Skip to main content

Particle Chemical Reactions

  • Chapter
The Airborne Microparticle

Abstract

There are several aspects of chemical reactions associated with microparticles that are of considerable interest. Among these are homogeneous gas-phase reactions which produce clusters that grow and coagulate to form nanometer or larger size particles, reactions between reactive gases and pre-existing droplets and solid particles, and precipitation reactions that occur in solutions to produce microcrystals. An elementary example of a gas phase process that produces particulate matter is the reaction between vapors of ammonia and hydrochloric acid to form ammonium chloride smokes when they come in contact.

Given the very small (∼10−6 to 10−14) volume ratios of atmospheric condensed matter to atmospheric gases it may seem very unlikely that chemical reactions occurring on the surface or, for some liquid droplets, in the interior of atmospheric aerosols could play an important role in determining concentrations of critically important atmospheric trace species. However, during the last decade it has been conclusively demonstrated that such heterogeneous processes are extremely important to the chemistry of both the troposphere and stratosphere. C.E. Kolb et al. (1994)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aardahl CL, Davis EJ (1996) Gas/aerosol chemical reactions in the NaOH-SO2-H2O system. Appl Spectrosc 50: 71–77

    Google Scholar 

  • Aardahl CL, Davis EJ (1997) Raman spectroscopy studies of reactions between sulfur dioxide and microparticles of hydroxides. Mat Res Soc Symp Proc 432: 209–220

    Google Scholar 

  • Aardahl CL, Widmann JF, Davis EJ (1998) Raman analysis of chemical reactions resulting from the collision of micrometer-sized particles. Appl Spectrosc 52: 47–53

    Google Scholar 

  • Abramowitz M, Stegun IA (1964) Handbook of mathematical functions. NBS Appl Math Ser 55, U.S. Government Printing Office, Washington

    Google Scholar 

  • Acker WP, Leach DH, Chang RK (1989) Third-order optical sum-frequency generation in micrometer-sized liquid droplets. Opt Lett 14: 402–404

    Google Scholar 

  • Akers FI, Wightman JP (1976) A kinetic study of the interaction between atomic oxygen and aerosols. J Phys Chem 80: 835–838

    Google Scholar 

  • Allen TM, Buehler MF, Davis EJ (1991) Radiometric effects on absorbing microspheres. J Colloid Interface Sci 142: 343–356

    Google Scholar 

  • Arnold S, Amani Y, Orenstein A (1980) A photophoretic spectrometer. Rev Sci Instrum 51: 1202–1204

    Google Scholar 

  • Bar-Ziv E, Jones DB, Spjut RE, Dudek DR, Sarofim AF, Longwell JP (1989) Measurement of combustion kinetics of a single char particle in an electrodynamic thermogravimetric analyzer. Combus Flame 75: 81–106

    Google Scholar 

  • Berglund RN, Liu BYH (1973) Generation of monodisperse aerosol standards. Environ Sci Technol 7: 147–153

    Google Scholar 

  • Bhanti D, Ray AK (1999) In situ measurement of photochemical reactions in microdroplets. J Aerosol Sci 30: 279–288

    Google Scholar 

  • Borgwardt RH, Bruce KR (1986) Effect of specific surface area on the reactivity of CaO with SO2. AIChEJ 32: 239–246

    Google Scholar 

  • Brasseur G, Granier C (1992) Mount Pinatubo aerosols, chlorofluorocarbons, and ozone depletion. Science 257: 1239–1241

    Google Scholar 

  • Buehler MF, Davis EJ (1993) A study of gas/aerosol chemical reactions by microdroplet Raman spectroscopy: The bromine/1-octadecene reaction. Colloids Surfaces 79: 137–149

    Google Scholar 

  • Cadle RD (1972) Formation and chemical reactions of atmospheric particles. J Colloid Interface Sci 39: 25–31

    Google Scholar 

  • Cadle RD, Robbins RC (1960) Kinetics of atmospheric chemical reactions involving aerosols. Faraday Discuss Chem Soc No. 30i: 155–161

    Google Scholar 

  • Carslaw HS, Jaeger JC (1959) Conduction of Heat in Solids. University Press, Oxford

    Google Scholar 

  • Chang C-S, Rochelle GT (1985) SO2 absorption into NaOH and Na2SO3 aqueous solutions. Ind Eng Chem Fundam 24: 7–11

    Google Scholar 

  • Cox RA (1973) Some experimental observations of aerosol formation in the photo-oxidation of sulphur dioxide. J Aerosol Sci 4: 473–483

    Google Scholar 

  • Crank J (1956) The Mathematics of Diffusion. University Press, Oxford.

    MATH  Google Scholar 

  • Chang RK, Chen G, Mazumder MdM (1996) Nonlinear optics in micro-meter sized droplets. In: Ducloy M, Bloch D (eds.), Quantum Optics of Confined Systems, Kluwer, Dordrecht, pp. 75–99

    Google Scholar 

  • Chen G, Acker WP, Chang RK (1991) Fine structures in the angular distribution of stimulated Raman scattering from single droplets. Opt Lett 16: 117–119

    Google Scholar 

  • Damle AS, Sparks LE (1986) Modeling of SO2 removal in spray-dryer flue-gas desulfurization system. Proc AIChE Meeting, New Orleans

    Google Scholar 

  • Däumer B, Niessner R, Klockow D (1992) Laboratory studies of the influence of thin organic films on the neutralization reaction of H2SO4 aerosol with ammonia. J Aerosol Sci 23: 315–325

    Google Scholar 

  • Davis EJ, Nicolaon G (1971) A new liquid aerosol generator III. Operating characteristics and theoretical analysis. J Colloid Interface Sci 37: 768–778

    Google Scholar 

  • Davis EJ, Liao SC (1975) The growth kinetics and polydispersity of condensational aerosols. J Colloid Interface Sci 50: 488–502

    Google Scholar 

  • Davis EJ, van Ouwerkerk R, Venkatesh S (1979) An analysis of the falling film gas-liquid reactor. Chem Eng Sci 34: 539–550

    Google Scholar 

  • Davis EJ, Buehler, MF (1990) Chemical reactions with single microparticles. Mat Res Soc Bulletin 15: 26–33

    Google Scholar 

  • Davis EJ (1991) Optical measurements of electrodynamically levitated microparticles. In: Fearey BL (ed) Optical Methods for Ultrasensitive Detection and Analysis: Techniques and Applications. Proc SPIE. 1435: 216–243.

    Google Scholar 

  • Davis EJ, Rassat SD, Foss W (1992) Measurement of aerosol/gas reaction rates by microparticle Raman spectroscopy. J Aerosol Sci Suppl 23: 429–432

    Google Scholar 

  • Dimitriades B (1981) The role of natural organics in photochemical air pollution: issues and research needs. J Air Pollut. Control Assoc 3: 229–235

    Google Scholar 

  • Esen C, Schweiger G (1996) Preparation of monodisperse polymer particles by photopolymerization. J Colloid Interface Sci 179: 276–280

    Google Scholar 

  • Esen C, Kaiser T, Schweiger G (1996) Raman investigation of photopolymerization reactions of single optically levitated microparticles. Appl Spectrosc 50: 823–828

    Google Scholar 

  • Espenscheid WF, Matijevic E, Kerker M (1964) Aerosol studies by light scattering. III. Preparation and particle size analysis of sodium choride aerosols of narrow size distribution. J Phys Chem 68: 2831–2842

    Google Scholar 

  • Espenscheid WF, Willis E, Matijevic E, Kerker M (1965) Aerosol studies by light scattering. IV. Preparation and particle-size distribution of aerosols consisting of concentric spheres. J Colloid Interface Sci 20: 501–521

    Google Scholar 

  • Fahey DW, Ravishankara AR (1999) Atmospheric science: Summer in the stratosphere. Science 285: 208–210

    Google Scholar 

  • Fletcher RA, Small JA (1993) Analysis of individual collected particles. In: Willike K, Baron PA (eds.) Aerosol Measurement Principles, Techniques, and Applications. Van Nostrand Reinhold, New York, pp. 260–295

    Google Scholar 

  • Foss WR, Davis EJ (1994) Simultaneous diffusion of a reactive gas and chemical reaction within an aerosol droplet. J Aerosol Sci 25: 33–48

    Google Scholar 

  • Fung KH, Tang IN (1988) Raman spectra of singly suspended supersaturated ammonium bisulfate droplets. Chem Phys Lett 147: 509–513

    Google Scholar 

  • Furusawa K, Kimura Y, Tagawa T (1986) Synthesis of composite polystyrene latices with silica particles in the core. J Colloid Interface Sci 109: 69–76

    Google Scholar 

  • Gardner JA, Watson LR, Adewuyi YG, Davidovits P, Zahniser MS, Worsnop DR, Kolb CE (1987) Measurement of the mass accommodation coefficient of SO2 (g) on water droplets. J Geophys Res 92: 10,887-10,895

    Google Scholar 

  • Gerhard ER, Johnstone HF (1955) Photochemical oxidation of sulfur dioxide in air. Ind Eng Chem 47: 972–976

    Google Scholar 

  • Gopalakrishnan R, Seehra MS (1990) Kinetics of the high-temperature reaction of SO2 with CaO particles using gas-phase Fourier transform infrared spectroscopy. Energy Fuels 4: 226–230

    Google Scholar 

  • Grosjean D (1977) Aerosols. Ozone and Other Photochemical Oxidants. National Academy of Sciences, Washington, D.C., pp 45–125

    Google Scholar 

  • Grosjean D, van Cauwenberghek K (1978) Identification of C3-c10 aliphatic dicarboxylic acids in airborne particulate matter. Environ Sci Tech 12: 313–317

    Google Scholar 

  • Gullett BK, Blom JA, Cunningham RT (1988) Porosity, surface area, and particle size effects of CaO reacting with SO2 at 1100°C. Reactivity Solids 6: 263–275

    Google Scholar 

  • Haagen-Smit AJ (1952) Chemistry and physiology of Los Angeles smog. Ind Eng Chem 44: 1342–1346

    Google Scholar 

  • Hanson DR, Lovejoy ER (1995) The reaction of C1ONO2 with submicron sulfuric acid aerosol. Science 267: 1326–1328

    Google Scholar 

  • Hanson DR, Ravishankara AR (1991) The reaction probabilities of C1ONO2 and N2O5 on 40 to 75% sulfuric acid solutions. J Geophys Res 96: 17,307-17,314

    Google Scholar 

  • Hanson DR, Ravishankara AR (1993) The uptake of HCl and HOC1 onto sulfuric acid: solubilities, diffusivities and reaction. J Phys Chem 97: 12, 309-12,319

    Google Scholar 

  • Hanson DR, Ravishankara AR (1994) Reactive uptake of C1ONO2 onto sulfuric acid due to reaction of HCl and H2O. J Phys Chem 98: 5728–5735

    Google Scholar 

  • Harms J, Jander G (1936) Preparation of highly disperse aerosols of definite particle size by photochemical decomposition of mercury dimethyl. Kolloid Z 77: 267–269

    Google Scholar 

  • Harriott P, Kinzey M (1986) Modeling the Gas and Liquid-Phase Resistance in the Dry Scrubbing Process for SO2 Removal. Proc Pittsburgh Coal Conf

    Google Scholar 

  • Hill SC, Chang RK (1995) Nonlinear optics in droplets. In: Keller O (ed.), Studies in Classical and Quantum Nonlinear Optics. Nova Science Publishers Inc., Commack, New York, pp. 171–242

    Google Scholar 

  • Hirschwald W, Noack D (1972) Thermogravimetrische Untersuchung der Reduktionskinetik von Zinkoxid mit Wasserstoff. Zeit. Phys. Chemie Neue Folge 77: 1–20

    Google Scholar 

  • Hoppe R, Shultz-Ekloff G, Wohrle D, Kirschhock C, Fuess H (1994) Location and photoinduced transformation of zeolite-encaged thioindigo. Langmuir 10: 1517–1523

    Google Scholar 

  • Hu JH, Shi Q, Davidovits P, Worsnop DR, Zahniser MS, Kolb CE (1995) Reactive uptake of Cl2(g) and Br2(g) by aqueous surfaces as a function of Br-and I-ion concentration — the effect of chemical-reaction at the interface. J Phys Chem 99: 8768–8776

    Google Scholar 

  • Huang CM, Kerker M, Matijevic E, Cooke DD (1970) Aerosol studies by light scattering VII. preparation and particle-size distribution of linolenic acid aerosols. J Colloid Interface Sci 33: 244–254

    Google Scholar 

  • Huntzicker JJ, Cary RA, Ling CS (1980) Neutralization of sulfuric acid aerosol by ammonia. Environ Sci Technol 14: 819–824

    Google Scholar 

  • Ingebrethsen BJ, Matijevic E (1980) Preparation of uniform colloidal dispersions byx chemical reactions in aerosols-2. Spherical particles of alumium hydrous oxide. J Aerosol Sci 11: 271–280

    Google Scholar 

  • Ingebrethsen BJ, Matijevic E (1984) Kinetics of hydrolysis of metal alkoxide aerosol droplets in the presence of water vapor. J Colloid Interface Sci 100: 1–16

    Google Scholar 

  • Ingebrethsen BJ, Matijevic E, Partch RE (1983) Preparation of uniform colloidal dispersions by chemical reactions in aerosols III. Mixed titania/alumina colloidal spheres. J Colloid Interface Sci 95: 228–239

    Google Scholar 

  • Jacobsen RT, Kerker M, Matijevic E (1967) Aerosol studies by light scattering. V. Preparation and particle size distribution of aerosols consisting of particles exhibiting high optical absorption. J Phys Chem 71: 514–520

    Google Scholar 

  • Jander G, Winkel A (1933) Aerosols, especially of iron oxide. Kolloid Z 63: 5–12

    Google Scholar 

  • Johnstone HF, Coughanour DR (1958) Absorption of sulfur dioxide from air. Ind Eng Chem 50: 1169–1172

    Google Scholar 

  • Jothimurugesan K, Harrison DP (1990) Reaction between H2S and zinc oxide-titanium oxide sorbents 2. single-pellet sulfidation modeling. Ind Eng Chem Res 29: 1167–1172

    Google Scholar 

  • Jo’zewicz W, Rochelle G (1984) Modeling of SO2 removal by spray dryers. Proc Pittsburgh Coal Conf

    Google Scholar 

  • Junge CE, Chagnon CW, Manson JE (1961) A world-wide stratospheric aerosol layer. Science 138: 1478–1479

    Google Scholar 

  • Kao CK (1982) Optical Fiber Systems: Technology, Design, and Application. McGraw-Hill, New York

    Google Scholar 

  • Karlsson HT, Klingspor J (1987) Tentative modeling of spray-dry scrubbing of SO2. Chem Eng Tech 10: 104–112

    Google Scholar 

  • Keener TC, Jiang X (1989) Surface area formation in dry FGD sorbents. Chem Eng Commun 75: 1–22

    Google Scholar 

  • Keener TC, Biswas P (1989) A dry scrubbing model for SO2 removal. Chem Eng Commun 81: 97–108

    Google Scholar 

  • Kerker M (1975) Laboratory generation of aerosols. Adv Colloid Interface Sci 5: 105–172

    Google Scholar 

  • Kerr CP (1974) Sulfur dioxide removal in venturi scrubbers. Ind Eng Chem Process Des Develop 13: 222–225

    Google Scholar 

  • Kim K-S, Pratsinis SE (1988) Manufacture of optical waveguide preforms by modified chemical vapor deposition. AIChE J 34: 912–921

    Google Scholar 

  • Klingspor J, Karlsson HT, Bjerle I (1983) A kinetic study of the dry SO2-limestone reaction at low temperature. Chem Eng Commun 22: 81–103

    Google Scholar 

  • Klingspor J, Strömberg A-M, Karlsson HT, Bjerle I (1984) Similarities between lime and limestone in wet-dry scrubbing. Chem Eng Process 18: 239–247

    Google Scholar 

  • Kodas TT, Hampden-Smith MJ (1999) Aerosol Processing of Materials. Wiley-VCH, New York

    Google Scholar 

  • Koehler GR (1974) Alkaline scrubbing removes sulfur dioxide. Chem Eng Progr. 70: 63–65

    Google Scholar 

  • Kolb CE, Worsnop DR, Zahniser MS, Davidovits P, Hanson DR, Ravishankara AR, Keyser LF, Leu MT, Williams LR, Molina MJ, Tolbert MA (1994) Laboratory studies of atmospheric heterogeneous chemistry. In: Barker JR (ed.) Current Problems in Atmospheric Chemistry, Advances in Physical Chemistry Series, World Scientific, Singapore, pp 771–875

    Google Scholar 

  • Kwok AS, Wood CF, Chang RK (1990) Fluorescence imaging of CO2 laser-heated droplets. Opt Lett 15: 664–666

    Google Scholar 

  • Kwok AS, Chang RK (1993a) Stimulated resonance Raman scattering of rhodamine 6G. Opt Lett 18:1703–1705

    Google Scholar 

  • Kwok AS. Chang RK (1993b) Suppression of lasing by stimulated Raman scattering in microdroplets. Opt Lett 18: 1597–1599

    Google Scholar 

  • Leach DH, Chang RK, Acker WP, Hill SC (1993) Third-order sum-frequency generation in droplets: experimental results. Opt Soc Am B 10: 34–45

    Google Scholar 

  • Lew S, Jothimurugesan K, Flytzani-Stephanopoulos M (1989) High-Temperature H2S removal from fuel gases by regenerable zinc oxide-titanium dioxide sorbents. Ind Eng Chem Res 28:535–541

    Google Scholar 

  • Lew S, Sarofim AF, Flytzani-Stephanopoulos M (1992a) the reduction of zinc titanate and zinc oxide solids. Chem Eng Sci 47: 1421–1431

    Google Scholar 

  • Lew S, Sarofim AF, Flytzani-Stephanopoulos M (1992b) The sulfidation of zinc titanate and zinc oxide solids. Ind Eng Chem Res 31: 1890–1899

    Google Scholar 

  • Lew S, Sarofim AF, Flytzani-Stephanopoulos M (1992c) Modeling of the sulfidation of zinctitanium oxide sorbents with hydrogen sulfide. AIChE J 38: 1161–1169

    Google Scholar 

  • Li W, Rassat SD, Foss WR, Davis EJ (1994) Formation and properties of aerocolloidal TiO2-coated microspheres produced by alkoxide droplet reaction. J Colloid Interface Sci 162: 267–278

    Google Scholar 

  • Linak WP, Peterson TW (1984) Effect of coal type and residence time on the submicron aerosol distribution from pulverized coal combustion. Aerosol Sci Technol 3: 77–96

    Google Scholar 

  • Mackay, RA (1982) Infrared emission from gas-aerosol reactions. Ind Eng Chem Prod Res Dev 21: 635–639

    Google Scholar 

  • Mahuli SK, Agnihotri R, Jadhave R, Chauk S, Fan L-S (1999) Combined calcination, sintering and sulfation model for CaCO3-SO2 reaction. AIChE J 45: 367–382

    Google Scholar 

  • Matijevic E, Espenscheid WF, Kerker M (1963) Aerosols consisting of spherical particles of sodium chloride. J Colloid Interface Sci 18: 91–94

    Google Scholar 

  • Matijevic E, Kerker M, Schulz KF (1960) Light scattering of coated aerosols. I. Scattering by AgCl cores. Discussions Faraday Soc: 178–184

    Google Scholar 

  • Mayville FC, Partch RE, Matijevic E (1987) Preparation of uniform spherical titania particles coated with polyurea by the aerosol technique. J Colloid Interface Sci 120: 135–139

    Google Scholar 

  • Mazumder MdM, Schaschek K, Chang RK, Gillespie JB (1995) Efficient pumping of minority species stimulated Raman scattering (SRS) by majority species SRS in a microdroplet of a binary mixture. Chem Phys Lett 239: 361–368

    Google Scholar 

  • McCormick MP, Wang, PH, Poole LR (1992) In aerosol-cloud-climate interactions. Academic Press, New York, pp 205–222

    Google Scholar 

  • McMurry PH, Takano H, Anderson GR (1983) Study of the ammonia (gas)-sulfuric acid (aerosol) reaction rate. Envir Sci Technol 17: 347–352

    Google Scholar 

  • McRae DD (1977) Chemical reactions in aerosols. The bromination of 1-octadecene droplets. PhD Dissertation, Clarkson University.

    Google Scholar 

  • McRae DD, Matijevic E, Davis EJ (1975) Chemical reactions in aerosols I. Bromination of octadecene droplets. J Colloid Interface Sci 53: 411–421

    Google Scholar 

  • McRae DD, Matijevic E, Davis EJ (1978) Chemical reactions in aerosols II. the effects of various parameters on the bromination of 1-octadecene droplets. J Colloid Interface Sci 67: 526–537

    Google Scholar 

  • McRae DD (1982) The refractive index of individual cigarette smoke droplets. J Colloid Interface Sci 87: 117–123

    Google Scholar 

  • Meyer B, Carlson C (1971) Reaction of SO2 with metal oxides. In Sulfur and SO2 Developments. AIChE, New York, pp 136–141

    Google Scholar 

  • Mossop SC (1963) Stratospheric particles at 20 km. Nature 199: 325–326

    Google Scholar 

  • Movilliat P (1962) Ann Occup Hyg 4: 275-pp.

    Google Scholar 

  • Mulholland GW, McKenzie RL, Marx E, Fletcher RA (1985) Refractive index and evaporation rate of individual smoke droplets. Langmuir 1: 367–372

    Google Scholar 

  • Musick J, Popp J, Trunk M, Kiefer W (1998) Investigations of radical polymerization and copolymerization reactions in optically levitated microdroplets by simultaneous Raman spectroscopy, Mie scattering, and radiation pressure measurements. Appl Spectrosc 52: 692–701

    Google Scholar 

  • Nagel P, Jander G, Scholz G (1944) Condensation aerosols: mercury fog and lead oxide smoke. Kolloid Z 107: 194–201

    Google Scholar 

  • Nakamura K, Partch RE, Matijevic E (1984) Preparation of polymer colloids by chemical reactions in aerosols II. Large particles. J Colloid Interface Sci 99: 118–127

    Google Scholar 

  • Newton GH, Kramlich J, Payne R (1990) Modeling the SO2-slurry droplet reaction. AIChE J 36: 1865–1872

    Google Scholar 

  • Nicolaon G, Cooke DD, Kerker M, Matijevic E (1970) A new liquid aerosol generator. J Colloid Interface Sci 34: 534–544

    Google Scholar 

  • Nicolaon G, Cooke DD, Davis EJ, Kerker M, Matijevic E (1971) A new liquid aerosol generator II. The effect of reheating and studies on the condensation zone. J Colloid Interface Sci 35: 490–501

    Google Scholar 

  • Niessner R (1984) Coated particles: Preliminary results of laboratory studies on interaction of ammonia with coated sulfuric acid droplets or hydrogen sulfate particles. Sci Total Envir 36: 353–362

    Google Scholar 

  • Nguyen HV, Okuyama K, Mimura T, Kousaka Y, Flagan RC, Scinfeld JH (1987) Homogeneous and heterogeneous nucleation in a laminar flow aerosol generator. J Colloid Interface Sci 119: 491–504

    Google Scholar 

  • Okuyama K, Kousaka Y, Tohge N, Yamamoto S, Wu JJ, Flagan RC, Scinfeld JH (1986) Production of ultrafine metal oxide aerosol particles by thermal decomposition of metal alkoxide vapors. AIChE J 32: 2010–2019

    Google Scholar 

  • Oster G, Nishijima Y (1956) Fluorescence and internal rotation: their dependence on viscosity of the medium. J Am Chem Soc 78: 1581–1584

    Google Scholar 

  • Partch R, Matijevic E, Hodgson AW, Aiken, BE (1983) Preparation of polymer colloids by chemical reactions in aerosols. I. Poly(p-tertiarybutylstyrene). J Polymer Sci Polymer Chem Ed 21: 961–967

    Google Scholar 

  • Partch RE, Nakamura K, Wolfe KJ, Matijevic E (1985) Preparation of polymer colloids by chemical reactions in aerosols III. Polyurea and mixed polyurea-metal oxide particles. J Colloid Interface Sci 105: 560–569

    Google Scholar 

  • Patrick V, Gavalas GR, Flytzani-Stephanopoulos M, Jothimurugesan K (1989) High-temperature sulfidation-regeneration of CuO-Al2O3 sorbents. Ind Eng Chem Res 28: 931–940

    Google Scholar 

  • Paulson SE, Flagan RC, Scinfeld JH (1992a) Atmospheric photooxidation of isoprene. Part I. The hydroxyl radical and ground state atomic oxygen reactions. Int J Chem Kinet 24: 79–101

    Google Scholar 

  • Paulson SE, Flagan RC, Scinfeld JH (1992b) Atmospheric photooxidation of isoprene. Part II. The ozone-isoprene reaction. Int J Chem Kinet 24: 103–125

    Google Scholar 

  • Pesthy AJ, Flagan RC, Scinfeld, JH (1983) Theory of aerosol formation and growth in laminar flow. J Colloid Interface Sci 91: 525–545

    Google Scholar 

  • Pratsinis S, Kodas TT (1993) Manufacturing of materials by aerosol processes. In: Willike K, Baron PA (eds.) Aerosol Measurement Principles, Techniques, and Applications. Van Nostrand Reinhold, New York, pp. 721–746

    Google Scholar 

  • Rassat SD (1994) Raman spectroscopic investigation of gas-solid reactions of single microparticles. Ph.D. Dissertation, University of Washington

    Google Scholar 

  • Rassat SD, Davis EJ (1992) Chemical reaction between sulfur dioxide and a calcium oxide aerosol particle. J Aerosol Sci 23: 765–780

    Google Scholar 

  • Rassat SD, Allen TM, Davis EJ (1993) Raman spectroscopy studies of combustion-related microparticles. In: Laser Applications in Combustion and Combustion Diagnostics, Liou LC (ed)Proc SPIE 1862: 182–191

    Google Scholar 

  • Rassat SD, Davis EJ (1994) Temperature measurement of single levitated microparticles using Stokes/anti-Stokes raman intensity ratios. Appl Spectrosc 48: 1498–1505

    Google Scholar 

  • Rasool SI, Schneider SH (1971) Atmospheric carbon dioxide and aerosols: effects of large increases on global climate. Science 173: 138–141

    Google Scholar 

  • Ray AK, Bhanti D (1997) Effect of optical resonances on photochemical reactions in microdroplets. Appl Opt 36: 2663–2674

    Google Scholar 

  • Robbins RC, Cadle RD (1958) Kinetics of the reaction between gaseous ammonia and sulfuric acid droplets in an aerosol. J Phys Chem 62: 469–471

    Google Scholar 

  • Robinson GN, Worsnop DR, Jayne JT, Kolb CE, Davidovits P (1997) Heterogenosu uptake of C1ONO2 and N2O5 by sulfuric acid solutions. J Geophys Res 102: 3583–3601

    Google Scholar 

  • Rubel GO, Gentry JW (1984) Investigation of the reaction between single aerosol acid droplets and ammonia gas. J Aerosol Sci 15: 661–671

    Google Scholar 

  • Rubel GO, Gentry JW (1986) Onset of particle crystallization resulting from acid droplet ammonia gas reactions. J Aerosol Sci 17: 397–399

    Google Scholar 

  • Rubel GO, Gentry JW (1987) Onset of particle crystallization resulting from acid droplet ammonia gas reactions. J Aerosol Sci 18: 23–27

    Google Scholar 

  • Rubel GO (1987) Reaction of microparticles by the diffusion of reactive gases through porous shells. J Appl Phys 61: 1633–1637

    Google Scholar 

  • Sarkar A (1985) Fabrication techniques for high-quality optical fibers. Fibers Integrated Opt 5: 135–148

    Google Scholar 

  • Serpengüzel A, Chen G, Chang RK (1990) Stimulated Raman scattering of aqueous droplets containing ions: concentration and size determination. Part. Sci. Technol. 8: 179–189

    Google Scholar 

  • She CY, Hsu LS (1988) Probing structure properties of amorphous films with Raman spectroscopy. NBS Special Publication 746: 383.

    Google Scholar 

  • Silcox GD, Kramlich JC, Pershing DW (1989) A mathematical model for the flash calcination of dispersed CaCO3 and Ca(OH)2 particles. Ind Eng Chem Res 28: 155–160

    Google Scholar 

  • Sinclair D, LaMer VK (1949) Light scattering as a measure of particle size in aerosols. Chem Rev 44: 245–267

    Google Scholar 

  • Spjut RE (1985) Heat Transfer to, and Position Control of Electrodynamically Suspended Micron-Sized Particles. PhD Thesis, Massachusetts Institute of Technology

    Google Scholar 

  • Spjut RE, Sarofim AF, Longwell JP (1985) Laser heating and particle temperature measurement in an electrodynamic balance. Langmuir 1: 355–360

    Google Scholar 

  • Spjut RE, Elliott JF, Bolsaitis P (1987) Thermogravimetric measurements in an electrodynamic balance, Mat Res Soc Symp Proc 87: 95–102.

    Google Scholar 

  • Spjut RE, Bolsaitis PP (1987) Three channel optical temperature measurement of laser-heated reacting particles. Mat Res Soc Symp Proc 87: 295–303

    Google Scholar 

  • Spjut RE (1987) Transient response of one-and two-color optical pyrometry systems. Opt Eng 26: 467–472

    Google Scholar 

  • Spjut RE, Bar-Ziv E, Sarofim AF, Longwell JP (1986) Electrodynamic thermogravimetric analyser. Rev Sci Instrum 57: 1604–1610

    Google Scholar 

  • Stouffer MR, Yoon H, Burke FP (1989) An investigation of the mechanisms of flue gas desulfurization by in-duct dry sorbent injection. Ind Eng Chem Res 28: 20–27

    Google Scholar 

  • Straubel E, Straubel H (1984) Investigations of chemical reactions on aerosols. J Aerosol Sci 15: 301–305

    Google Scholar 

  • Straubel E, Straubel H (1986b) Optical observations of physical and chemical changes taking place during melting of freely suspended solid particles. J Aerosol Sci 17: 392–396

    Google Scholar 

  • Straubel H, Straubel E (1986a) Observations during reactions and melting of freely suspended solid particles. Part Part Sys Charact 3:136–141

    Google Scholar 

  • Szekely J, Evans JW (1970a) A structural model for gas-solid reactions with a moving boundary, Chem Eng Sci 25:1091–1107

    Google Scholar 

  • Szekely J, Evans JW (1970b) A structural model for gas-solid reactions with a moving boundary —II. The effect of grain size, porosity and temperature on the reaction of porous pellets. Chem Eng Sci 26:1901–1913

    Google Scholar 

  • Taflin DC. Davis EJ (1987) Mass transfer from a sphere at intermediate Peclet numbers. Chem Eng Commun 55:199–210

    Google Scholar 

  • Taflin DC, Davis EJ (1990) A study of aerosol chemical reactions by optical resonance spectroscopy. J Aerosol Sci 21:73–86

    Google Scholar 

  • Takahashi K, Kasahara M, Itoh MA (1975) Kinetic model of sulfuric acid aerosol formation from photochemical oxidation of sulfur dioxide vapor. J Aerosol Sci 6:45–55

    Google Scholar 

  • Tang IN, Fung KH, Imre DG, Munkelwitz HR (1995) Phase transformation and metastability of hygroscopic microparticles. Aerosol Sci Technol 23:443–453

    Google Scholar 

  • Taylor DD, Flagan RC (1982) the influence of combustor operation on fine particles from coal combustion. Aerosol Sci Tech 1:103–117

    Google Scholar 

  • Tilghman, BC (1866) Process for wood pulp production. Brit. Pat. 2,926; Ger. Pat., March 31, 1867; U.S. Pat. October 26, 1867

    Google Scholar 

  • Trijonis JC, Malm WC (1990) Visibility: existing and historical conditions—causes and effects. NAPA State of Science and Technology, Report 24

    Google Scholar 

  • Trunk M, Popp J, Lankders M, Kiefer W (1997) Microchemistry: time dependence of an acidbase reaction in a single optically levitated microdroplet. Chem Phys Lett 264: 233–237

    Google Scholar 

  • Tyndall J (1869) On the blue colour of the sky, the polarization of skylight, and on the polarization of light by cloudy matter generally. Phil Mag 37:384–394

    Google Scholar 

  • Tzeng H-M, Wall KF, Long MB, Chang RK (1984) Evaporation and condensation rates of liquid droplets deduced from structure resonances in the fluorescence spectra. Opt Lett 9:273–275 Van den Heuval, Mason S (1963)

    Google Scholar 

  • Van Doren JM, Watson LR, Davidovits P, Worsnop DR, Zahniser MS, Kolb CE (1990) Temperature dependence of the uptake coefficients of HNO3, HCl, and N2O5 by water droplets. J Phys Chem 94:3265–3269

    Google Scholar 

  • Van Doren JM, Watson LR, Davidovits P, Worsnop DR, Zahniser MS, Kolb CE (1991) Uptake of N2O5 and HNO3 by aqueous sulfuric acid droplets. J Phys Chem 95:1684–1689

    Google Scholar 

  • Vehring R, Schweiger G (1992) Optical determination of the temperature of transparent microparticles. Appl Spectrosc 46:25–27

    Google Scholar 

  • Vehring R, Moritz H, Niekamp D, Schweiger G, Heinrich P (1995) Linear Raman spectroscopy on droplet chains: a new experimental method for the analysis of fast transport processes and reactions on microparticle. Appl Spectrosc 49:1215–1224

    Google Scholar 

  • Vehring R, Aardahl CL, Davis EJ, Schweiger G (1998) The characterization of fine particles originating from an uncharged aerosol: size dependence and detection limits for Raman analysis. J Aerosol Sci 29:1045–1061

    Google Scholar 

  • Visca M, Matijevic E (1979) Preparation of uniform colloidal dispersions by chemical reactions in aerosols. J Colloid Interface Sci 68:308–319

    Google Scholar 

  • Ward TL, Zhang SH, Allen T, Davis EJ (1987) Photochemical polymerization of acrylamide aerosol particles. J Colloid Interface Sci 118: 343–355

    Google Scholar 

  • Watson LR, Van Doren JM, Davidovits P, Worsnop DR, Zahniser MS, Kolb CE (1990) Uptake of HCl molecules by aqueous sulfuric acid droplets as a function of acid concentration. J Geophys Res 95: 5631–5638

    Google Scholar 

  • Weinstein B (1989) Reaction of acid gases with solid alkali flowing in a duct: SO2 reaction with lime. Ind Eng Chem Res 28: 246–250

    Google Scholar 

  • Weisz PB (1967a) Sorption-diffusion in heterogeneous systems Part 1. General sorption behaviour and criteria. Trans. Faraday Soc. 63:1801–1806

    Google Scholar 

  • Weisz PB, Hicks JS (1967b) Sorption-diffusion in heterogeneous systems Part 2. Quantitative solutions for uptake rates. Trans. Faraday Soc. 63:1807–1814

    Google Scholar 

  • Weisz PB, Zollinger H (1967c) Sorption-diffusion in heterogeneous systems Part 3. Experimental models of dye sorption. Trans Faraday Soc 63: 1815–1823

    Google Scholar 

  • Weisz PB, Zollinger H (1967d) Sorption-diffusion in heterogeneous systems Part 4. Dyeing rates in organic fibers. Trans. Faraday Soc. 64:1693–1700

    Google Scholar 

  • Wennberg PO, Cohen RC, Stimpfle RM, Koplow JP, Anderson JG, Salawitch RJ, Fahey DW, Woodbridge EL, Keim ER, Gao RS, Webster CR, May RD, Toohey DW, Avallone LM, Proffitt MH, Loewenstein M, Podolske JR, Chan KR, Wofsy SC (1994) Removal of stratospheric O3 by radicals: In situ measurements of OH, HO2, NO, NO2, C10, and BrO. Science 266:398–404

    Google Scholar 

  • Westmoreland PR, Gibson JB, Harrison DP (1977) Comparative kinetics of high-temperature reaction between hydrogen sulfide and selected metal oxides. Environ Sci Technol 11:488–491

    Google Scholar 

  • Wickert K (1963) Experiments on desulfurization before and after the burner for reducing the release of SO2. Mitteilungen d VGB 83:74.

    Google Scholar 

  • Widmann JF, Aardahl CL, Johnson TJ, Davis EJ (1998a) Encapsulation of levitated microparticles. J Colloid Interface Sci 199:197–205

    Google Scholar 

  • Widmann JF, Aardahl CL, Davis EJ (1998b) Microparticle Raman spectroscopy. Trends Anal Chem 17:339–345

    Google Scholar 

  • Widmann JF, Davis EJ (1996) Photochemically initiated polymerization of single microdroplets. Colloid Polym Sci 274:525–531

    Google Scholar 

  • Widmann JF, Davis EJ (1997) Evaporation of multicomponent droplets. Aerosol Sci Technol 27:243–254

    Google Scholar 

  • Williams LR, Manion JA, Golden DM, Tolbert MA (1994) Laboratory measurements of heterogeneous reactions on sulfuric acid surfaces. J Appl Meteorol 33:785–790

    Google Scholar 

  • Wood WP, Castleman AW, Tang IN (1975) Mechanisms of aerosol formation from SO2. J Aerosol Sci 6:367–374

    Google Scholar 

  • Woods MC, Gangwal SK, Jothimurugesan K, Harrison DP (1990) Reaction between H2S and Zinc oxide-titanium oxide sorbents 1. Single-pellet kinetic studies. Ind Eng Chem Res 29:1160–1167

    Google Scholar 

  • Woods MC, Gangwal SK, Harrison DP. and Jothimurugesan K (1991) Kinetics of the reactions of a zinc ferrite sorbent in high-temperature coal gas desulfurization. Ind Eng Chem Res 30:100–107

    Google Scholar 

  • Worsnop DR, Zahniser MS, Kolb CE, Gardner JA, Watson LR, Van Doren JM, Jayne JT, Davidovits P (1989) Temperature dependence of mass accommodation of SO2 and H2O2 on aqueous surfaces. J Phys Chem 93:1159–1172

    Google Scholar 

  • Wu Y-T, Zakian V, Graves DJ (1976) Diffusion and reversible reaction in a sphere: a numerical study using IMN approximants. Chem Eng Sci 31:153–162

    Google Scholar 

  • Zhang SH, Davis EJ (1987) Mass transfer from a single micro-droplet to a gas flowing at low Reynolds number. Chem Eng Commun 50:51–67

    Google Scholar 

  • Zhang S-H, Shaw M, Scinfeld JH, Flagan RC (1996) Photochemical aerosol formation from α-pinene and β-pinene. J Geopohys Res 97:20717–20729

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg New York

About this chapter

Cite this chapter

Davis, E.J., Schweiger, G. (2002). Particle Chemical Reactions. In: The Airborne Microparticle. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56152-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56152-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62806-1

  • Online ISBN: 978-3-642-56152-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics