1975) Competition between two species for two complementary or substitutable resources. J Theor Biol 50:185–201

    Article  PubMed  Google Scholar 

  • Levin SA (1970) Community equilibria and stability, and an extension of the competitive exclusion principle. Am Nat 104:413–423

    Article  Google Scholar 

  • Levins R (1968) Evolution in changing environments. Princeton University Press, Princeton

    Google Scholar 

  • Levins R (1979) Coexistence in a variable environment. Am Nat 114:765–783

    Article  Google Scholar 

  • Lotka AJ (1924) Elements of physical biology. Williams and Wilkins, Baltimore

    Google Scholar 

  • Luckinbill LS (1973) Coexistence in laboratory populations of Paramecium aurelia and its predator Didinium nasutum. Ecology 54:1320–1327

    Article  Google Scholar 

  • MacArthur RH (1972) Geographical ecology. Harper and Row, New York

    Google Scholar 

  • MacArthur RH, Levins R (1964) Competition, habitat selection and character displacement in a patchy environment. Proc Natl Acad Sci USA 51:1207–1210

    Article  PubMed  CAS  Google Scholar 

  • Malthus T (1798) An essay on the principles of population (reprinted 1960). Modern Library, New York

    Google Scholar 

  • May RM, Leonard WJ (1975) Nonlinear aspects of competition between three species. SIAM J Appl Math 29:243–253

    Article  Google Scholar 

  • McCauley E, Nisbet RM, Murdoch WW, de Roos AM, Gurney WSC (1999) Large-amplitude cycles of Daphnia and its algal prey in enriched environments. Nature 402:653–656

    Article  CAS  Google Scholar 

  • Monod J (1950) La technique de culture continue, theorie et applications. Ann Inst Pasteur 79:390–410

    CAS  Google Scholar 

  • Nowak MA, May RM, Phillips RE, Rowland-Jones S, Lalloo DG, McAdam S, Klenerman P, Köppe B, Sigmund K, Bangham CRM, McMichael AJ (1995) Antigenic oscillations and shifting immunodominance in HIV-1 infections. Nature 375:606–611

    Article  PubMed  CAS  Google Scholar 

  • Padisák J, Reynolds CS, Sommer U (eds)(1993) The intermediate disturbance hypothesis in phytoplankton ecology. Kluwer, Dordrecht

    Google Scholar 

  • Paquin CE, Adams J (1983) Relative fitness can decrease in evolving asexual populations of S. cerevisiae. Nature 306:368–371

    Article  PubMed  CAS  Google Scholar 

  • Phillips OM (1973) The equilibrium and stability of simple marine biological systems. I. Primary nutrient consumers. Am Nat 107:73–93

    Article  Google Scholar 

  • Rothhaupt KO (1988) Mechanistic resource competition theory applied to laboratory experiments with zooplankton. Nature 333:660–662

    Article  Google Scholar 

  • Rothhaupt KO (1996) Laboratory experiments with a mixotrophic chrysophyte and obligately phagotrophic and phototrophic competitors. Ecology 77:716–724

    Article  Google Scholar 

  • Scheffer M (1991) Should we expect strange attractors behind plankton dynamics: and if so, should we bother? J Plankton Res 13:1291–1306

    Article  Google Scholar 

  • Silander, Jr., JA, Pacala SW (1990) The application of plant population dynamic models to understanding plant competition. In: Grace JB, Tilman D (eds) Perspectives on plant competition. Academic Press, New York, pp 67–91

    Google Scholar 

  • Sinervo B, Lively CM (1996) The rock-paper-scissors game and the evolution of alternative male strategies. Nature 380:240–243

    Article  CAS  Google Scholar 

  • Smale S (1976) On the differential equations of species in competition. J Math Biol 3:5–7

    Article  PubMed  CAS  Google Scholar 

  • Smith HL, Waltman P (1994) Competition for a single limiting resource in continuous culture: the variable-yield model. SIAM J Appl Math 54:1113–1131

    Article  Google Scholar 

  • Smith VH (1993) Applicability of resource-ratio theory to microbial ecology. Limnol Oceanogr 38:239–249

    Article  Google Scholar 

  • Sommer U (1985) Comparison between steady state and non-steady state competition: experiments with natural phytoplankton. Limnol Oceanogr 30:335–346

    Article  CAS  Google Scholar 

  • Sommer U (1986) Nitrate-and silicate-competition among Antarctic phytoplankton. Mar Biol 91:345–351

    Article  CAS  Google Scholar 

  • Spijkerman E, Coesel PFM (1996) Competition for phosphorus among planktonic desmid species in continuous-flow culture. J Phycol 32:939–948

    Article  Google Scholar 

  • Stewart FM, Levin BR (1973) Partitioning of resources and the outcome of interspecific competition: a model and some general considerations. Am Nat 107:171–198

    Article  Google Scholar 

  • Stone L (1993) Period-doubling reversals and chaos in simple ecological models. Nature 365:617–620

    Article  Google Scholar 

  • Taylor PA, Williams PJLeB (1975) Theoretical studies on the coexistence of competing species under continuous-flow conditions. Can J Microbiol 21:90–98

    Article  PubMed  CAS  Google Scholar 

  • Tilman D (1977) Resource competition between planktonic algae: an experimental and theoretical approach. Ecology 58:338–348

    Article  CAS  Google Scholar 

  • Tilman D (1980) Resources: a graphical-mechanistic approach to competition and predation. Am Nat 116:362–393

    Article  Google Scholar 

  • Tilman D (1981) Tests of resource competition theory using four species of Lake Michigan algae. Ecology 62:802–815

    Article  Google Scholar 

  • Tilman D (1982) Resource competition and community structure. Princeton Univ Press, Princeton

    Google Scholar 

  • Tilman D (1988) Plant strategies and the dynamics and structure of plant communities. Princeton University Press, Princeton

    Google Scholar 

  • Tilman D, Sterner RW (1984) Invasions of equilibria: tests of resource competition using two species of algae. Oecologia 61:197–200

    Article  Google Scholar 

  • Tilman D, Wedin D (1991) Dynamics of nitrogen competition between successional grasses. Ecology 72:1038–1049

    Article  Google Scholar 

  • Tilman D, Mattson M, Langer S (1981) Competition and nutrient kinetics along a temperature gradient: an experimental test of a mechanistic approach to niche theory. Limnol Oceanogr 26:1020–1033

    Article  Google Scholar 

  • Turpin DH, Harrison PJ (1979) Limiting nutrient patchiness and its role in phytoplankton ecology. J Exp Mar Biol Ecol 39:151–166

    Article  CAS  Google Scholar 

  • Vandermeer JH (1993) Loose coupling of predator-prey cycles: entrainment, chaos, and intermittency in the classic MacArthur consumer-resource equations. Am Nat 141:687–716

    Article  Google Scholar 

  • Van Donk E, Kilham SS (1990) Temperature effects on silicon-and phosphorus-limited growth and competitive interactions among three diatoms. J Phycol 26:40–50

    Article  Google Scholar 

  • Van Gemerden H (1974) Coexistence of organisms competing for the same substrate: an example among the purple sulfur bacteria. Microbial Ecol 1:104–119

    Article  Google Scholar 

  • Volterra V (1926) Fluctuations in the abundance of a species considered mathematically. Nature 118:558–560

    Article  Google Scholar 

  • Volterra V (1928) Variations and fluctuations of the number of individuals in animal species living together. J Cons Perm Int Explor Mer 3:3–51

    Google Scholar 

  • Von Liebig J (1840) Die Organische Chemie in ihrer Anwendung auf Agrikultur und Physiologie. Vieweg, Braunschweig

    Google Scholar 

  • Weissing FJ, Huisman J (1994) Growth and competition in a light gradient. J Theor Biol 168:323–336

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Passarge, J., Huisman, J. (2002). Competition in Well-Mixed Habitats: From Competitive Exclusion to Competitive Chaos. In: Competition and Coexistence. Ecological Studies, vol 161. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56166-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56166-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62800-9

  • Online ISBN: 978-3-642-56166-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics